首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The calcium transients (Delta[Ca(2+)](i)) at active zones of amphibian (Bufo marinus) motor-nerve terminals that accompany impulses, visualized using a low-affinity calcium indicator injected into the terminal, are described and the pathways of subsequent sequestration of the residual calcium determined, allowing development of a quantitative model of the sequestering processes. Blocking the endoplasmic reticulum calcium pump with thapsigargin did not affect Delta[Ca(2+)](i) for a single impulse but increased its amplitude during short trains. Blocking the uptake of calcium by mitochondria with CCCP had little effect on Delta[Ca(2+)](i) of a single impulse but greatly increased its amplitude during short trains. This present compartmental model is compatible with our previous Monte Carlo diffusion model of Ca(2+) sequestration during facilitation [Bennett, M.R., Farnell, L., Gibson, W.G., 2004. The facilitated probability of quantal secretion within an array of calcium channels of an active zone at the amphibian neuromuscular junction. Biophys. J. 86(5), 2674-2690], with the single plasmalemma pump in that model now replaced by separate pumps for the plasmalemma and endoplasmic reticulum, as well as the introduction of a mitochondrial uniporter.  相似文献   

2.
C J Duncan 《Cell calcium》1983,4(3):171-193
Calcium ions have a key role in triggering the release of packaged transmitter at the amphibian neuromuscular junction and of the chromaffin granules at the adrenal medulla. It is suggested that (i) proteins on the vesicle and plasma membranes are of particular importance in promoting membrane fusion and exocytosis (ii) they may be divalent cation-stimulated ATPases, which form the calcium-binding sites or have a specific calcium-binding protein in close molecular apposition (iii) these ATPases in synaptic vesicles and chromaffin granules also generate a protonmotive force which is associated with the uptake of transmitter (iv) the osmotic properties of the vesicle may be important during fission, but it is not suggested that chemiosmotic effects are involved in Ca2+-triggered fusion (v) the action of calcium is markedly co-operative (vi) the adrenal medullary cell and the n.m.j. may differ in the Ca2+-binding site; there is evidence for the involvement of calmodulin in granule-plasmalemma fusion in the chromaffin cells, but not at present (surprisingly) for a role of this Ca2+-binding protein at the n.m.j. (vii) exocytosis requires MgATP (viii) phosphorylation of the ATPase may well be involved; phosphorylation via cAMP does not seem to be involved in fusion in either system (ix) the ATPase may undergo configurational changes during exocytosis and is markedly sensitive to the physical state of its phospholipid environment and to the oxidation of its -SH groups.  相似文献   

3.
Under conditions of reduced quantal content, repetitive stimulation of a presynaptic nerve can result in a progressive increase in the amount of transmitter released by that nerve in response to stimulation. At the frog neuromuscular junction, this increase in release has been attributed to four different processes: first and second components of facilitation, augmentation, and potentiation (e.g., Zengel, J. E., and K. L. Magleby. 1982. Journal of General Physiology. 80:583-611). It has been suggested that an increased entry of Ca2+ or an accumulation of intraterminal Ca2+ may be responsible for one or more of these processes. To test this hypothesis, we have examined the role of intracellular Ca2+ in mediating changes in end-plate potential (EPP) amplitude during and after repetitive stimulation at the frog neuromuscular junction. We found that increasing the extracellular Ca2+ concentration or exposing the preparation to carbonyl cyanide m- chlorophenylhydrazone, ionomycin, or cyclopiazonic acid all led to a greater increase in EPP amplitude during conditioning trains of 10-200 impulses applied at a frequency of 20 impulses/s. These experimental manipulations, all of which have been shown to increase intracellular levels of Ca2+, appeared to act by increasing primarily the augmentation component of increased release. The results of this study are consistent with previous suggestions that the different components of increased release represent different mechanisms, and that Ca2+ may be acting at more than one site in the nerve terminal.  相似文献   

