首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the herbicide 2,4-Dichlorophenoxy acetic acid generally used in agriculture was studied on the nitrogen fixing blue-green alga Cylindrospermum sp. The alga could tolerate up to 150 μg per ml in liquid culture and 100 μg per ml on agar plates without any inhibitory effect on growth and survival. The maximum tolerance was up to 800 μg per ml and higher concentrations were lethal.  相似文献   

2.
Summary An acropetal polarisation of the movement of 2,4-dichlorophenoxy acetic acid (2,4-D) through subapical segments of Pisum seedling primary roots has been monitored throughout a 60 h transport period in darkness at 25° C using [1-14C]2,4-D and [2-14C]2,4-D. Uptake of 2,4-D does not proceed at a constant rate; periods in which the amount of 14C in the root segments and receiver blocks increases rapidly are followed by periods in which the amount of radioactivity remains relatively constant or declines slightly. These oscillations do not appear to be related to the time of day at which the experiments are begun or ended. Immobilisation and degradation of 2,4-D during transport in the segments seems to be low. Replacement of [1-14C]2,4-D donor blocks after 25 h by blocks containing unlabelled 2,4-D results in continued transport of the compound into receiver blocks, with only small amounts of 14C remaining in the root tissues. Radioactivity is also exported from the segments into the blocks used to replace the donor blocks, with larger amounts being exported into the blocks applied to the apical ends than into those applied to the basal ends of the segments. This radioactivity may be taken-up again by the segments but more 14C is exported into these blocks towards the end of the experiments. The possibility of regular oscillations in uptake and movement of 2,4-D in Pisum root segments is discussed.  相似文献   

3.
4.
The binding of amino acids to the herbicide 2,4-dichlorophenoxy acetic acid   总被引:1,自引:0,他引:1  
Summary. The interaction of amino acids with the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was studied by charge-transfer chromatography carried out on diatomaceous layers covered with different amount of 2,4-D and the effect of salts on the strength of interaction was elucidated. It was established that Arg, His, Lys, Orn, Phe and Trp binds to 2,4-D, the binding process is of saturation character. Principal component analysis proved that the concentration of 2,4-D exerts the highest impact on the interaction and the effect of salts is of secondary importance. The results suggest that these amino acid residues may account for the binding of 2,4-D to proteins and can play a considerable role in the detoxification processes by forming conjugates with 2,4-D. Received April 10, 1998, Accepted September 15, 1998  相似文献   

5.
Three mathematical models were proposed to describe the effects of sorption of both bacteria and the herbicide (2,4-dichlorophenoxy)acetic acid (2,4-D) on the biological degradation rates of 2,4-D in soils. Model 1 assumed that sorbed 2,4-D is not degraded, that only bacteria in solution are capable of degrading 2,4-D in solution, and that sorbed bacteria are not capable of degrading either sorbed or solution 2,4-D. Model 2 stated that only bacteria in the solution phase degrade 2,4-D in solution and that only sorbed bacteria degrade sorbed 2,4-D. Model 3 proposed that sorbed 2,4-D is completely protected from degradation and that both sorbed and solution bacteria are capable of degrading 2,4-D in solution. These models were tested by a series of controlled laboratory experiments. Models 1 and 2 did not describe the data satisfactorily and were rejected. Model 3 described the experimental results quite well, indicating that sorbed 2,4-D was completely protected from biological degradation and that sorbed- and solution-phase bacteria degraded solution-phase 2,4-D with almost equal efficiencies.  相似文献   

6.
Three mathematical models were proposed to describe the effects of sorption of both bacteria and the herbicide (2,4-dichlorophenoxy)acetic acid (2,4-D) on the biological degradation rates of 2,4-D in soils. Model 1 assumed that sorbed 2,4-D is not degraded, that only bacteria in solution are capable of degrading 2,4-D in solution, and that sorbed bacteria are not capable of degrading either sorbed or solution 2,4-D. Model 2 stated that only bacteria in the solution phase degrade 2,4-D in solution and that only sorbed bacteria degrade sorbed 2,4-D. Model 3 proposed that sorbed 2,4-D is completely protected from degradation and that both sorbed and solution bacteria are capable of degrading 2,4-D in solution. These models were tested by a series of controlled laboratory experiments. Models 1 and 2 did not describe the data satisfactorily and were rejected. Model 3 described the experimental results quite well, indicating that sorbed 2,4-D was completely protected from biological degradation and that sorbed- and solution-phase bacteria degraded solution-phase 2,4-D with almost equal efficiencies.  相似文献   

