首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ATPase activity of the F1-ATPase from the thermophilic bacterium PS3 is stimulated at concentrations of rhodamine 6G up to about 10 µM where 70% stimulation is observed at 36°C. Half maximal stimulation is observed at about 3 µM dye. At rhodamine 6G concentrations greater than 10 µM, ATPase activity declines with 50% inhibition observed at about 75 µM dye. The ATPase activities of the 33 and 33 complexes assembled from isolated subunits of TF1 expressed inE. coli deleted of theunc operon respond to increasing concentrations of rhodamine 6G nearly identically to the response of TF1. In contrast, the ATPase activities of the 33 and 33 complexes are only inhibited by rhodamine 6G with 50% inhibition observed, respectively, at 35 and 75 µM dye at 36°C. The ATPase activity of TF1 is stimulated up to 4-fold by the neutral detergent, LDAO. In the presence of stimulating concentrations of LDAO, the ATPase activity of TF1 is no longer stimulated by rhodamine 6G, but rather, it is inhibited with 50% inhibition observed at about 30 µM dye at 30°C. One interpretation of these results is that binding of rhodamine 6G to a high-affinity site on TF1 stimulates ATPase activity and unmasks a low-affinity, inhibitory site for the dye which is also exposed by LDAO.  相似文献   

2.
Electron paramagnetic resonance (EPR) spectroscopy and O2 evolution assays were performed on photosystem II (PSII) membranes which had been treated with 1 M CaCl2 to release the 17, 23 and 33 kilodalton (kDa) extrinsic polypeptides. Manganese was not released from PSII membranes by this treatment as long as a high concentration of chloride was maintained. We have quantitated the EPR signals of the several electron donors and acceptors of PSII that are photooxidized or reduced in a single stable charge separation over the temperature range of 77 to 240 K. The behavior of the samples was qualitatively similar to that observed in samples depleted of only the 17 and 23 kDa polypeptides (de Paula et al. (1986) Biochemistry25, 6487–6494). In both cases, the S2 state multiline EPR signal was observed in high yield and its formation required bound Ca2+. The lineshape of the S2 state multiline EPR signal and the magnetic properties of the manganese site were virtually identical to those of untreated PSII membranes. These results suggest that the structure of the manganese site is unaffected by removal of the 33 kDa polypeptide. Nevertheless, in samples lacking the 33 kDa polypeptide a stable charge separation could only be produced in about one half of the reaction centers below 160 K, in contrast to the result obtained in untreated or 17 and 23 kDa polypeptide-depleted PSII membranes. This suggests that one function of the 33 kDa polypeptide is to stabilize conformations of PSII that are active in secondary electron transfer events.Abbreviations Chl- chlorophyll - DCBQ- 2,5-dichloro-p-benzoquinone - DCMU- (diuron) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - EGTA- ethylene glycol bis-(-aminoethyl ether) N,N,N,N-tetraacetic acid - EPR- electron paramagnetic resonance - HSB- high salt buffer - HSCaB- high salt Ca2+ buffer - kDa- kilodalton - MES- 2-(N-morpholino)ethanesulfonic acid - P680- primary electron donor in PSII - PaGE- polyacrylamide gel electrophoresis - PSII- Photosystem II - QA- primary quinone electron acceptor in PSII - RB- resuspension buffer - TMPD- N,N,N,N-tetramethyl-p- phenylenediamine - Tris- tris(hydroxymethyl)aminomethane - TX100- Triton X-100 - Z- endogenous electron donor to P680+  相似文献   