4.
Endplate potentials were recorded from frog and toad sartorius neuromuscular junctions under conditions of greatly reduced quantal contents. The magnitudes of augmentation increased with the duration and frequency of stimulation, often increasing at an accelerating rate during 10-20-s conditioning trains. The magnitudes of the first and second components of facilitation also increased, but reached apparent steady state values within the first few seconds of stimulation. These observations could be accounted for by assuming (a) that augmentation and the first and second components of facilitation arise from underlying factors in the nerve terminal that act to increase transmitter release; (b) that each nerve impulse adds an increment to each of the underlying factors; (c) that the magnitude of the increment typically increases during the train for augmentation but remains constant for the components of facilitation; and (d) that the underlying factors decay with first-order kinetics with time constants of approximately 7 s for augmentation and 60 and 500 ms for the first and second components of facilitation, respectively. The increments of facilitation added by each impulse were about twice as large in the toad as in the frog. Facilitation was described better by assuming a power relationship between the underlying factor and the observed facilitation than by assuming a linear relationship. Augmentation was described by assuming either a linear or power relationship.  相似文献   

5.
A study has been made of the effects of calcium ions on the number of quanta secreted from all the release sites at an amphibian motor nerve terminal recorded with an intracellular microelectrode (m) compared with the number secreted simultaneously from a small number of release sites recorded with an extracellular microelectrode (me). If the endplate potential was made subthreshold by lowering the external calcium concentration ([Ca]o less than or equal to 0.4 mM), it was possible to find small groups of release sites for which me was comparable to m, indicating considerable nonuniformity in the probability of release of a quantum at different groups of release sites (Pe) in a given [Ca]o. Increasing [Ca]o in the range from 0.25 to 0.4 mM increased the probability of release of a quantum at groups of release sites (Pe), independent of the initial value of Pe, and the dependence of Pe on [Ca]o followed a fourth power relationship. A conditioning impulse enhanced the probability of release of a quantum by a subsequent test impulse at release sites, if Pe was less than 1.0 during the conditioning impulse. It is shown that the present observations regarding the dependence of Pe on [Ca]o and on conditioning impulses can be quantitatively predicted from previous observations regarding the dependence of the binomial parameters m, p, and n on [Ca]o and on conditioning impulses determined with intracellular electrodes, if the probability of secretion of a quantum at a release site (Pj) is different for different release sites and Pj is distributed as a beta random variable.  相似文献   

6.
Facilitation is shown to decay as a compound exponential with two time constants (T1, T2) at both giant and non-giant synapses in squid stellate ganglia bathed in solutions having low extracellular calcium concentrations ([Ca++]o). Maximum values of facilitation (F1) were significantly larger, and T1 was significantly smaller in giant than non-giant synapses. Decreases in [Ca++]o or increases in [Mn++]o had variable effects on T1 and F1, whereas decreases in temperature increased T1 but had insignificant effects on F1. The growth of facilitation during short trains of equal interval stimuli was adequately predicted by the linear summation model developed by Mallart and Martin (1967. J. Physiol. (Lond.). 193:676--694) for frog neuromuscular junctions. This result suggests that the underlying mechanisms of facilitation are similar in squid and other synapses which release many transmitter quanta.  相似文献   

