首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The spectral characteristics of mechanical vibrations generated by stressed human biceps, referred to as "muscle sounds", were studied. Attempts were made to establish a relationship between these vibrations and conformational rearrangements of muscle proteins during contraction. It was found experimentally that the steepness of the spectral amplitudes of vibrations varies with muscle load. The method proposed made it possible to quantitatively study vibrations of frequencies up to 1 kHz.  相似文献   

2.
The mechanism of low-frequency sound production in muscle.   总被引:12,自引:1,他引:11       下载免费PDF全文
Frog gastrocnemius muscles stimulated isometrically in a saline bath at 20 degrees C were found to produce a single ringing sound event beginning just before the tension record began to rise. The sound event was substantially over by the time the isometric tension began to fall. Results from studies correlating the spatial pattern of the sound, the amplitude and frequency of the sound as a function of the muscle length, and the response of both the passive and active muscle to a transverse pluck were found to be consistent with the conclusion that the sounds in these muscles are caused primarily by transverse resonant vibrations. As the muscle develops force, its lack of cylindrical symmetry gives rise to lateral motions, which are most likely the initiators of the bending vibrations detected as sound.  相似文献   

3.
Quantification of the input signal for soft tissue vibration during running   总被引:1,自引:0,他引:1  
Soft tissue compartment vibrations are initiated at heel-strike in heel-toe running. The concept of muscle tuning suggests that the body tries to minimize these vibrations with a muscle adaptation that changes the mechanical properties of the soft tissue compartment. A muscle tuning adaptation can be quantified by determining the biodynamic response, of the soft tissue compartment for different experimental conditions. To determine the biodynamic response a measure of both the input signal and the soft tissue compartment vibrations are required. The input signal for the vibrations is the rapid deceleration of the leg after initial ground contact. The aim of this study was to evaluate three non-invasive methods to quantify the input signal for the triceps surae soft tissue vibrations. Data from a force platform, a shoe mounted accelerometer and a video analysis of a reflective skin marker were used to quantify leg deceleration. Both the shoe mounted accelerometer and skin marker method provided a satisfactory evaluation of the input signal and could be used to determine the biodynamic response of the soft tissue compartment. The impact portion of the ground reaction force is primarily due to the deceleration of the leg at landing. However, due to the influence of the effective body mass on the impact magnitude, the force plate data was not appropriate for quantifying a muscle tuning response.  相似文献   

4.
Impact sports and vibration platforms trigger vibrations within soft tissues and the skeleton. Although the long-term effects of vibrations on the body have been studied extensively, the acute effects of vibrations are little understood. This study determined the influence of acute vibrations at different frequencies and elbow angles on maximal isometric elbow extension torque and muscle activity. Vibrations were generated by a pneumatic vibrator attached to the lever of a dynamometer, and were applied on the forearm of 15 healthy female subjects. The subjects were instructed to push maximally against the lever at three different elbow angles, while extension torque and muscle activity were quantified and compared between vibration and non-vibration (control) conditions. A change in vibration frequency had no significant effects on torque and muscle activity although vibrations in general decreased the maximal extension torque relative to the control by 1.8% (±5.7%, p>0.05), 7.4% (±7.9%, p<0.01), and 5.0% (±8.2%, p<0.01) at elbow angles of 60°, 90°, and 120°, respectively. Electromyographic activity increased significantly between ~30% and 40% in both triceps and biceps with vibrations. It is speculated that a similar increase in muscle activity between agonist and antagonist, in combination with an unequal increase in muscle moment arms about the elbow joint, limit the maximal extension torque during exposure to vibrations. This study showed that maximal extension torque decreased during vibration exposure while muscle activity increased and suggests that vibrations may be counterproductive during activities requiring maximal strength but potentially beneficial for strength training.  相似文献   

5.
This study tested the hypotheses that when the excitation frequency of mechanical stimuli to the foot was close to the natural frequency of the soft tissues of the lower extremity, the muscle activity increases 1) the natural frequency and 2) the damping to minimize resonance. Soft tissue vibrations were measured with triaxial accelerometers, and muscle activity was measured by using surface electromyography from the quadriceps, hamstrings, tibialis anterior, and triceps surae groups from 20 subjects. Subjects were presented vibrations while standing on a vibrating platform. Both continuous vibrations and pulsed bursts of vibrations were presented, across the frequency range of 10-65 Hz. Elevated muscle activity and increased damping of vibration power occurred when the frequency of the input was close to the natural frequency of each soft tissue. However, the natural frequency of the soft tissues did not change in a manner that correlated with the frequency of the input. It is suggested that soft tissue damping may be the mechanism by which resonance is minimized at heel strike during running.  相似文献   