3.
Summary The B, or binding, subunit of cholera enterotoxin forms a pentameric ring structure in the intact toxin, and also when the subunit is isolated from the A subunit. The thermal denaturation of the B subunit ring was examined by differential scanning calorimetry in the presence and absence of ganglioside GM1, its natural receptor. In the absence of ganglioside an irreversible endotherm was observed with maximal excess apparent heat capacity, Cmax, at 74.6° C. When the ganglioside was added in increasing amounts, multiple transitions were observed at higher temperatures, the most prominent having a Cmax at 90.8° C. At high ganglioside concentrations, the 74.6° C transition was not observed. In addition to the thermodynamic results a model is proposed for the interaction of GM1 and B subunit pentamer. This model is derived independently of the calorimetric results (but is consistent with such data) and is based upon considerations of the geometry of the GM1 micelle-B subunit pentamer.Abbreviations Mr molecular weight in daltons - GM1 H3Neu-AcGgOse4Cer* = Gall 3Ga1NAc1 4Gal-[3 - 2NeuAc]1 4Glc1 1Cer (asterisked form follows the recommendations of the IUPACIUB Commission on Biochemical Nomenclature, Ref. 3) - R molar ratio of GM1 to B monomer - DSC differential scanning calorimetry - Cmax excess apparent heat capacity - Cmax maximal value of Cex - tm temperature (° C) at Cex = Cmax - t1/2 peak width in °C at Cex = Cmax/2 - Hcal calorimetric enthalpy - C p d van't Hoff enthalpy - C p d change in specific heat accompanying denaturation  相似文献   

4.
Ribulose bisphosphate carboxylase (EC 4.1.1.39) from Thiobacillus A2 has been purified to homogeneity on the basis of polyacrylamide gel electrophoresis and U.V. analysis during sedimentation velocity studies. The enzyme had an optimum pH of about 8.2 with Tris-HCl buffers. The molecular weight was about 521000 with an S rel. of 16.9. K m for RuBP was 122 M, for total CO2 it was 4.17 mM, and for Mg2+ 20.0 M. The absolute requirement for a divalent cation was satisfied by Mg2+ which was replaceable to a certain extent by Mn2+. Activity was not significantly affected by SO 4 2- , SO 3 2- , or S2O 3 2- at 1.0 mM. At this concentration S2- caused a 27% stimulation. All mercurials tested were inhibitory. pHMB was the most potent causing about 60% inhibition at 0.01 mM. This inhibition was reversible by low concentrations of cysteine. Cyanide was also inhibitory. Its mode of inhibition with respect to RuBP was un-competitive and with a K i of 20 M. Lost activity could be restored partially by GSH or Cu2+. Although azide at the concentration tested had no significant effect on enzyme activity, 2,4-dinitrophenol at 1.0 mM caused 91% inhibition. Finally, activity was also affected by energy charge.Abbreviations ATP adenosine-5-triphosphate - GAPDH glyceraldehyde phosphate dehydrogenase - GSH (reduced) glutathione - G6P glucose-6-phosphate - NAD+ nicotinamide adenine dinucleotide - NADP+ nicotinamide adenine dinucleotide phosphate - pHMB parahydroxymercuribenzoate - 6PG 6-phosphogluconate - 3-PGA 3-phosphoglycerate - PGK phosphoglyceratekinase - RuBP ribulose-1,5-bisphosphate  相似文献   

5.
Under Lewis acidic conditions, tris(acetylacetonato)cobalt(Co(acac)3) reacted with ethoxymethylenemalononitrile (ETMN), analogous derivatives and general aliphatic nitriles to give a new type of β-imino-cobalt(III) complexes. A possible mechanism for this reaction is proposed. In the case of ethyl acetocyanoacetate, an acylated γ-acetylimino-cobalt(III) complex was isolated. The structure of the complex was explained supporting the proposed mechanism. The crystal structures of several complexes were determined by X-ray diffraction. One of the complexes showed prominent crystal dichroic properties in the first absorption band region. Benzoyl cyanide and phthalonitrile did not react with Co(acac)3 under the same conditions.  相似文献   

