首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcyclin is a homodimeric protein belonging to the S100 subfamily of EF-hand Ca(2+)-binding proteins, which function in Ca(2+) signal transduction processes. A refined high-resolution solution structure of Ca(2+)-bound rabbit calcyclin has been determined by heteronuclear solution NMR. In order to understand the Ca(2+)-induced structural changes in S100 proteins, in-depth comparative structural analyses were used to compare the apo and Ca(2+)-bound states of calcyclin, the closely related S100B, and the prototypical Ca(2+)-sensor protein calmodulin. Upon Ca(2+) binding, the position and orientation of helix III in the second EF-hand is altered, whereas the rest of the protein, including the dimer interface, remains virtually unchanged. This Ca(2+)-induced structural change is much less drastic than the "opening" of the globular EF-hand domains that occurs in classical Ca(2+) sensors, such as calmodulin. Using homology models of calcyclin based on S100B, a binding site in calcyclin has been proposed for the N-terminal domain of annexin XI and the C-terminal domain of the neuronal calcyclin-binding protein. The structural basis for the specificity of S100 proteins is discussed in terms of the variation in sequence of critical contact residues in the common S100 target-binding site.  相似文献   

2.
The homodimeric S100 protein calcyclin has been studied in the apo state by two-dimensional 1H NMR spectroscopy. Using a combination of scalar correlation and NOE experiments, sequence-specific 1H NMR assignments were obtained for all but one backbone and > 90% of the side-chain resonances. To our knowledge, the 2 x 90 residue (20 kDa) calcyclin dimer is the largest protein system for which such complete assignments have been made by purely homonuclear methods. Sequential and medium-range NOEs and slowly exchanging backbone amide protons identified directly the four helices and the short antiparallel beta-type interaction between the two binding loops that comprise each subunit of the dimer. Further analysis of NOEs enabled the unambiguous assignment of 556 intrasubunit distance constraints, 24 intrasubunit hydrogen bonding constraints, and 2 x 26 intersubunit distance constraints. The conformation of the monomer subunit was refined by distance geometry and restrained molecular dynamics calculations using the intrasubunit constraints only. Calculation of the dimer structure starting from this conformational ensemble has been reported elsewhere. The extent of structural homology among the apo calcyclin subunit, the monomer subunit of apo S100 beta, and monomeric apo calbindin D9k has been examined in detail by comparing 1H NMR chemical shifts and secondary structures. This analysis was extended to a comprehensive comparison of the three-dimensional structures of the calcyclin monomer subunit and calbindin D9k, which revealed greater similarity in the packing of their hydrophobic cores than was anticipated previously. Together, these results support the hypothesis that all members of the S100 family have similar core structures and similar modes of dimerization. Analysis of the amphiphilicity of Helix IV is used to explain why calbindin D9k is monomeric, but full-length S100 proteins form homodimers.  相似文献   

3.
The relative orientations of adjacent structural elements without many well-defined NOE contacts between them are typically poorly defined in NMR structures. For apo-S100B(betabeta) and the structurally homologous protein calcyclin, the solution structures determined by conventional NMR exhibited considerable differences and made it impossible to draw unambiguous conclusions regarding the Ca2+-induced conformational change required for target protein binding. The structure of rat apo-S100B(betabeta) was recalculated using a large number of constraints derived from dipolar couplings that were measured in a dilute liquid crystalline phase. The dipolar couplings orient bond vectors relative to a single-axis system, and thereby remove much of the uncertainty in NOE-based structures. The structure of apo-S100B(betabeta) indicates a minimal change in the first, pseudo-EF-hand Ca2+ binding site, but a large reorientation of helix 3 in the second, classical EF-hand upon Ca2+ binding.  相似文献   

4.
S100B is one of the best-characterized members of the calcium-signaling S100 protein family. Most S100 proteins are dimeric, with each monomer containing two EF-hand calcium-binding sites (EF1, EF2). S100B and other S100 proteins respond to calcium increases in the cell by coordinating calcium and undergoing a conformational change that allows them to interact with a variety of cellular targets. Although several three dimensional structures of S100 proteins are available in the calcium-free (apo-) state it has been observed that these structures appear to adopt a wide range of conformations in the EF2 site with respect to the positioning of helix III, the helix that undergoes the most dramatic calcium-induced conformational change. In this work, we have determined the structure of human apo-S100B at 10 degrees C to examine whether temperature might be responsible for these structural differences. Further, we have used this data, and other available apo-S100 structures, to show that despite the range of interhelical angles adopted in the apo-S100 structures, normal Gaussian distributions about the mean angles found in the structure of human apo-S100B are observed. This finding, only obvious from the analysis of all available apo-S100 proteins, provides direct structural evidence that helix III is a loosely packed helix. This is likely a necessary functional property of the S100 proteins that facilitates the calcium-induced conformational change of helix III. In contrast, the calcium-bound structures of the S100 proteins show significantly smaller variability in the interhelical angles. This shows that calcium binding to the S100 proteins causes not only a conformational change but results in a tighter distribution of helices within the EF2 calcium binding site required for target protein interactions.  相似文献   