6.
Most studies about human responses to mechanical vibrations involve whole-body vibration and vibration applied perpendicularly to the tendon or muscle. The aim of the present study was to verify the effects of mechanical vibration applied in the opposite direction of muscle shortening on maximal isometric strength of the flexor muscles of the elbow due to neural factors. Conventional isometric training with maximal isometric contractions (MVCs) and isometric training with vibrations were compared. Nineteen untrained males, ages 24 +/- 3.28 years, were divided into 2 training groups. Group 1 performed conventional isometric training and group 2 isometric training with mechanical vibrations (frequency of 8 Hz and amplitude of 6 mm). Both groups executed 12 MVCs with a duration of 6 seconds and 2-minute intervals between the repetitions. The subjects trained 3 times per week for 4 weeks. The strength of the group subjected to vibrations increased significantly by 26 +/- 11% (p < 0.05), whereas the strength of the group with conventional isometric training increased only 10 +/- 5% (p < 0.05). These data suggest that training with vibrations applied in the opposite direction of muscle shortening enhances the mechanism of involuntary control of muscle activity and may improve strength in untrained males. Since these findings were in untrained males, further studies with athletes are necessary in order to generalize the results to athletes' training, although it seems that it would be possible.  相似文献   

7.
The impact force in heel–toe running initiates vibrations of soft-tissue compartments of the leg that are heavily dampened by muscle activity. This study investigated if the damping and frequency of these soft-tissue vibrations are affected by fatigue, which was categorized by the time into an exhaustive exercise. The hypotheses were tested that (H1) the vibration intensity of the triceps surae increases with increasing fatigue and (H2) the vibration frequency of the triceps surae decreases with increasing fatigue. Tissue vibrations of the triceps surae were measured with tri-axial accelerometers in 10 subjects during a run towards exhaustion. The frequency content was quantified with power spectra and wavelet analysis. Maxima of local vibration intensities were compared between the non-fatigued and fatigued states of all subjects. In axial (i.e. parallel to the tibia) and medio-lateral direction, most local maxima increased with fatigue (supporting the first hypothesis). In anterior–posterior direction no systematic changes were found. Vibration frequency was minimally affected by fatigue and frequency changes did not occur systematically, which requires the rejection of the second hypothesis. Relative to heel-strike, the maximum vibration intensity occurred significantly later in the fatigued condition in all three directions. With fatigue, the soft tissue of the triceps surae oscillated for an extended duration at increased vibration magnitudes, possibly due to the effects of fatigue on type II muscle fibers. Thus, the protective mechanism of muscle tuning seems to be reduced in a fatigued muscle and the risk of potential harm to the tissue may increase.  相似文献   

8.
Based on results from quasi-static experiments, it has been suggested that the lower extremity muscle activity is adjusted in reaction to impact forces with the goal of minimizing soft-tissue vibrations. It is not known whether a similar muscle tuning occurs during dynamic activities. Thus, the purpose of this study was to determine the effect of changes in the input signal on (a) vibrations of lower extremity soft-tissue packages and (b) EMG activity of related muscles during heel-toe running. Subjects performed heel-toe running in five different shoe conditions. Ground reaction forces were measured with a KISTLER force platform, soft-tissue vibrations were measured with tri-axial accelerometers and muscle activity was measured using surface EMG from the quadriceps, hamstrings, tibialis anterior and triceps surae groups from 10 subjects. By changing both the speed of running and the shoe midsole material the impact force characteristics were changed. There was no effect of changes in the input signal on the soft-tissue peak acceleration following impact. A significant correlation (R2=0.819) between the EMG pre-activation intensity and the impact loading rate changes was found for the quadriceps. In addition, the input frequency was shown to approach the vibration frequency of the quadriceps. This evidence supports the proposed paradigm that muscle activity is tuned to impact force characteristics to control the soft-tissue vibrations.  相似文献   