6.
The relationships among the leaf adenylate energy charge, the xanthophyll-cycle components, and photosystem II (PSII) fluorescence quenching were determined in leaves of cotton (Gossypium hirsutum L. cv. Acala) under different leaf temperatures and different intercellular CO2 concentrations (Ci). Attenuating the rate of photosynthesis by lowering the Ci at a given temperature and photon flux density increased the concentration of high-energy adenylate phosphate bonds (adenylate energy charge) in the cell by restricting ATP consumption (A.M. Gilmore, O. Björkman 1994, Planta 192, 526–536). In this study we show that decreases in photosynthesis and increases in the adenylate energy charge at steady state were both correlated with decreases in PSII photo-chemical efficiency as determined by chlorophyll fluorescence analysis. Attenuating photosynthesis by decreasing Ci also stimulated violaxanthin-de-epoxidation-dependent nonradiative dissipation (NRD) of excess energy in PSII, measured by nonphotochemical fluorescence quenching. However, high NRD levels, which indicate a large trans-thylakoid proton gradient, were not dependent on a high adenylate energy charge, especially at low temperatures. Moreover, dithiothreitol at concentrations sufficient to fully inhibit violaxanthin de-epoxidation and strongly inhibit NRD, affected neither the increased adenylate energy charge nor the decreased PSII photo-chemical efficiency that result from inhibiting photosynthesis. The build-up of a high adenylate energy charge in the light that took place at low Ci and low temperatures was accompanied by a slowing of the relaxation of non-photochemical fluorescence quenching after darkening. This slowly relaxing component of nonphotochemical quenching was also correlated with a sustained high adenylate energy charge in the dark. These results indicate that hydrolysis of ATP that accumulated in the light may acidify the lumen and thus sustain the level of NRD for extended periods after darkening the leaf. Hence, sustained nonphotochemical quenching often observed in leaves subjected to stress, rather than being indicative of photoinhibitory damage, apparently reflects the continued operation of NRD, a photoprotective process.Abbreviations A antheraxanthin - adenylate kinase (myokinase), ATP:AMPphosphotransferase - Ci intercellular CO2 concentration - DPS de-epoxidation state of violaxanthin, ([Z+A]/[V+A+Z]) - DTT dithiothreitol - pH trans-thylakoid proton gradient - [2ATP+ADP] - F steady-state fluorescence in the presence of NRD - FM maximal fluorescence in the absence of NRD - FM maximal fluorescence in the presence of NRD - NRD nonradiative energy dissipation - PET photosynthetic electron transport rate - PFD photon flux density - PSII photon yield of PSII photochemistry at the actual reduction state in the light or dark - QA the primary electron acceptor of PSII - [ATP+ADP+AMP] - SVN Stern-Volmer nonphotochemical quenching - V violaxanthin - Z zeaxanthin We thank Connie Shih for skillful assistance in growing plants and for conducting HPLC analyses. A Carnegie Institution Fellowship to A.G. is also gratefully acknowledged.  相似文献   

7.
Stomatal frequency is often observed to vary inversely with atmospheric CO2 concentration (pCO2). The response is due to (1) individual phenotypic plasticity and (2) evolutionary change, depending on the time scale. Evolutionary responses occur more frequently than individual responses and individual responses are more pronounced under subambient pCO2 levels than under elevated pCO2 (CO2 ceiling). The evolutionary response appears therefore to be a valuable device for determining past pCO2. Since tree leaves often represent a conspicuous and rich resource of fossil material, they are increasingly important in this respect. Additionally, certain tree species are considered to represent living fossils and therefore valuable sources of ancient stomatal data. There are, however, numerous difficulties which have to be considered such as: (1) high variance of the data, especially for fossil material, (2) interspecific differences of the response, (3) the CO2 ceiling and (4) differences between short-term and long-term responses. Whereas the qualitative pCO2 signal of stomatal frequency appears to be reliable, quantitative pCO2 reconstruction has to be performed with caution. The results of a number of studies which used stomatal frequency as a pCO2 sensor demonstrate good agreement with the results obtained with other proxy data. Current techniques are based on transfer functions which calibrate the fossil data with extant material. It is suggested that a mechanistic approach including physical as well as physiological processes could improve pCO2 reconstruction. Furthermore, the topic of the influence of pCO2 on stomatal frequency is significant not only for reconstructing past pCO2 but also with respect to the climate-biosphere interrelationship.  相似文献   