5.
S100A1 is an EF-hand-containing Ca(2+)-binding protein that undergoes a conformational change upon binding calcium as is necessary to interact with protein targets and initiate a biological response. To better understand how calcium influences the structure and function of S100A1, the three-dimensional structure of calcium-bound S100A1 was determined by multidimensional NMR spectroscopy and compared to the previously determined structure of apo. In total, 3354 nuclear Overhauser effect-derived distance constraints, 240 dihedral constraints, 160 hydrogen bond constraints, and 362 residual dipolar coupling restraints derived from a series of two-dimensional, three-dimensional, and four-dimensional NMR experiments were used in its structure determination (>21 constraints per residue). As with other dimeric S100 proteins, S100A1 is a symmetric homodimer with helices 1, 1', 4, and 4' associating into an X-type four-helix bundle at the dimer interface. Within each subunit there are four alpha-helices and a short antiparallel beta-sheet typical of two helix-loop-helix EF-hand calcium-binding domains. The addition of calcium did not change the interhelical angle of helices 1 and 2 in the pseudo EF-hand significantly; however, there was a large reorientation of helix 3 in the typical EF-hand. The large conformational change exposes a hydrophobic cleft, defined by residues in the hinge region, the C terminus, and regions of helix 3, which are important for the interaction between S100A1 and a peptide (TRTK-12) derived from the actin-capping protein CapZ.  相似文献   

6.
Mts1 is a member of the S100 family of Ca2+-binding proteins and is implicated in promoting tumor progression and metastasis. To better understand the structure-function relationships of this protein and to begin characterizing its Ca2+-dependent interaction with protein binding targets, the three-dimensional structure of mts1 was determined in the apo state by NMR spectroscopy. As with other S100 protein family members, mts1 is a symmetric homodimer held together by noncovalent interactions between two helices from each subunit (helices 1, 4, 1', and 4') to form an X-type four-helix bundle. Each subunit of mts1 has two EF-hand Ca2+-binding domains: a pseudo-EF-hand (or S100-hand) and a typical EF-hand that are brought into proximity by a small two-stranded antiparallel beta-sheet. The S100-hand is formed by helices 1 and 2, and is similar in conformation to other members of the S100 family. In the typical EF-hand, the position of helix 3 is similar to that of another member of the S100 protein family, calcyclin (S100A6), and less like that of other S100 family members for which three-dimensional structures are available in the calcium-free state (e.g., S100B and S100A1). The differences in the position of helix 3 in the apo state of these four S100 proteins are likely due to variations in the amino acid sequence in the C-terminus of helix 4 and in loop 2 (the hinge region) and could potentially be used to subclassify the S100 protein family.  相似文献   

7.
S100A1, a member of the S100 protein family, is an EF-hand containing Ca(2+)-binding protein (93 residues per subunit) with noncovalent interactions at its dimer interface. Each subunit of S100A1 has four alpha-helices and a small antiparallel beta-sheet consistent with two helix-loop-helix calcium-binding domains [Baldiserri et al. (1999) J. Biomol. NMR 14, 87-88]. In this study, the three-dimensional structure of reduced apo-S100A1 was determined by NMR spectroscopy using a total of 2220 NOE distance constraints, 258 dihedral angle constraints, and 168 backbone hydrogen bond constraints derived from a series of 2D, 3D, and 4D NMR experiments. The final structure was found to be globular and compact with the four helices in each subunit aligning to form a unicornate-type four-helix bundle. Intermolecular NOE correlations were observed between residues in helices 1 and 4 from one subunit to residues in helices 1' and 4' of the other subunit, respectively, consistent with the antiparallel alignment of the two subunits to form a symmetric X-type four-helix bundle as found for other members of the S100 protein family. Because of the similarity of the S100A1 dimer interface to that found for S100B, it was possible to calculate a model of the S100A1/B heterodimer. This model is consistent with a number of NMR chemical shift changes observed when S100A1 is titrated into a sample of (15)N-labeled S100B. Helix 3 (and 3') of S100A1 was found to have an interhelical angle of -150 degrees with helix 4 (and 4') in the apo state. This crossing angle is quite different (>50 degrees ) from that typically found in other EF-hand containing proteins such as apocalmodulin and apotroponin C but more similar to apo-S100B, which has an interhelical angle of -166 degrees. As with S100B, it is likely that the second EF-hand of apo-S100A1 reorients dramatically upon the addition of Ca(2+), which can explain the Ca(2+) dependence that S100A1 has for binding several of its biological targets.  相似文献   