7.
Membrane potential was recorded intracellularly near presynaptic terminals of the excitor axon of the crayfish opener neuromuscular junction (NMJ), while transmitter release was recorded postsynaptically. This study focused on the effects of a presynaptic calcium-activated potassium conductance, gK(Ca), on the transmitter release evoked by single and paired depolarizing current pulses. Blocking gK(Ca) by adding tetraethylammonium ion (TEA; 5-20 mM) to a solution containing tetrodotoxin and aminopyridines caused the relation between presynaptic potential and transmitter release to steepen and shift to less depolarized potentials. When two depolarizing current pulses were applied at 20-ms intervals with gK(Ca) not blocked, the presynaptic voltage change to the second (test) pulse was inversely related to the amplitude of the first (conditioning) pulse. This effect of the conditioning prepulse on the response to the test pulse was eliminated by 20 mM TEA and by solutions containing 0 mM Ca2+/1 mM EGTA, suggesting that the reduction in the amplitude of the test pulse was due to activation of gK(Ca) by calcium remaining from the conditioning pulse. In the absence of TEA, facilitation of transmitter release evoked by a test pulse increased as the conditioning pulse grew from -40 to -20 mV, but then decreased with further increase in the conditioning depolarization. A similar nonmonotonic relationship between facilitation and the amplitude of the conditioning depolarization was reported in previous studies using extracellular recording, and interpreted as supporting an additional voltage-dependent step in the activation of transmitter release. We suggest that this result was due instead to activation of a gK(Ca) by the conditioning depolarization, since facilitation of transmitter release increased monotonically with the amplitude of the conditioning depolarization, and the early time course of the decay of facilitation was prolonged when gK(Ca) was blocked. The different time courses for decay of the presynaptic potential (20 ms) and facilitation (greater than 50 ms) suggest either that residual free calcium does not account for facilitation at the crayfish NMJ or that the transmitter release mechanism has a markedly higher affinity or stoichiometry for internal free calcium than does gK(Ca). Finally, our data suggest that the calcium channels responsible for transmitter release at the crayfish NMJ are not of the L, N, or T type.  相似文献   

8.
A quantum of transmitter may be released upon the arrival of a nerve impulse if the influx of calcium ions through a nearby voltage-dependent calcium channel is sufficient to activate the vesicle-associated calcium sensor protein that triggers exocytosis. A synaptic vesicle, together with its calcium sensor protein, is often found complexed with the calcium channel in active zones to form what will be called a "synaptosecretosome." In the present work, a stochastic analysis is given of the conditions under which a quantum is released from the synaptosecretosome by a nerve impulse. The theoretical treatment considers the rise of calcium at the synaptosecretosome after the stochastic opening of a calcium channel at some time during the impulse, followed by the stochastic binding of calcium to the vesicle-associated protein and the probability of this leading to exocytosis. This allows determination of the probabilities that an impulse will release 0, 1, 2,... quanta from an active zone, whether this is in a varicosity, a bouton, or a motor endplate. A number of experimental observations of the release of transmitter at the active zones of sympathetic varicosities and boutons as well as somatic motor endplates are described by this analysis. These include the likelihood of the secretion of only one quantum at an active zone of endplates and of more than one quantum at an active zone of a sympathetic varicosity. The fourth-power relationship between the probability of transmitter release at the active zones of sympathetic varicosities and motor endplates and the external calcium concentration is also explained by this approach. So, too, is the fact that the time course of the increased rate of quantal secretion from a somatic active zone after an impulse is invariant with changes in the amount of calcium that enters through its calcium channel, whether due to changes consequent on the actions of autoreceptor agents such as adenosine or to facilitation. The increased probability of quantal release that occurs during F1 facilitation at the active zones of motor endplates and sympathetic boutons is predicted by the residual binding of calcium to a high-affinity site on the vesicle-associated protein. The concept of the stochastic operation of a synaptosecretosome can accommodate most phenomena involving the release of transmitter quanta at these synapses.  相似文献   

9.
Synaptotagmin 2 is a synaptic vesicle protein that functions as a calcium sensor for neurotransmission but has not been previously associated with human disease. Via whole-exome sequencing, we identified heterozygous missense mutations in the C2B calcium-binding domain of the gene encoding Synaptotagmin 2 in two multigenerational families presenting with peripheral motor neuron syndromes. An essential calcium-binding aspartate residue, Asp307Ala, was disrupted by a c.920A>C change in one family that presented with an autosomal-dominant presynaptic neuromuscular junction disorder resembling Lambert-Eaton myasthenic syndrome. A c.923C>T variant affecting an adjacent residue (p.Pro308Leu) produced a presynaptic neuromuscular junction defect and a dominant hereditary motor neuropathy in a second family. Characterization of the mutation homologous to the human c.920A>C variant in Drosophila Synaptotagmin revealed a dominant disruption of synaptic vesicle exocytosis using this transgenic model. These findings indicate that Synaptotagmin 2 regulates neurotransmitter release at human peripheral motor nerve terminals. In addition, mutations in the Synaptotagmin 2 C2B domain represent an important cause of presynaptic congenital myasthenic syndromes and link them with hereditary motor axonopathies.  相似文献   