8.
Phospholipase A2 (PLA2)-induced effects on the membrane organization, fluidity properties and surface charge density of pea chloroplasts were investigated. It was observed that lipolytic treatment with PLA2 altered the chloroplast structure having as a result a swelling of thylakoids and a total destruction of normal granal structure. In spite of this, the thylakoid membranes remained in close contact. At the same time, a slight decrease of surface charge density was registered, thus explaining the adhesion of swelled membranes. Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) was measured during PLA2 treatment. A pronounced decrease of DPH fluorescence polarization was found, indicating that phospholipase treatment resulted in considerable disordering and/or fluidization of the thylakoid membranes. The increased fluidity could be attributed to the destabilizing effect of the products of enzymatic hydrolysis of the phospholipids (free fatty acids, lysophospholipids) on the bilayer structure of thylakoids membranes.Abbreviations 9-AA 9-aminoacridine - BSA bovine serium albumin - DCMU 3-/3,4-dichlorophenyl-1,1-dimethyl/urea - DPH 1,6-diphenyl-1,3,5-hexatriene - EDTA ethylenediaminetetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - LHC light harvesting chlorophyll a/b-protein complex of PS II - MES 2/N-morpholine/ethanesulfonic acid - PLA2 phospholipase A2 - PS I, PS II photosystem I and photosystem II, respectively - S lipid structural order parameter - THF tetrahydrofuran - TRICINE N-/tris/hydroxymethyl/methyl/glicine  相似文献   

9.
The wild crucifer Moricandia arvensis is a potential source of alien genes for the genetic improvement of related Brassica crops. In particular M. arvensis has a C3-C4 intermediate photosynthetic mechanism which results in enhanced recapture of photorespired CO2 and may increase plant water-use efficiency. In order to transfer this trait into Brassica napus, somatic hybridisations were made between leaf mesophyll protoplasts from cultured M. arvensis shoot tips and hypocotyl protoplasts from three Brassica napus cultivars, Ariana, Cobra and Westar. A total of 23 plants were recovered from fusion experiments and established in the greenhouse. A wide range of chromosome numbers were observed among the regenerated plants, including some apparent mixoploids. Thirteen of the regenerated plants were identified as nuclear hybrids between B. napus and M. arvensis on the basis of isozyme analysis. The phenotypes of these hybrids were typically rather B. napus-like, but much variability was observed, including variation in flower colour, leaf shape and colour, leaf waxiness, fertility and plant vigour. CO2 compensation point measurements on the regenerated plants demonstrated that 3 of the hybrids express the M. arvensis C3-C4 intermediate character at the physiological level. Semi-thin sections through leaf tissues of these 3 plants revealed the presence of a Kranz-like leaf anatomy characteristic of M. arvensis but not found in B. napus. This is the first report of the expression of this potentially important agronomic trait, transferred from Moricandia, in M. arvensis x B. napus hybrids.  相似文献   

10.
The ATP synthase complex of Klebsiella pneumoniae (KF1F0) has been purified and characterized. SDS-gel electrophoresis of the purified F1F0 complexes revealed an identical subunit pattern for E. coli (EF1F0) and K. pneumoniae. Antibodies raised against EF1 complex and purified EF0 subunits recognized the corresponding polypeptides of EF1F0 and KF1F0 in immunoblot analysis. Protease digestion of the individual subunits generated an identical cleavage pattern for subunits , , , , a, and c of both enzymes. Only for subunit different cleavage products were obtained. The isolated subunit c of both organisms showed only a slight deviation in the amino acid composition. These data suggest that extensive homologies exist in primary and secondary structure of both ATP synthase complexes reflecting a close phylogenetic relationship between the two enterobacteric tribes.Abbreviations ACMA 9-amino-6-chloro-2-methoxyacridine - DCCD N,N-dicyclohexylcarbodiimide - FITC fluorescein isothiocyanate - SDS sodium dodecyl sulfate - TTFB 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole  相似文献   