7.
The effects of in vitro exposure of human erythrocytes to different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and its metabolite 2,4-dichlorophenol (2,4-DCP) were studied. The activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and the level of reduced glutathione (GSH) were determined. The activity of erythrocyte superoxide dismutase SOD decreased with increasing dose of 2,4-D and 2,4-DCP, while glutathione peroxidase activity increased. 2,4-D (500 ppm) decreased the level of reduced glutathione in erythrocytes by 18% and 2,4-DCP (250 ppm) by 32%, respectively, in comparison with the controls. These results lead to the conclusion that in vitro administration of herbicide-2,4-D and its metabolite 2,4-DCP causes a decrease in the level of reduced glutathione in erythrocytes and significant changes in antioxidant enzyme activities. Comparison of the toxicity of 2,4-D and 2,4-DCP revealed that the most prominent changes occurred in human erythrocytes incubated with 2,4-DCP.  相似文献   

8.
Oocyte maturation is dependent on a complex program of morphological, ultrastructural, and biochemical signaling events, and if disrupted could lead to decreased fertility and population decline. The in vitro sensitivity of amphibian oocytes and oocyte maturation to plant growth factor and widely used hormonal herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), was examined in this study to determine its potential impact on early development and possible contribution to the global amphibian decline. Progesterone, which acts through a membrane receptor, triggers meiotic maturation in full grown (stage VI) Xenopus oocytes, characterized by cytoskeletal reorganization, nuclear dissolution, chromosome condensation, and spindle formation. Biochemically, the Mos/MAPK/MPF signaling pathway is activated, in part dependent on translational activation of specific maternal mRNAs such as c-Mos. Light microscopy revealed unusual asymmetric morphotypes in oocytes exposed to 2,4-D alone characterized by a white spot and bulge, termed coning, in the animal pole where the germinal vesicle (nucleus) persisted intact. Treatment of oocytes with cytochalasin B, a microfilament inhibitor, blocked these morphotypes but nocodazole, a microtubule depolymerizing agent, did not. Confocal microscopy showed that 2,4-D, itself, caused substantial depolymerization of perinuclear microtubules. Importantly, 2,4-D blocked progesterone-induced maturation as measured by the lack of nuclear breakdown, confirmed by the lack of Mos expression, MPF activation, and cytoplasmic polyadenylation of cyclin B1 mRNA. However, Western blot analysis and U0126 inhibitor studies showed that 2,4-D, either alone or in the presence of progesterone, induced MAPK phosphorylation through MAPKK. These results show that 2,4-D disrupts oocyte cytoskeletal organization and blocks maturation while stimulating an independent MAPK signaling pathway.  相似文献   

9.
The influence of the herbicide 2,4-dichlorophenoxy acetic acid (2,4-D) on haemocyte DNA of in vivo treated mussels Mytilus galloprovincialis has been investigated by flow cytometry and epifluorescence microscopy. Haemocyte proliferation and atypical flow cytometric DNA histograms were observed in mussels treated with 20 and 100 μg/g of 2,4-D. The stimulation of proliferation by 2,4-D was also obvious by DNA labelling with BrdU followed by FITC conjugated anti-BrdU MoAb visualised by epifluorescence microscopy. An apoptotic sub-G1 peak resulted in mussels that were exposed to higher doses of herbicide at 100 and 500 μg/g as well as subpopulation could be detected by flow cytometric analysis. In these experiments morphological changes characteristic for apoptotic cells were looked for by fluorescence microscopy. A low percentage of cells in S as well as in G2M phase indicating G1 arrest were detected in haemocytes from these mussels that had survived 4 days of 20 μg/g 2,4-D exposure. In addition, sister-chromatid exchanges (SCE) could be seen with the immunolabelling BrdU method. Thus, in vivo treatment and the subsequent uptake of 2,4-D causes serious genetic consequences and raises concerns regarding the potential overall fitness and health effects in mussel populations.  相似文献   

