首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

DNA word frequencies, normalized for genomic AT content, are remarkably stable within prokaryotic genomes and are therefore said to reflect a “genomic signature.” The genomic signatures can be used to phylogenetically classify organisms from arbitrary sampled DNA. Genomic signatures can also be used to search for horizontally transferred DNA or DNA regions subjected to special selection forces. Thus, the stability of the genomic signature can be used as a measure of genomic homogeneity. The factors associated with the stability of the genomic signatures are not known, and this motivated us to investigate further. We analyzed the intra-genomic variance of genomic signatures based on AT content normalization (0th order Markov model) as well as genomic signatures normalized by smaller DNA words (1st and 2nd order Markov models) for 636 sequenced prokaryotic genomes. Regression models were fitted, with intra-genomic signature variance as the response variable, to a set of factors representing genomic properties such as genomic AT content, genome size, habitat, phylum, oxygen requirement, optimal growth temperature and oligonucleotide usage variance (OUV, a measure of oligonucleotide usage bias), measured as the variance between genomic tetranucleotide frequencies and Markov chain approximated tetranucleotide frequencies, as predictors.

Principal Findings

Regression analysis revealed that OUV was the most important factor (p<0.001) determining intra-genomic homogeneity as measured using genomic signatures. This means that the less random the oligonucleotide usage is in the sense of higher OUV, the more homogeneous the genome is in terms of the genomic signature. The other factors influencing variance in the genomic signature (p<0.001) were genomic AT content, phylum and oxygen requirement.

Conclusions

Genomic homogeneity in prokaryotes is intimately linked to genomic GC content, oligonucleotide usage bias (OUV) and aerobiosis, while oligonucleotide usage bias (OUV) is associated with genomic GC content, aerobiosis and habitat.  相似文献   

2.

Background

Large yellow croaker (Larimichthys crocea) is an important commercial fish in China and East-Asia. The annual product of the species from the aqua-farming industry is about 90 thousand tons. In spite of its economic importance, genetic studies of economic traits and genomic selections of the species are hindered by the lack of genomic resources. Specifically, a whole-genome physical map of large yellow croaker is still missing. The traditional BAC-based fingerprint method is extremely time- and labour-consuming. Here we report the first genome map construction using the high-throughput whole-genome mapping technique by nanochannel arrays in BioNano Genomics Irys system.

Results

For an optimal marker density of ~10 per 100 kb, the nicking endonuclease Nt.BspQ1 was chosen for the genome map generation. 645,305 DNA molecules with a total length of ~112 Gb were labelled and detected, covering more than 160X of the large yellow croaker genome. Employing IrysView package and signature patterns in raw DNA molecules, a whole-genome map of large yellow croaker was assembled into 686 maps with a total length of 727 Mb, which was consistent with the estimated genome size. The N50 length of the whole-genome map, including 126 maps, was up to 1.7 Mb. The excellent hybrid alignment with large yellow croaker draft genome validated the consensus genome map assembly and highlighted a promising application of whole-genome mapping on draft genome sequence super-scaffolding. The genome map data of large yellow croaker are accessible on lycgenomics.jmu.edu.cn/pm.

Conclusion

Using the state-of-the-art whole-genome mapping technique in Irys system, the first whole-genome map for large yellow croaker has been constructed and thus highly facilitates the ongoing genomic and evolutionary studies for the species. To our knowledge, this is the first public report on genome map construction by the whole-genome mapping for aquatic-organisms. Our study demonstrates a promising application of the whole-genome mapping on genome maps construction for other non-model organisms in a fast and reliable manner.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1871-z) contains supplementary material, which is available to authorized users.  相似文献   

3.

Background

Bacterial conjugation is a mechanism for horizontal DNA transfer between bacteria which requires cell to cell contact, usually mediated by self-transmissible plasmids. A protein known as relaxase is responsible for the processing of DNA during bacterial conjugation. TrwC, the relaxase of conjugative plasmid R388, is also able to catalyze site-specific integration of the transferred DNA into a copy of its target, the origin of transfer (oriT), present in a recipient plasmid. This reaction confers TrwC a high biotechnological potential as a tool for genomic engineering.