11.
We have sought to elucidate how the oligomycin sensitivity-conferring protein (OSCP) of the mitochondrial F1F0-ATP synthase (mtATPase) can influence proton channel function. Variants of OSCP, from the yeast Saccharomyces cerevisiae, having amino acid substitutions at a strictly conserved residue (Gly166) were expressed in place of normal OSCP. Cells expressing the OSCP variants were able to grow on nonfermentable substrates, albeit with some increase in generation time. Moreover, these strains exhibited increased sensitivity to oligomycin, suggestive of modification in functional interactions between the F1 and F0 sectors mediated by OSCP. Bioenergetic analysis of mitochondria from cells expressing OSCP variants indicated an increased respiratory rate under conditions of no net ATP synthesis. Using specific inhibitors of mtATPase, in conjunction with measurement of changes in mitochondrial transmembrane potential, it was revealed that this increased respiratory rate was a result of increased proton flux through the F0 sector. This proton conductance, which is not coupled to phosphorylation, is exquisitely sensitive to inhibition by oligomycin. Nevertheless, the oxidative phosphorylation capacity of these mitochondria from cells expressing OSCP variants was no different to that of the control. These results suggest that the incorporation of OSCP variants into functional ATP synthase complexes can display effects in the control of proton flux through the F0 sector, most likely mediated through altered protein—protein contacts within the enzyme complex. This conclusion is supported by data indicating impaired stability of solubilized mtATPase complexes that is not, however, reflected in the assembly of functional enzyme complexes in vivo. Given a location for OSCP atop the F1-33 hexamer that is distant from the proton channel, then the modulation of proton flux by OSCP must occur at a distance. We consider how subtle conformational changes in OSCP may be transmitted to F0.  相似文献   

12.
Summary VD1 and RPD2 are two giant neuropeptidergic neurons in the central nervous system (CNS) of the pond snail Lymnaea stagnalis. We wished to determine whether other central neurons in the CNS of L. stagnalis express the VD1/RPD2 gene. To this end, in situ hybridization with the cDNA probe of the VD1/RPD2 gene and immunocytochemistry with antisera specific to VD1 and RPD2 (the 1-antiserum, Mab4H5 and ALMA 6) and to R15 (the 1 and 16-mer antisera) were performed on alternate tissue sections. A VD1/RPD2 neuronal system comprising three classes of neurons (A1–A3) was found. All neurons of the system express the gene. Division into classes is based on immunocytochemical characteristics. Class A1 neurons (VD1 and RPD2) immunoreact with the 1-antiserum, Mab4H5 and ALMA 6. Class A2 neurons (1–5 small and 1–5 medium sized neurons in the visceral and right parietal ganglion, and two clusters of small neurons and 5 medium-sized neurons in the cerebral ganglia) immunoreact with the 1-antiserum and Mab4H5, but not with ALMA 6. Class A3 neurons (3–4 medium-sized neurons and a cluster of 4–5 small neurons located in the pedal ganglion) immunoreact with the 1-antiserum only. All neurons of the system are immunonegative to the R15 antisera. The observations suggest that the neurons of the VD1/RPD2 system produce different sets of neuropeptides. A group of approximately 15 neurons (class B), scattered in the ganglia, immunostained with one or more of the antisera, but did not react with the cDNA probe in in situ hybridization.  相似文献   