10.
Parenchyma tissue from potato (Solanum tuberosum L. cv. Russet) tubers was treated with inhibitors to the release of metabolic energy in order to determine the importance of an active transport system for (2,4-dichlorophenoxy)acetic acid (2,4-D) and (2,4,5-trichlorophenoxy)acetic acid (2,4,5-T) accumulation. Results from treatments with carbonylcyanide m-chlorophenylhydrazone, an inhibitor of oxidative phosphorylation, and N,N'-dicyclohexylcarbodiimide, an inhibitor of membrane-bound adenosine triphosphatase, indicated 2,4-D and 2,4,5-T accumulation to be independent of available energy as influenced by these metabolic inhibitors. Lecithin treated parenchyma tissue accumulated more 2,4-D and 2,4,5-T than untreated tissue indicating possible binding of the herbicide to the lecithin moiety.  相似文献   

11.
The structure of the complex formed by heptakis(2,6-di-O-methyl)-beta-cyclodextrin and (2,4-dichlorophenoxy)acetic acid was studied by X-ray diffraction. The dichlorophenyl moiety of the guest molecule was found outside the host hydrophobic cavity in the primary methoxy groups region whereas the oxyacetic acid chain penetrates the cavity from the primary face. The host molecules stacks along the a crystal axis forming a column. In the space between three successive hosts of the column, a guest molecule is accommodated.  相似文献   

12.
The ratios of hapten and bovine serum albumin (BSA) in an antigen conjugate were determined by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Hybridomas secreting monoclonal antibodies against 2,4-dichlorophenoxyacetic acid (2,4-D) were produced by fusing 2,4-D-BSA conjugate-immunized splenocytes with a HAT-sensitive mouse myeloma cell line, P3-X63-Ag8-653. A substantial cross-reaction was observed for 2,4-dichlorophenol (2,4-DP) when compared with that observed for 2,4-D. The full measurement range for this assay is 0.2–3 μg ml−1 for 2,4-DP. On the other hand, the range for 2,4-D is between 1 and 20 μg ml−1. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
A library of fourteen 2-imino-4-thiazolidinone derivatives (1a-1n) has been synthesized and evaluated for in vivo anti-inflammatory activity and effect on ex-vivo COX-2 and TNF–α expression. Compounds 1k (5-(2,4-dichloro-phenooxy)-acetic acid (3-benzyl-4-oxo-thiazolidin-2-ylidene)-hydrazide) and 1m (5-(2,4-dichloro-phenooxy)-acetic acid (3-cyclohexyl-4-oxo-thiazolidin-2-ylidene)-hydrazide) exhibited in vivo inhibition of 81.14% and 78.80% respectively after 5 h in comparison to indomethacin which showed 76.36% inhibition of inflammation without causing any damage to the stomach. Compound 1k showed a reduction of 68.32% in the level of COX-2 as compared to the indomethacin which exhibited 66.23% inhibition of COX-2. The selectivity index of compound 1k was found to be 29.00 in comparison to indomethacin showing selectivity index of 0.476. Compounds 1k and 1m were also found to significantly suppress TNF-α concentration to 70.10% and 68.43% in comparison to indomethacin which exhibited 66.45% suppression.  相似文献   

14.
Accumulation of radiolabelled naphthalene-1-acetic acid (1-NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), and indole-3-acetic acid (IAA) has been measured in suspension-cultured tobacco (Nicotiana tabacum) cells. In this paper is presented a simple methodology allowing activities of the auxin influx and efflux carriers to be monitored independently by measuring the cellular accumulation of [3H]NAA and [14C]2,4-D. We have shown that 1-NAA enters cells by passive diffusion and has its accumulation level controlled by the efflux carrier. By contrast, 2,4-D uptake is mostly ensured by the influx carrier and this auxin is not secreted by the efflux carrier. Both auxin carriers contribute to IAA accumulation. The kinetic parameters and specificity of each carrier have been determined and new information concerning interactions with naphthylphthalamic acid, pyrenoylbenzoic acid, and naphthalene-2-acetic acid are provided. The relative contributions of diffusion and carrier-mediated influx and efflux to the membrane transport of 2,4-D, 1-NAA, and IAA have been quantified, and the data indicate that plant cells are able to modulate over a large range their auxin content by modifying the activity of each carrier.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 1-NAA naphthalene-1-acetic acid - 2-NAA naphthalene-2-acetic acid - NPA N-1-naphthylphthalamic acid - PBA 2-(1-pyrenoyl)benzoic acid - Vm maximum transport capacity of the carrier In honour of Professor Dieter Klämbt's 65th birthdayThe authors thank Drs. A.E. Geissler and G.F. Katekar (CSIRO, Canberra City, Australia) for providing auxin efflux carrier inhibitors CPD, CPP, and PBA, and Dr. H. Barbier-Brygoo (Institut des Sciences Végétales, CNRS, Gif-sur-Yvette, France) for helpful discussions. This work was supported by funds from the Centre National de la Recherche Scientifique (UPR0040).  相似文献   