Methodology/Principal Findings

We have characterized this reaction by conjugal mobilization of a suicide plasmid to a recipient cell with an oriT-containing plasmid, selecting for the cointegrates. Proteins TrwA and IHF enhanced integration frequency. TrwC could also catalyze integration when it is expressed from the recipient cell. Both Y18 and Y26 catalytic tyrosil residues were essential to perform the reaction, while TrwC DNA helicase activity was dispensable. The target DNA could be reduced to 17 bp encompassing TrwC nicking and binding sites. Two human genomic sequences resembling the 17 bp segment were accepted as targets for TrwC-mediated site-specific integration. TrwC could also integrate the incoming DNA molecule into an oriT copy present in the recipient chromosome.

Conclusions/Significance

The results support a model for TrwC-mediated site-specific integration. This reaction may allow R388 to integrate into the genome of non-permissive hosts upon conjugative transfer. Also, the ability to act on target sequences present in the human genome underscores the biotechnological potential of conjugative relaxase TrwC as a site-specific integrase for genomic modification of human cells.  相似文献   

4.
5.
The transfer of organelle DNA fragments to the nuclear genome is frequently observed in eukaryotes. These transfers are thought to play an important role in gene and genome evolution of eukaryotes. In plants, such transfers occur from plastid to nuclear [nuclear plastid DNAs (NUPTs)] and mitochondrial to nuclear (nuclear mitochondrial DNAs) genomes. The amount and genomic organization of organelle DNA fragments have been studied in model plant species, such as Arabidopsis thaliana and rice. At present, publicly available genomic data can be used to conduct such studies in non-model plants. In this study, we analysed the amount and genomic organization of NUPTs in 17 plant species for which genome sequences are available. The amount and distribution of NUPTs varied among the species. We also estimated the distribution of NUPTs according to the time of integration (relative age) by conducting sequence similarity analysis between NUPTs and the plastid genome. The age distributions suggested that the present genomic constitutions of NUPTs could be explained by the combination of the rapidly eliminated deleterious parts and few but constantly existing less deleterious parts.  相似文献   

6.
Sequencing pathogen genomes is costly, demanding careful allocation of limited sequencing resources. We built a computational Sequencing Analysis Pipeline (SAP) to guide decisions regarding the amount of genomic sequencing necessary to develop high-quality diagnostic DNA and protein signatures. SAP uses simulations to estimate the number of target genomes and close phylogenetic relatives (near neighbors or NNs) to sequence. We use SAP to assess whether draft data are sufficient or finished sequencing is required using Marburg and variola virus sequences. Simulations indicate that intermediate to high-quality draft with error rates of 10−3–10−5 (~8× coverage) of target organisms is suitable for DNA signature prediction. Low-quality draft with error rates of ~1% (3× to 6× coverage) of target isolates is inadequate for DNA signature prediction, although low-quality draft of NNs is sufficient, as long as the target genomes are of high quality. For protein signature prediction, sequencing errors in target genomes substantially reduce the detection of amino acid sequence conservation, even if the draft is of high quality. In summary, high-quality draft of target and low-quality draft of NNs appears to be a cost-effective investment for DNA signature prediction, but may lead to underestimation of predicted protein signatures.  相似文献   

7.

Background

Nearly one-quarter of all avian species is either threatened or nearly threatened. Of these, 73 species are currently being rescued from going extinct in wildlife sanctuaries. One of the previously most critically-endangered is the crested ibis, Nipponia nippon. Once widespread across North-East Asia, by 1981 only seven individuals from two breeding pairs remained in the wild. The recovering crested ibis populations thus provide an excellent example for conservation genomics since every individual bird has been recruited for genomic and demographic studies.

Results

Using high-quality genome sequences of multiple crested ibis individuals, its thriving co-habitant, the little egret, Egretta garzetta, and the recently sequenced genomes of 41 other avian species that are under various degrees of survival threats, including the bald eagle, we carry out comparative analyses for genomic signatures of near extinction events in association with environmental and behavioral attributes of species. We confirm that both loss of genetic diversity and enrichment of deleterious mutations of protein-coding genes contribute to the major genetic defects of the endangered species. We further identify that genetic inbreeding and loss-of-function genes in the crested ibis may all constitute genetic susceptibility to other factors including long-term climate change, over-hunting, and agrochemical overuse. We also establish a genome-wide DNA identification platform for molecular breeding and conservation practices, to facilitate sustainable recovery of endangered species.