13.
Primary charge separation within Photosystem II (PS II) is much slower (time constant 21 ps) than the equivalent step in the related reaction center (RC) found in purple bacteria ( 3 ps). In the case of the bacterial RC, replacement of a specific tyrosine residue within the M subunit (at position 210 in Rhodobacter sphaeroides), by a leucine residue slows down charge separation to 20 ps. Significantly the analogous residue in PS II, within the D2 polypeptide, is a leucine not a tyrosine (at position D2-205, Chlamydomonas reinhardtii numbering). Consequently, it has been postulated [Hastings et al. (1992) Biochemistry 31: 7638–7647] that the rate of electron transfer could be increased in PS II by replacing this leucine residue with tyrosine. We have tested this hypothesis by constructing the D2-Leu205Tyr mutant in the green alga, Chlamydomonas reinhardtii, through transformation of the chloroplast genome. Primary charge separation was examined in isolated PS II RCs by time-resolved optical spectroscopy and was found to occur with a time constant of 40 ps. We conclude that mutation of D2-Leu205 to Tyr does not increase the rate of charge separation in PS II. The slower kinetics of primary charge separation in wild type PS II are probably not due to a specific difference in primary structure compared with the bacterial RC but rather a consequence of the P680 singlet excited state being a shallower trap for excitation energy within the reaction center.  相似文献   

14.
4-O-Glycosylation of 2-azidoethyl 2,3,6-tri-O-benzyl-4-O-(2,3-di-O-benzyl-6-O-benzoyl--D-galactopyranosyl)--D-glucopyranoside with a disaccharide donor, 4-trichloroacetamidophenyl 4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl--D-galactopyranosyl)-1-thio-2-trichloroacetamido--D-galactopyranoside, in dichloromethane in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid resulted in a tetrasaccharide, 2-azidoethyl (2,3,4,6-tetra-O-acetyl--D-galactopyranosyl)-(1 3)-(4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido--D-galactopyranosyl)-(1 4)-(2,3-di-O-benzyl-6-O-benzoyl--D-galactopyranosyl)-(1 4)-2,3,6-tri-O-benzyl--D-glucopyranoside, in 69% yield. The complete removal of O-protecting groups in the tetrasaccharide, the replacement of N-trichloroacetyl by N-acetyl group, and the reduction of the aglycone azide group to amine led to the target aminoethyl glycoside of -D-Gal-(1 3)--D-GalNAc-(1 4)--D-Gal-(1 4)--D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of asialo-GM1 ganglioside in 72% overall yield. Selective 3-O-glycosylation of 2-azidoethyl 2,3,6-tri-O-benzyl-4-O-(2,6-di-O-benzyl--D-galactopyranosyl)--D-glucopyranoside with thioglycoside methyl (ethyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero--D-galacto-2-nonulopyranosyl)oate in acetonitrile in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid afforded 2-azidoethyl [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero--D-galacto-2-nonulopyranosyl)oate]-(2 3)-(2,6-di-O-benzyl--D-galactopyranosyl)-(1 4)-2,3,6-tri-O-benzyl--D-glucopyranoside, the selectively protected derivative of the oligosaccharide chain of GM3 ganglioside, in 79% yield. Its 4-O-glycosylation with a disaccharide glycosyl donor, (4-trichloroacetophenyl-4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl--D-galactopyranosyl) 1-thio-2-trichloroacetamido--D-galactopyranoside in dichloromethane in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid gave 2-azidoethyl (2,3,4,6-tetra-O-acetyl--D-galactopyranosyl)-(1 3)-(4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido--D-galactopyranosyl)-(1 4)-{[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero--D-galacto-2-nonulopyranosyl)onate]-(2 3)}-(2,6-di-O-benzyl--D-galactopyranosyl)-(1 4)-2,3,6-tri-O-benzyl--D-glucopyranoside in 85% yield. The resulting pentasaccharide was O-deprotected, its N-trichloroacetyl group was replaced by N-acetyl group, and the aglycone azide group was reduced to afford in 85% overall yield aminoethyl glycoside of -D-Gal-(1 3)--D-GalNAc-(1 4)-[-D-Neu5Ac-(2 3)]--D-Gal-(1 4)--D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of GM1 ganglioside.  相似文献   