9.
Extremely low-magnitude (0.3 g), high-frequency (30-90 Hz), whole body vibrations can stimulate bone formation and are hypothesized to provide a surrogate for the oscillations of muscle during contraction. Little is known, however, about the potential of these mechanical signals to stimulate adaptive responses in other tissues. The objective of this study was to determine whether low-level mechanical signals produce structural adaptations in the vasculature of skeletal muscle. Eight-week-old male BALB/cByJ (BALB) mice were divided into two experimental groups: mice subjected to low-level, whole body vibrations (45 Hz, 0.3 g) superimposed on normal cage activities for 15 min/day (n = 6), and age-matched controls (n = 7). After the 6-wk experimental protocol, sections from end and mid regions of the soleus muscles were stained with lectin from Bandeiraea Simplicifolia, an endothelial cell marker, and smooth muscle (SM) alpha-actin, a perivascular cell marker. Six weeks of this low-level vibration caused a 29% decrease in the number of lectin-positive vessels per muscle fiber in the end region of the soleus muscle, indicating a significant reduction in the number of capillaries per muscle fibers. Similarly, these vibrations caused a 36% reduction in SM alpha-actin-positive vessels per muscle fiber, indicating a reduction in the number of arterioles and venules. The decreases in lectin- and SM alpha-actin-positive vessels per muscle fiber ratios were not significant in the mid muscle sections. These results demonstrate the sensitivity of the vasculature in mouse skeletal muscle to whole body, low-level mechanical signals.  相似文献   

10.
In this study, vibrations of human gastrocnemius during an exhaustive run protocol are considered for analysis. Previous studies have shown increased vibration intensity and damping coefficient within the soft tissue with fatigue. The question of this study was to investigate if the vibration settling time remains constant during a prolonged running. Eleven semi-professional middle/long distance runners ran to exhaustion on a treadmill with their preferred constant speed (4.29 ± 0.33 m/s) for 3873 ± 1147 m. Vibration of the gastrocnemius lateralis, electrical activity of the tibialis anterior and the gastrocnemius medialis along with ground reaction force (GRF) were recorded. The results demonstrated significant increase in impact peak and loading rate, and the frequency content of the impact, with no significant change in active peak of the vertical GRF. Fatigue resulted in increased vibration intensity, damping coefficient, and energy dissipation of vibration with no change in vibration settling time. Furthermore, peak acceleration significantly linearly (R = 0.59) increased as a function of running time. The mean frequency of muscle activity of the gastrocnemius medialis and the intensity of muscle activity in TA significantly decreased. The results suggest that constant vibration settling time might either be an objective for muscle tuning which is more pronounced in fatigued state or a passive by-product of muscle function in running. Further studies are needed to address this point.  相似文献   

11.
We utilized an in vitro adult mouse extensor digitorum longus (EDL) nerve-attached preparation to characterize the responses of muscle spindle afferents to ramp-and-hold stretch and sinusoidal vibratory stimuli. Responses were measured at both room (24°C) and muscle body temperature (34°C). Muscle spindle afferent static firing frequencies increased linearly in response to increasing stretch lengths to accurately encode the magnitude of muscle stretch (tested at 2.5%, 5% and 7.5% of resting length [Lo]). Peak firing frequency increased with ramp speeds (20% Lo/sec, 40% Lo/sec, and 60% Lo/sec). As a population, muscle spindle afferents could entrain 1:1 to sinusoidal vibrations throughout the frequency (10-100 Hz) and amplitude ranges tested (5-100 μm). Most units preferentially entrained to vibration frequencies close to their baseline steady-state firing frequencies. Cooling the muscle to 24°C decreased baseline firing frequency and units correspondingly entrained to slower frequency vibrations. The ramp component of stretch generated dynamic firing responses. These responses and related measures of dynamic sensitivity were not able to categorize units as primary (group Ia) or secondary (group II) even when tested with more extreme length changes (10% Lo). We conclude that the population of spindle afferents combines to encode stretch in a smoothly graded manner over the physiological range of lengths and speeds tested. Overall, spindle afferent response properties were comparable to those seen in other species, supporting subsequent use of the mouse genetic model system for studies on spindle function and dysfunction in an isolated muscle-nerve preparation.  相似文献   

12.
Vibration characteristics were recorded for the soft tissues of the triceps surae, tibialis anterior, and quadriceps muscles. The frequency and damping of free vibrations in these tissues were measured while isometric and isotonic contractions of the leg were performed. Soft tissue vibration frequency and damping increased with both the force produced by and the shortening velocity of the underlying muscle. Both frequency and damping were greater in a direction normal to the skin surface than in a direction parallel to the major axis of each leg segment. Vibration characteristics further changed with the muscle length and between the individuals tested. The range of the measured vibration frequencies coincided with typical frequencies of impact forces during running. However, observations suggest that soft tissue vibrations are minimal during running. These results support the strategy that increases in muscular activity may be used by some individuals to move the frequency and damping characteristics of the soft tissues away from those of the impact force and thus minimize vibrations during walking and running.  相似文献   