Conclusions

These findings demonstrate common genomic signatures of population decline across avian species and pave a way for further effort in saving endangered species and enhancing conservation genomic efforts.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0557-1) contains supplementary material, which is available to authorized users.  相似文献   

8.
Horizontal gene transfer (HGT) is recognized as the major force for bacterial genome evolution. Yet, numerous questions remain about the transferred genes, their function, quantity and frequency. The extent to which genetic transformation by exogenous DNA has occurred over evolutionary time was initially addressed by an in silico approach using the complete genome sequence of the Ralstonia solanacearum GMI1000 strain. Methods based on phylogenetic reconstruction of prokaryote homologous genes families detected 151 genes (13.3%) of foreign origin in the R. solanacearum genome and tentatively identified their bacterial origin. These putative transfers were analyzed in comparison to experimental transformation tests involving 18 different genomic DNA positions in the genome as sites for homologous or homeologous recombination. Significant transformation frequency differences were observed among these positions tested regardless of the overall genomic divergence of the R. solanacearum strains tested as recipients. The genomic positions containing the putative exogenous DNA were not systematically transformed at the highest frequencies. The two genomic "hot spots", which contain recA and mutS genes, exhibited transformation frequencies from 2 to more than 4 orders of magnitude higher than positions associated with other genes depending on the recipient strain. These results support the notion that the bacterial cell is equipped with active mechanisms to modulate acquisition of new DNA in different genomic positions. Bio-informatics study correlated recombination "hot-spots" to the presence of Chi-like signature sequences with which recombination might be preferentially initiated. The fundamental role of HGT is certainly not limited to the critical impact that the very rare foreign genes acquired mainly by chance can have on the bacterial adaptation potential. The frequency to which HGT with homologous and homeologous DNA happens in the environment might have led the bacteria to hijack DNA repair mechanisms in order to generate genetic diversity without losing too much genomic stability.  相似文献   

9.

Background

Aberrant promoter DNA methylation has been shown to play a role in acute myeloid leukemia (AML) pathophysiology. However, further studies to discuss the prognostic value and the relationship of the epigenetic signatures with defined genomic rearrangements in acute myeloid leukemia are required.

Methodology/Principal Findings

We carried out high-throughput methylation profiling on 116 de novo AML cases and we validated the significant biomarkers in an independent cohort of 244 AML cases. Methylation signatures were associated with the presence of a specific cytogenetic status. In normal karyotype cases, aberrant methylation of the promoter of DBC1 was validated as a predictor of the disease-free and overall survival. Furthermore, DBC1 expression was significantly silenced in the aberrantly methylated samples. Patients with chromosome rearrangements showed distinct methylation signatures. To establish the role of fusion proteins in the epigenetic profiles, 20 additional samples of human hematopoietic stem/progenitor cells (HSPC) transduced with common fusion genes were studied and compared with patient samples carrying the same rearrangements. The presence of MLL rearrangements in HSPC induced the methylation profile observed in the MLL-positive primary samples. In contrast, fusion genes such as AML1/ETO or CBFB/MYH11 failed to reproduce the epigenetic signature observed in the patients.

Conclusions/Significance

Our study provides a comprehensive epigenetic profiling of AML, identifies new clinical markers for cases with a normal karyotype, and reveals relevant biological information related to the role of fusion proteins on the methylation signature.  相似文献   

10.
11.
Runs of homozygosity (ROHs) arise due the transmission from parents to offspring of segments that are either identical by decent (IBD) or identical by state (IBS). The former is due to consanguineous matings whereas the latter is due to demographic processes. ROHs reduce individual nucleotide diversity (θ) as a function of homozygosity, and thus ROH distributions and θ are expected to vary among species because inbreeding levels, recombination rates, and demographic histories vary widely. To help interpret genetic diversity within and among species, we utilized genome sequence data from 78 mammalian species to compare θ and ROH burden (i.e., number and length of ROHs in the genome) among groups of mammals to assess genomic signatures of inbreeding. We compared θ and ROHs: (i) among threatened and non-threatened mammals to determine the significance of contemporary conservation status; (ii) among carnivorous and non-carnivorous mammals to determine the relevance of trophic effects; (iii) relative to body size because mutation rates generally vary with body mass; and (iv) across mammals from different latitudes to test for gradients in genomic diversity (e.g., due to effects of historic climatic regimes). Our results illustrate the considerable variance in genomic diversity across mammals, and that trophic level, body mass, and latitude have significant effects on θ and ROH burden. However, conservation status was not a reliable indicator of genomic diversity. We argue that genetic or genomic diversity should be an explicit component of conservation status, as such diversity is critical to the long-term sustainability of populations, and anticipate that ROHs will become more commonly used to estimate inbreeding in wild animals.  相似文献   

12.
13.