15.
Methanobacterium thermoautotrophicum was grown in continuous culture in a fermenter gassed with H2 and CO2 as sole carbon and energy sources, and in a medium which contained either NH4Cl or gaseous N2 as nitrogen source. Growth was possible with N2. Steady states were obtained at various gas flow rates with NH4Cl and with and the maintenance coefficient varied with the gas input and with the nitrogen source. Growth of Methanococcus thermolithotrophicus in continuous culture in a fermenter gassed with H2, CO2 as nitrogen, carbon and energy sources was also examined.Abbreviations molecular growth yield (g dry weight of cells per mol of CH4 evolved) - growth rate (h-1) - D dilution rate (h-1) - rate (h-1); relation of Neijssel and Tempest and of Stouthamer and Bettenhaussen - energy  相似文献   

16.
The synthesis, X-ray structure, electronic structure, bonding, photoluminescence, spectroscopic property and characterization of an indium(III) complex, [In(Hbsac)3(phen)] (1) (H2bsac = 5-bromo-salicylic acid, and phen = 1,10-phenanthroline) are presented. Complex 1 is octacoordinate and carboxylate chelating, being novel and rarely reported for main group complexes. The electronic structure, bonding and the charge transfer properties of light excitation and light emission are discussed in detail using first-principles theory, including partial density of states (PDOSs), crystal orbital overlap population (COOP), the density functional theory (DFT/TDDFT) analysis schemes. The charge transfer is mainly π → π intraligand charge transfer transition (ILCT) for excitation, and π → π ligand-to-ligand charge transfer transition (LL′CT) for emission in nature.  相似文献   

17.
The present study contributes to the problem of the dynamic structure of mitochondrial F1-ATPase and the functional interrelation of so-called tight nucleotide binding sites. Nucleotide analogs are used as a tool to differentiate two distinct functional states of the membrane-bound enzyme, proposed to reflect corresponding conformational states; they reveal F1-ATPase as a dual-state enzyme: ATP-synthetase, and ATP-hydrolase. The analogs used are 3-naphthoyl esters of AD(T)P, and 2(3)-O-trinitrophenyl ethers of AD(T)P. Both types of analogs act inversely to each other with respect to their relative effects on oxidative phosphorylation and on ATPase in submitochondrial vesicles. The respective ratios ofK i versus both processes are 250/1 compared to 1/170. It is also shown that in the presence of the inhibitory 3-esters oxidative phosphorylation deviates from linear kinetics and that these inhibitors induce a lag time of oxidative phosphorylation depending on the initial pattern of nucleotides available to energized submitochondrial vesicles. The duration of the lag time coincides with the time course of displacement of the analog from a tight binding site. The conclusions of the study are: (a) the catalytic sites of F1-ATP-synthetase are not operating independently from each other; they rather interact in a cooperative manner; (b) F1-ATPase as a dual-state enzyme exhibits highly selective responses to tight binding of nucleotides or analogs in its energized (membrane-bound) state versus its nonenergized state, respectively.Abbreviations used: N-AD(T)P, 3-O-naphthoyl(1)-AD(T)P; DMAN-AD(T)P, 3-O-(5-dimethylaminonaphthoyl(1))-AD(T)P, also termed F-AD(T)P in previous papers because of its fluorescence; TNP-AD(T)P, 2(3)-O-(2,4,6-trinitrophenyl)-AD(T)P; FCCP,p-trifluoromethoxycarbonylcyanide phenylhydrazone.  相似文献   

18.
Effects of elevated CO2 (700 L L–1) and a control (350 L L–1 CO2) on the productivity of a 3-year-old ryegrass/white clover pasture, and on soil biochemical properties, were investigated with turves of a Typic Endoaquept soil in growth chambers. Temperature treatments corresponding to average winter, spring, and summer conditions in the field were applied consecutively to all of the turves. An additional treatment, at 700 L L–1 CO2 and a temperature 6°C higher throughout than in the other treatments, was included.Under the same temperature conditions, overall herbage yields in the 700 L L–1 CO2 treatment were ca. 7% greater than in the control at the end of the summer period. Root mass (to ca 25 cm depth) in the 700 L L–1 CO2 treatment was then about 50% greater than in the control, but in the 700 L L–1 CO2+6°C treatment it was 6% lower than in the control. Based on decomposition results, herbage from the 700 L L–1+6°C treatment probably contained the highest proportion of readily decomposable components.Elevated CO2 had no consistent effect on soil total C and N, microbial C and N, or extractable C concentrations in any of the treatments. Under the same temperature conditions, it did, however, enhance soil respiration (CO2-C production) and invertase activity. The effects of elevated CO2 on rates of net N mineralization were less distinct, and the apparent availability of N for the sward was not affected. Under elevated CO2, soil in the higher-temperature treatment had a higher microbial C:N ratio; it also had a greater potential to degrade plant materials.Data interpretation was complicated by soil spatial variability and the moderately high background levels of organic matter and biochemical properties that are typical of New Zealand pasture soils. More rapid cycling of C under CO2 enrichment is, nevertheless, indicated. Futher long-term experiments are required to determine the overall effect of elevated CO2 on the soil C balance.  相似文献   