13.
The aim of this study was to analyze electromyography (EMG) responses of vastus lateralis muscle to different whole-body vibration frequencies. For this purpose, 16 professional women volleyball players (age, 23.9 +/- 3.6 years; height, 182.5 +/- 11.1 cm; weight, 78.4 +/- 5.6 kg) voluntarily participated in the study. Vibration treatment was administered while standing on a vibrating platform with knees bent at 100 degrees (Nemes Bosco-system, Rome, Italy). EMG root mean square (rms) and was recorded for 60 seconds while standing on the vibrating plate in the following conditions: no vibrations and 30-, 40-, and 50-Hz vibration frequencies in random order. The position was kept for 60 seconds in each treatment condition. EMGrms was collected from the vastus lateralis muscle of the dominant leg. Statistical analysis showed that, in all vibration conditions, average EMGrms activity of vastus lateralis was higher than in the no-vibration condition. The highest EMGrms was found at 30 Hz, suggesting this frequency as the one eliciting the highest reflex response in vastus lateralis muscle during whole-body vibrations in half-squat position. An extension of these studies to a larger population appears worthwhile to further elucidate the responsiveness of the neuromuscular system to whole-body vibrations administered through vibrating platforms and to be able to develop individual treatment protocols.  相似文献   

14.
The purpose of this study was to develop a method to characterize the frequency and damping of vibrations in the soft tissues of the leg. Vibrations were measured from a surface-mounted accelerometer attached to the skin overlying the quadriceps muscles. The free vibrations in this soft tissue were recorded after impact whilst the muscle was performing isometric contractions at 0, 50, and 100% maximum voluntary force and with the knee held at 20, 40, and 60 degrees angles of flexion. The acceleration signals indicated that the soft tissue oscillated as under-damped vibrations. The frequency and damping coefficients for these vibrations were estimated from a model of sinusoidal oscillations with an exponential decay. This technique resolved the vibration coefficients to 2 and 7% of the mean values for frequency and damping, respectively.  相似文献   

15.
The aim of the study was to determine the directionality of the coupling of mechanical vibrations across the biceps brachii muscle at different frequencies of interest during voluntary contraction. The vibrations that are naturally generated by skeletal muscles were recorded by a two-dimensional array of skin mounted accelerometers over the biceps brachii muscle (surface mechanomyogram, S-MMG) during voluntary isometric contractions in ten healthy young men. As a measure of the similarity of vibration between a given pair of accelerometers, the spatial coherence of S-MMG at low (f < 25 Hz) and high (f > 25 Hz) frequency bands were investigated to determine if the coupling of the natural mechanical vibrations were due to the different physiological muscle activity at low and high frequencies. In both frequency bands, spatial coherence values for sensor pairs aligned longitudinally along the proximal to distal ends of the biceps were significantly higher compared with those for the sensor pairs oriented perpendicular to the muscle fibers. This difference was more evident at the higher frequency band. The findings indicated that coherent mechanical oscillations mainly propagated along the longitudinal direction of the biceps brachii muscle fibers at high frequencies (f > 25 Hz).  相似文献   

16.
Muscle tuning during running: implications of an un-tuned landing   总被引:1,自引:0,他引:1  
BACKGROUND: The impact force in heel-toe running is an input signal into the body that initiates vibrations of the soft tissue compartments of the leg. These vibrations are heavily damped and the paradigm of muscle tuning suggests the body adapts to different input signals to minimize these vibrations. The objectives of the present study were to investigate the implications of not tuning a muscle properly for a landing with a frequency close to the resonance frequency of a soft tissue compartment and to look at the effect of an unexpected surface change on the subsequent step of running. METHOD: Thirteen male runners were recruited and performed heel-toe running over two surface conditions. The peak accelerations and biodynamic responses of the soft tissue compartments of the leg along with the EMG activity of related muscles were determined for expected soft, unexpected hard and expected hard landings. RESULTS AND CONCLUSIONS: For the unexpected hard landing there was a change in the input frequency of the impact force, shifting it closer to the resonance frequency of the soft tissue compartments. For the unexpected landing there was no muscle adaptation, as subjects did not know the running surface was going to change. In support of the muscle-tuning concept an increase in the soft tissue acceleration did occur. This increase was greater when the proximity of the input signal frequency was closer to the resonance frequency of the soft tissue compartment. Following the unexpected change in the input signal a change in pre-contact muscle activity to minimize soft tissue compartment vibrations was not found. This suggests if muscle tuning does occur it is not a continuous feedback response that occurs with every small change in the landing surface properties. In previous studies with significant adaptation periods to new input signals significant correlations between the changes in the input signal frequency and the EMG intensity have been shown, however, changes in soft tissue accelerations have not been found. The results of the present study showed that changes in these soft tissue accelerations can occur in response to a resonance frequency input signal when a muscle reaction has not happened.  相似文献   