10.
Presynaptic potentials were studied during facilitation of transmitter release in the squid giant synapse. Changes in action potentials were found to cause some, but not all, of the facilitation during twin-pulse stimulation. During trains of action potentials, there were no progressive changes in presynaptic action potentials which could account for the growth of facilitation. Facilitation could still be detected in terminals which had undergone conditioning depolarization or hyperpolarization. Facilitation could be produced by small action potentials in low [Ca++]o and by small depolarizations in the presence of tetrodotoxin. Although the production of facilitation varied somewhat with presynaptic depolarization, nevertheless, approximately equal amounts of facilitation could be produced by depolarizations which caused the release of very different amounts of transmitter.  相似文献   

11.
The effect of repetitive stimulation on synaptic transmission was studied in the isolated superior cervical ganglion of the rabbit under conditions of reduced quantal content. Excitatory postsynaptic potentials (EPSP) were recorded with the sucrose gap technique to obtain estimates of transmitter release. Four components of increased transmitter release, with time constants of decay similar to those observed at the frog neuromuscular junction at 20 degrees C, were found in the ganglion at 34 degrees C: a first component of facilitation, which decayed with a time constant of 59 +/- 14 ms (mean +/- SD); a second component of facilitation, which decayed with a time constant of 388 +/- 97 ms; augmentation, which decayed with a time constant of 7.2 +/- 1 s; and potentiation, which decayed with a time constant of 88 +/- 25 s. The addition of 0.1-0.2 mM Ba2+ to the Locke solution increased the magnitude but not the time constant of decay of augmentation. Ba2+ had little effect on potentiation. The addition of 0.2-0.8 mM Sr2+ to the Locke solution appeared to increase the magnitude of the second component of facilitation. Sr2+ had little effect on augmentation or potentiation. These selective effects of Ba2+ and Sr2+ on the components of increased transmitter release in the rabbit ganglion are similar to the effects of these ions at the frog neuromuscular junction. Although the effects of Ba2+ and Sr2+ are similar in the two preparations, the magnitudes of augmentation and the second component of facilitation after a single impulse were about 6-10 times greater in the rabbit ganglion than at the frog neuromuscular junction. These results suggest that the underlying mechanisms in the nerve terminal that give rise to the components of increased transmitter release in the rabbit ganglion and frog neuromuscular junction are similar but not identical.  相似文献   

12.
Miniature endplate potentials (MEPPs) were recorded from frog sartorious neuromuscular junctions under conditions of reduced quantal contents to study the effect of repetitive nerve stimulation on asynchronous (tonic) quantal transmitter release. MEPP frequency increased during repetitive stimulation and then decayed back to the control level after the conditioning trains. The decay of the increased MEPP frequency after 100-to 200-impulse conditioning trains can be described by four components that decayed exponentially with time constants of about 50 ms, 500 ms, 7 s, and 80 s. These time constants are similar to those for the decay of stimulation-induced changes in synchronous (phasic) transmitter release, as measured by endplate potential (EPP) amplitudes, corresponding, respectively, to the first and second components of facilitation, augmentation, and potentiation. The addition of small amounts of Ca2+ or Ba2+ to the Ca2+-containing bathing solution, or the replacement of Ca2+ with Sr2+, led to a greater increase in the stimulation-induced increases in MEPP frequency. The Sr-induced increase in MEPP frequency was associated with an increase in the second component of facilitation of MEPP frequency; the Ba-induced increase with an increase in augmentation. These effects of Sr2+ and Ba2+ on stimulation-induced changes in MEPP frequency are similar to the effects of these ions on stimulation- induced changes in EPP amplitude. These ionic similarities and the similar kinetics of decay suggest that stimulation induced changes in MEPP frequency and EPP amplitude have some similar underlying mechanisms. Calculations are presented which show that a fourth power residual calcium model for stimulation-induced changes in transmitter release cannot readily account for the observation that stimulation- induced changes in MEPP frequency and EPP amplitude have similar time- courses.  相似文献   