15.
2,4-Dichlorophenol (2,4-DCP) was anaerobically degraded in freshwater lake sediments. From observed intermediates in incubated sediment samples and from enrichment cultures, the following sequence of transformations was postulated. 2,4-DCP is dechlorinated to 4-chlorophenol (4-CP), 4-CP is dechlorinated to phenol, phenol is carboxylated to benzoate, and benzoate is degraded via acetate to methane and CO2; at least five different organisms are involved sequentially. The rate-limiting step was the transformation of 4-CP to phenol. Sediment-free enrichment cultures were obtained which catalyzed only the dechlorination of 2,4-DCP, the carboxylation of phenol, and the degradation of benzoate, respectively. Whereas the dechlorination of 2,4-DCP was not inhibited by H2, the dechlorination of 4-CP, and the transformation of phenol and benzoate were. Low concentrations of 4-CP inhibited phenol and benzoate degradation. Transformation rates and maximum concentrations allowing degradation were determined in both freshly collected sediments and in adapted samples: at 31 degrees C, which was the optimal temperature for the dechlorination, the average adaptation time for 2,4-DCP, 4-CP, phenol, and benzoate transformations were 7, 37, 11 and 2 days, respectively. The maximal observed transformation rates for these compounds in acclimated sediments were 300, 78, 2, 130, and 2,080 micromol/liter(-1)/day(-1), respectively. The highest concentrations which still allowed the transformation of the compound in acclimated sediments were 3.1 m/M 2,4-DCP, 3.1 mM 4-CP, 13 mM phenol, and greater than 52 mM benzoate. The corresponding values were lower for sediments which had not been adapted for the transformation steps.  相似文献   

16.
17.
18.
19.
Difluoromethylornithine (DFMO) is a well known inhibitor of putrescine biosynthesis that has been reported to interact in varying ways with auxins such as indoleacetic acid (IAA) and 2,4-dichlorophenoxy acetic acid (2,4-D). In the present report DFMO is shown to inhibit root formation in isolated hypocotyl segments of Euphorbia esula L. (leafy spurge) grown in the dark on solidified nutrient media in Petri dishes. Shoot formation was only slightly inhibited by DFMO and only on media with salts and vitamins diluted 10-fold. 2,4-D inhibited both root and shoot formation in full strength or diluted media. Simultaneous application of both compounds resulted in partial reversal of root inhibition, but only at 450 n M 2,4-D, the highest concentration used. In both media IAA also partially reversed DFMO effects on root formation. The effects of DFMO, 2,4-D or IAA on root (or shoot) formation do not appear to be closely related to endogenous content of the polyamines determined by high performance liquid chromatography.  相似文献   

20.
The differential response of white clover ( Trifolium repens L. cv. Regal Ladino) and berseem clover ( Trifolium alexandrinum L. cv. Mississippi ecotype) was investigated by treating greenhouse cultured plants with 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB). Berseem clover plants were significantly injured by a treatment concentration of 0.6 kg ha-1 of 2,4-DB, whereas white clover plants were not injured by treatment levels below 2.4 kg ha-1. The metabolism of 2,4-DB in cell suspension cultures of white clover and berseem clover was investigated using [ring-14C]-2,4-DB and non-labeled 2,4-DB. White clover cell cultures metabolized ca 4-fold more 2,4-DB than berseem cultures over a 44-h treatment period. The decrease in berseem cell population was 4-fold greater than the decrease in white clover cell population in response to the 8 μ M 2,4-DB treatment. The herbicide and its [ring-14C]-labeled metabolites were isolated from treated cells and medium after 44 h by partition and thin-layer chromatography. White clover cells metabolized 90% of the [14C]-2,4-DB and berseem clover cells metabolized 22% of the herbicide. The major portion of the radiolabel was in the glycoside fractions from extracts of both species. The differential response of Trifolium species to 2,4-DB is implied to be due to the differential rate of 2,4-DB metabolism to a glycoside by the clover plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号