17.
Electromyographic (EMG) activity is associated with several tasks prior to landing in walking and running including positioning the leg, developing joint stiffness and possibly control of soft tissue compartment vibrations. The concept of muscle tuning suggests one reason for changes in muscle activity pattern in response to small changes in impact conditions, if the frequency content of the impact is close to the natural frequency of the soft tissue compartments, is to minimize the magnitude of soft tissue compartment vibrations. The mechanical properties of the soft tissue compartments depend in part on muscle activations and thus it was hypothesized that changes in the muscle activation pattern associated with different impact conditions would result in a change in the acceleration transmissibility to the soft tissue compartments. A pendulum apparatus was used to systematically administer impacts to the heel of shod male participants. Wall reaction forces, EMG of selected leg muscles, soft tissue compartment and shoe heel cup accelerations were quantified for two different impact conditions. The transmissibility of the impact acceleration to the soft tissue compartments was determined for each subject/soft tissue compartment/shoe combination. For this controlled impact situation it was shown that changes in the damping properties of the soft tissue compartments were related to changes in the EMG intensity and/or mean frequency of related muscles in response to a change in the impact interface conditions. These results provide support for the muscle tuning idea--that one reason for the changes in muscle activity in response to small changes in the impact conditions may be to minimize vibrations of the soft tissue compartments that are initiated at heel-strike.  相似文献   

18.
Electron microscopic study of femoral arteries of white rats exposed to prolonged general vibration at a frequency of 100 Hz with an amplitude of 0.5-0.7 mm has been performed. Light and dark smooth muscle cells, as well as unchanged cells have been found in the vascular media of experimental animals. Light cells are swollen with destroyed myofilaments and great number of microtubules in cytoplasm. Dark cells are characterized by coagulation necrosis and melting of myofilaments. Vibration was shown to cause marked structural changes in smooth muscle cells mitochondria: destruction of internal and external membranes, increasing matrix osmophilia or swelling of mitochondria accompanied by crista fragmentation, as well as matrix clarification and disappearance. Morphometric analysis indicates a considerably decreased energy production by smooth muscle cell mitochondria. It has been concluded that vibrations have a damaging effect on medial smooth muscle cells of the femoral artery in the experimental animals.  相似文献   

19.
The aim of the present study was to investigate long term effects of motor denervation by botulinum toxin complex type A (BoNT/A) from Clostridium Botulinum, on the afferent fibers originating from the gastrocnemius muscle of rats. Animals were divided in 2 experimental groups: 1) untreated animals acting as control and 2) treated animals in which the toxin was injected in the left muscle, the latter being itself divided into 3 subgroups according to their locomotor recovery with the help of a test based on footprint measurements of walking rats: i) no recovery (B0), ii) 50% recovery (B50) and iii) full recovery (B100). Then, muscle properties, metabosensitive afferent fiber responses to potassium chloride (KCl) and lactic acid injections and Electrically-Induced Fatigue (EIF), and mechanosensitive responses to tendon vibrations were measured. At the end of the experiment, rats were killed and the toxin injected muscles were weighted. After toxin injection, we observed a complete paralysis associated to a loss of force to muscle stimulation and a significant muscle atrophy, and a return to baseline when the animals recover. The response to fatigue was only decreased in the B0 group. The responses to KCl injections were only altered in the B100 groups while responses to lactic acid were altered in the 3 injected groups. Finally, our results indicated that neurotoxin altered the biphasic pattern of response of the mechanosensitive fiber to tendon vibrations in the B0 and B50 groups. These results indicated that neurotoxin injection induces muscle afferent activity alterations that persist and even worsen when the muscle has recovered his motor activity.  相似文献   

20.
We describe the production of substrate-borne vibrations in a subterranean mole rat of the genus Tachyoryctes for the first time. These signals with a supposed communication function were recorded using two approaches. Firstly, we recorded the production of spontaneous substrate-borne vibrations of individual test animals in artificial tunnels simulating a mole rat burrow system. Secondly, we recorded substrate-borne vibrations in individuals with interconnected home systems divided by a barrier. We found that Tachyoryctes produces these seismic signals by striking its head against the ceiling of the tunnel. Two types of seismic signals differing in physical parameters were identified. A slow signal (inter-pulse distance 0.12 s, inter-bout distance 3.89 s, number of pulses within each bout 9.53) was produced in both experiments, whereas a fast signal (inter-pulse distance 0.05 s, inter-bout distance 18.44 s, number of pulses within each bout 22.54) was produced mainly in close proximity to another individual. Our results indicate that fast signals are probably individually specific, because the success rate of classification according to discriminant function analysis was 70.4 % for the three tested individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号