Background

Lateral gene transfer (LGT) from bacterial Wolbachia endosymbionts has been detected in ~20% of arthropod and nematode genome sequencing projects. Many of these transfers are large and contain a substantial part of the Wolbachia genome.

Results

Here, we re-sequenced three D. ananassae genomes from Asia and the Pacific that contain large LGTs from Wolbachia. We find that multiple copies of the Wolbachia genome are transferred to the Drosophila nuclear genome in all three lines. In the D. ananassae line from Indonesia, the copies of Wolbachia DNA in the nuclear genome are nearly identical in size and sequence yielding an even coverage of mapped reads over the Wolbachia genome. In contrast, the D. ananassae lines from Hawaii and India show an uneven coverage of mapped reads over the Wolbachia genome suggesting that different parts of these LGTs are present in different copy numbers. In the Hawaii line, we find that this LGT is underrepresented in third instar larvae indicative of being heterochromatic. Fluorescence in situ hybridization of mitotic chromosomes confirms that the LGT in the Hawaii line is heterochromatic and represents ~20% of the sequence on chromosome 4 (dot chromosome, Muller element F).

Conclusions

This collection of related lines contain large lateral gene transfers composed of multiple Wolbachia genomes that constitute >2% of the D. ananassae genome (~5 Mbp) and partially explain the abnormally large size of chromosome 4 in D. ananassae.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1097) contains supplementary material, which is available to authorized users.  相似文献   

14.
The eucalypts comprise a group of woody plants used in commercial forest plantations owing to their high growth rates, adaptability to various ecological conditions and multiple applications. Despite the enormous amount of molecular data available for eucalypts, a basic understanding of the nature of its genome still requires information regarding the DNA amount in the genus. In this work, we estimated the genome size and base composition of 25 eucalypt species. With a comparative karyotype approach, we aimed to identify possible chromosomal alterations correlated with the genome size variation. Classical cytogenetic and genomic in situ hybridization experiments were conducted for this purpose. The studied species showed genome size ranging from 2C = 0.91 (Corymbia intermedia) to 2C = 1.37 pg (Eucalyptus paniculata) and AT/CG ratios varying from AT = 61.3 (Eucalyptus urophylla) to AT = 62.85% (C. intermedia). Comparative karyotype analysis revealed no remarkable differences in chromosome number (2n = 22) or morphology among eucalypt species despite considerable differences in nuclear DNA content. The genome in situ hybridization method did not distinguish non-homologous chromosomal regions of Eucalyptus baileyana and Corymbia citriodora, despite the difference of 0.45 pg between their genome sizes. The results found in the present work corroborate the consideration of small and dispersed DNA changes as the main cause of genome size variation in eucalypts.  相似文献   

15.

Background  

Horizontal transfers (HTs) refer to the transmission of genetic material between phylogenetically distant species. Although most of the cases of HTs described so far concern genes, there is increasing evidence that some involve transposable elements (TEs) in Eukaryotes. The availability of the full genome sequence of two cereal species, (i.e. rice and Sorghum), as well as the partial genome sequence of maize, provides the opportunity to carry out genome-wide searches for TE-HTs in Poaceae.  相似文献   