19.
A setup for generating the Stokes Raman lines of benzene (556, 588 and 624 nm, 50 ps) by the use of the second harmonic of a Nd: YLF regenerative amplifier system (527 nm, 70 ps, 1 kHz) has been built. This was then used to detect, for the first time, the picosecond Raman spectrum of a carotenoid bound to an isolated light-harvesting complex of a photosynthetic bacterium. The 527 and 588 nm pulses have been used, respectively, for pumping and probing (delay 0 ps) the S1 and T1 states of okenone which is bound to both the isolated B830 LH2 complex and the chromatophores fromChromatium purpuratum BN 5500. Comparison of the above spectra with the S1 and T1 Raman spectra of all-trans-okenone, free inn-hexane solution, shows that only the T1 state is detected with the LH2 complex, and that both the S1 and T1 states are detected with the chromatophores. The results indicate that in the chromatophores there are at least two types of S1 carotenoids with different lifetimes, i.e., one in the LH2 complex which is too short-lived to be detected, most probably due to efficient energy transfer to bacteriochlorophyll, and the other in either the reaction center or the LH1 complex which is long-lived enough to be pumped and probed by 50 70 ps pulses. The results also indicate that at least two of the actively light-harvesting carotenoid molecules are in close connection in the isolated LH2 complex since the T1 state is generated through singlet homofission within the short S1 lifetime.  相似文献   

20.
Han Bao  Keisuke Kawakami  Jian-Ren Shen 《BBA》2008,1777(9):1109-1115
In intact PSII, both the secondary electron donor (TyrZ) and side-path electron donors (Car/ChlZ/Cytb559) can be oxidized by P680+ at cryogenic temperatures. In this paper, the effects of acceptor side, especially the redox state of the non-heme iron, on the donor side electron transfer induced by visible light at cryogenic temperatures were studied by EPR spectroscopy. We found that the formation and decay of the S1TyrZ EPR signal were independent of the treatment of K3Fe(CN)6, whereas formation and decay of the Car+/ChlZ+ EPR signal correlated with the reduction and recovery of the Fe3+ EPR signal of the non-heme iron in K3Fe(CN)6 pre-treated PSII, respectively. Based on the observed correlation between Car/ChlZ oxidation and Fe3+ reduction, the oxidation of non-heme iron by K3Fe(CN)6 at 0 °C was quantified, which showed that around 50-60% fractions of the reaction centers gave rise to the Fe3+ EPR signal. In addition, we found that the presence of phenyl-p-benzoquinone significantly enhanced the yield of TyrZ oxidation. These results indicate that the electron transfer at the donor side can be significantly modified by changes at the acceptor side, and indicate that two types of reaction centers are present in intact PSII, namely, one contains unoxidizable non-heme iron and another one contains oxidizable non-heme iron. TyrZ oxidation and side-path reaction occur separately in these two types of reaction centers, instead of competition with each other in the same reaction centers. In addition, our results show that the non-heme iron has different properties in active and inactive PSII. The oxidation of non-heme iron by K3Fe(CN)6 takes place only in inactive PSII, which implies that the Fe3+ state is probably not the intermediate species for the turnover of quinone reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号