13.
The intervals between nerve impulses can change substantially during propagation because of conduction velocity aftereffects of previous impulse activity. Effects of such changes on interval histograms and on statistical parameters of spike trains were evaluated for Poisson spike trains and for trains generated by a clock with added random delays. The distribution of short intervals was significantly changed during propagation for these spike trains. Substantial changes in serial correlation coefficients were found in trains with certain initial interval distributions. The relevance of these effects to neural coding is discussed.  相似文献   

14.
15.
A model of the secretion of a quantum at a release site is proposed in which, following the influx of calcium ions, synaptic vesicles are made available for release by the activation of kappa phosphorylation steps with rate alpha. At any time during this process the vesicles may become unavailable for secretion at rate gamma. On completion of the kappa phosphorylation steps the vesicles participate in the formation of a fusion pore with the terminal membrane to give exocytosis at rate delta. Changes in alpha, delta and kappa are shown to produce characteristic changes in the number and timecourse of quantal secretions following a nerve impulse, which are similar to those observed following drug treatments that are thought to act selectively on each of these processes. The number of quanta secreted from nerve terminals that consist of many release sites does not fluctuate much during a low frequency train of impulses: the variance is small compared with the mean level, so secretion follows binomial rather than Poisson statistics. A theory is derived that shows that variations in the probability of secretion amongst these release sites of any particular kind fails to reduce the variance of the total secretion from the terminal; Poisson rather than binomial statistics then still apply. The theory shows that an interaction between release sites is required to reduce this variance and such an effect is provided if secretion at a site inhibits secretion at nearby sites. Simulations show that incorporating this process of autoinhibition into the model reproduces the experimental observations on the effects of calcium ions on the binomial parameters p and n as well as on the relative constancy of p during facilitation and depression of quantal secretion. Methods for estimating the timecourse of changes in the probability of secretion at release sites following an impulse, by using either the time of occurrence of first, second, third or later quantal latencies, are given. These procedures show that current methods for estimating the time-dependent probability changes are inadequate for detecting interaction between release sites, such as autoinhibition, unless this is relatively large. Therefore, estimates from third quantal latencies are used.  相似文献   

16.
Ouabain is a cardiotonic glycoside that inhibits the sodium potassium ATPase pump leading to sodium accumulation in nerve terminals. At the frog neuromuscular junction, ouabain induces acetylcholine release and a rapid depletion of synaptic vesicles. In the present work, we used FM1–43 vital labeling to dissect the effect of ouabain on synaptic vesicles recycling. We first examined images of nerve-muscle preparations that were stained with FM1–43 by electrical stimulation of the nerve and destained with ouabain. We observed that ouabain induced exocytosis of synaptic vesicles independently of extracellular calcium, implying a mechanism of exocytosis that can bypass the requirement for extracellular calcium. We therefore tested the hypothesis that ouabain induces exocytosis by mobilizing intracellular calcium and we report that calcium release from endoplasmic reticulum through ryanodine receptors is necessary for ouabain-evoked exocytosis. In addition, the ouabain-evoked exocytosis was dependent on calcium released from mitochondria. We also investigated if exocytosis evoked by ouabain is followed by compensatory endocytosis. We observed that muscles incubated with FM1–43 in the presence of ouabain did not present significant staining. In conclusion, our data demonstrate that exocytosis evoked by ouabain is independent on extracellular calcium but dependent on calcium release from endoplasmic reticulum and mitochondrial stores. In addition, we suggest that ouabain can be used as a pharmacological tool to uncouple synaptic vesicles exocytosis from endocytosis at the neuromuscular junction.  相似文献   