16.
17.
18.
Pseudomonas aeruginosa is a major cause of nosocomial infections, particularly in immunocompromised patients or in individuals with cystic fibrosis. The notable ability of P. aeruginosa to inhabit a broad range of environments, including humans, is in part due to its large and diverse genomic repertoire. The genomes of most strains contain a significant number of large and small genomic islands, including those carrying virulence determinants (pathogenicity islands). The pathogenicity island PAPI-1 of strain PA14 is a cluster of 115 genes, and some have been shown to be responsible for virulence phenotypes in a number of infection models. We have previously demonstrated that PAPI-1 can be transferred to other P. aeruginosa strains following excision from the chromosome of the donor. Here we show that PAPI-1 is transferred into recipient P. aeruginosa by a conjugative mechanism, via a type IV pilus, encoded in PAPI-1 by a 10-gene cluster which is closely related to the genes in the enterobacterial plasmid R64. We also demonstrate that the precursor of the major pilus subunit, PilS2, is processed by the chromosomally encoded prepillin peptidase PilD but not its paralog FppA. Our results suggest that the pathogenicity island PAPI-1 may have evolved by acquisition of a conjugation system but that because of its dependence on an essential chromosomal determinant, its transfer is restricted to P. aeruginosa or other species capable of providing a functional prepilin peptidase.The genomes of a number of microorganisms, primarily those that have a capability of changing and adapting to a wide range of environments, evolve by acquisition of novel genetic information in blocks of genes via a process referred to as horizontal gene transfer (HGT). Other bacterial species change their genetic repertoire minimally, principally those that have adapted to a particular environment and, in the case of pathogenic bacteria, to a specific host. For HGT-mediated acquisition of genes to occur, a recipient has to be in an environment where donor genetic material is available, such as different strains of the same species cohabitating a shared niche or growing in a large and diverse community of several hundred different microorganisms. Moreover, for bacteria to become successful recipients of foreign genetic material, they have to posses one of three mechanisms of HGT: natural competence for uptake of foreign DNA (transformation), the ability to be infected by transducing bacteriophages (transduction), or serving as recipients during conjugation of plasmids or mobilized chromosomal DNA (conjugation). Acquired genetic material can consist of individual genes, where they recombine into homologous sequences in the recipient genome and thus increase the genetic diversity. However, large blocks of hundreds of contiguous genes in elements called genomic islands can be also transferred between bacteria, allowing the recipient microorganisms to acquire a number of new traits by a single HGT event.Previous studies comparing genomes of the opportunistic pathogen Pseudomonas aeruginosa pointed toward HGT as an important factor in its evolution (23). The genomes of all strains sequenced to date contain a significant fraction of horizontally acquired genes, in genomic islands and prophages, consisting of a few to several hundred. These islands can be recognized by the presence of certain signature features, such as an atypical nucleotide composition relative to the rest of the genome, location within predicted sites of chromosomal integration (att sites), and the presence of genes encoding bacteriophages and conjugation machineries. We have recently demonstrated that PAPI-1, a large P. aeruginosa genomic (pathogenicity) island, can be excised from its tRNA att site and that a copy can be transferred into a recipient, where it integrates into the same tRNA gene (27). Inspection of the genes in PAPI-1 and features of the transfer process, namely, an integrase-dependent excision and formation of a circular intermediate, suggested that PAPI-1 is an integrative and conjugative element and that it is likely transferred by a conjugative mechanism.Here we extended our analysis of PAPI-1 by testing its transfer from a preselected group of P. aeruginosa PA14 mutants with insertions in each of the genes on the island. Among those mutants that were defective in PAPI-1 transfer, one group of genes encode homologs of type IV pilus proteins. While type IV pili have been found to be involved primarily in bacterial adhesion and twitching motility (24), the PAPI-1-encoded pilus is closely related to the conjugative apparatus of plasmid R64 (14). Moreover, we show that an essential posttranslational modification reaction, converting the precursor of the major pilin subunit encoded in PAPI-1 into a mature protein, is carried out by an enzyme encoded in the chromosome of the donor cells. The acquisition and adaptation of groups of genes and subsequent loss of an essential function may represent a novel evolutionary strategy, limiting horizontal transfer to a specific bacterial species.  相似文献   

19.
20.

Introduction

The classification of breast cancer patients into risk groups provides a powerful tool for the identification of patients who will benefit from aggressive systemic therapy. The analysis of microarray data has generated several gene expression signatures that improve diagnosis and allow risk assessment. There is also evidence that cell proliferation-related genes have a high predictive power within these signatures.

Methods

We thus constructed a gene expression signature (the DM signature) using the human orthologues of 108 Drosophila melanogaster genes required for either the maintenance of chromosome integrity (36 genes) or mitotic division (72 genes).

Results

The DM signature has minimal overlap with the extant signatures and is highly predictive of survival in 5 large breast cancer datasets. In addition, we show that the DM signature outperforms many widely used breast cancer signatures in predictive power, and performs comparably to other proliferation-based signatures. For most genes of the DM signature, an increased expression is negatively correlated with patient survival. The genes that provide the highest contribution to the predictive power of the DM signature are those involved in cytokinesis.

Conclusion

This finding highlights cytokinesis as an important marker in breast cancer prognosis and as a possible target for antimitotic therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号