17.
We have labeled recycling synaptic vesicles at the somatic Bufo marinus neuromuscular junction with the styryl dye FM2-10 and provide direct evidence for refractoriness of exocytosis associated with a muscle activity-dependent form of long-term depression (LTD) at this synapse. FM2-10 dye unloading experiments demonstrated that the rate of vesicle exocytosis from the release ready pool (RRP) of vesicles was more than halved in the LTD (induced by 20 min of low frequency stimulation). Recovery from LTD, observed as a partial recovery of nerve-evoked muscle twitch amplitude, was accompanied by partial recovery of the refractoriness of RRP exocytosis. Unexpectedly, paired pulse plasticity, another routinely used indicator of presynaptic forms of synaptic plasticity, was unchanged in the LTD. We conclude that the LTD induces refractoriness of the neuromuscular vesicle release machinery downstream of presynaptic calcium entry.  相似文献   

18.
Summary Prolonged stimulation of the motor axon of the opener and stretcher muscles of the crayfish claw leads to long-term facilitation (LTF) of transmitter release at the neuromuscular junction. This facilitation is correlated with enhancement of tension development. Factors shown to enhance LTF of transmitter release, such as increased frequency of excitation, lower temperature, and exposure to ouabain also enhance tension development (Figs. 1, 2 and 4). Prolonged stimulation delivered in a bursting pattern enhances the development of tension more than an equivalent amount of stimulation delivered in a regular pattern (Fig. 3).Two circulating neurohormones, serotonin and octopamine, were examined for their effect on the development of tension during short and long periods of muscle activation. Serotonin and LTF of transmitter release appear to have an additive effect on the development of tension. The threshold for a detectable serotonin effect is 10–10 M. The effect of octopamine on the development of tension appears to be enhanced by longer periods of maintained muscle activation. LTF of transmitter release resulting from 5 min of continuous activation at 15 Hz is accompanied by a drop in the threshold of an observable octopamine effect on tension from 10–9Mto 10–10 M. It is proposed that octopamine's trophic effects on metabolism in muscle act to sustain muscular performance during maintained activity.Abbreviations LTF long term facilitation - ec Membrane potential threshold for contraction - STF short term facilitation - e.j.p. excitatory junction potential This work was supported by a N.S.E.R.C. grant to H.L.A.  相似文献   

19.
Facilitation is an important form of short-term plasticity that occurs in most synapses. At crayfish neuromuscular junctions, basal transmission and facilitation were significantly reduced after presynaptic introduction of "fast" high-affinity calcium buffers, and the decay of facilitation was accelerated. The existence of residual calcium during facilitation was also demonstrated. Computational modeling of three-dimensional buffered Ca(2+) diffusion and binding to secretory and facilitation targets suggest that the facilitation site is located away from a secretory trigger mediating exocytosis; otherwise, the facilitation site would be saturated by each action potential. Our simulations account for many characteristics of facilitation and effects of exogenous buffer, and suggest that facilitation is caused by residual calcium gaining access to a site distinct from the secretory trigger through restricted diffusion.  相似文献   

20.
The effects of doublet impulse sequences of the excitatory motor axon on the movement of the claw opener muscles in the crayfish were examined. The excitatory motor axon was stimulated electrically with various patterns of doublet impulse sequences generated by a digital computer. Doublet impulse sequences of stimulation produced a larger sustained movement than an uniform impulse sequences at the same mean rate of stimulation. The movement was largest when the interval between the impulses of a doublet was about 5 ms. This interval generated a movement amplitude 25% greater than that for the uniform impulse sequence. A simple model was formulated to stimulate the neuromuscular synapse of the claw opener muscle. The relationship between stimulation sequences with alternating long and short intervals and responses (firing probabilities) of the neuromuscular synapse at the same mean rate was investigated. The responses was classified into two typical types which are noneffective Type I and effective Type II to the absolute refractory period (ARP). The characteristics which are larger responses with short intervals in Type I and reduction of responses in the ARP region of Type II formed a plateau peak of the experimental results. By incorporating the reduction of end-plate potential (EPP) as a property of nonlinear rule for temporal summation into the model, it was shown that Type I response is maximal with a plateau peak at short interval, agreeing well with the experimental results from the claw opener muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号