8.
S100A5 is a calcium binding protein of the S100 family, with one canonical and one S100-specific EF-hand motif per subunit. Although its function is still unknown, it has recently been reported to be one of the S100 proteins able to interact with the receptor for advanced glycation end products. The homodimeric solution structures of S100A5 in both the apo and the calcium(II)-loaded forms have been obtained, and show a conformational rearrangement upon calcium binding. This rearrangement involves, in particular, the hinge loop connecting the N-terminal and the C-terminal EF-hand domains, the reorientation of helix III with respect to helix IV, as common to several S100 proteins, and the elongation of helix IV. The details of the structural changes are important because they must be related to the different functions, still largely unknown, of the different members of the S100 family. For the first time for a full-length S100 protein, relaxation measurements were performed on both the apo and the calcium-bound forms. A quite large mobility was observed in the hinge loop, which is not quenched in the calcium form. The structural differences resulting upon calcium binding change the global shape and the distribution of hydrophobic and charged residues of the S100A5 homodimer in a modest but significantly different manner with respect to the closest homologues S100A4 and S100A6.  相似文献   

9.
H Gouda  H Torigoe  A Saito  M Sato  Y Arata  I Shimada 《Biochemistry》1992,31(40):9665-9672
The three-dimensional solution structure of the recombinant B domain (FB) of staphylococcal protein A, which specifically binds to the Fc portion of immunoglobulin G, was determined by NMR spectroscopy and hybrid distance geometry-dynamical simulated annealing calculations. On the basis of 692 experimental constraints including 587 distance constraints obtained from the nuclear Overhauser effect (NOE), 57 torsion angle (phi, chi 1) constraints, and 48 constraints associated with 24 hydrogen bonds, a total of 10 converged structures of FB were obtained. The atomic root mean square difference among the 10 converged structures is 0.52 +/- 0.10 A for the backbone atoms and 0.98 +/- 0.08 A for all heavy atoms (excluding the N-terminal segment from Thr1 to Glu9 and the C-terminal segment from Gln56 to Ala60, which are partially disordered). FB is composed of a bundle of three alpha-helices, i.e., helix I (Gln10-His19), helix II (Glu25-Asp37), and helix III (Ser42-Ala55). Helix II and helix III are antiparallel to each other, whereas the long axis of helix I is tilted at an angle of about 30 degrees with respect to those of helix II and helix III. Most of the hydrophobic residues of FB are buried in the interior of the bundle of the three helices. It is suggested that the buried hydrophobic residues form a hydrophobic core, contributing to the stability of FB.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Wilder PT  Varney KM  Weiss MB  Gitti RK  Weber DJ 《Biochemistry》2005,44(15):5690-5702
The EF-hand calcium-binding protein S100B also binds one zinc ion per subunit with a relatively high affinity (K(d) approximately 90 nM) [Wilder et al., (2003) Biochemistry 42, 13410-13421]. In this study, the structural characterization of zinc binding to calcium-loaded S100B was examined using high-resolution NMR techniques, including structural characterization of this complex in solution at atomic resolution. As with other S100 protein structures, the quaternary structure of Zn(2+)-Ca(2+)-bound S100B was found to be dimeric with helices H1, H1', H4, and H4' forming an X-type four-helix bundle at the dimer interface. NMR data together with mutational analyses are consistent with Zn(2+) coordination arising from His-15 and His-25 of one S100B subunit and from His-85 and Glu-89 of the other subunit. The addition of Zn(2+) was also found to extend helices H4 and H4' three to four residues similar to what was previously observed with the binding of target proteins to S100B. Furthermore, a kink in helix 4 was observed in Zn(2+)-Ca(2+)-bound S100B that is not in Ca(2+)-bound S100B. These structural changes upon Zn(2+)-binding could explain the 5-fold increase in affinity that Zn(2+)-Ca(2+)-bound S100B has for peptide targets such as the TRTK peptide versus Ca(2+)-bound S100B. There are also changes in the relative positioning of the two EF-hand calcium-binding domains and the respective helices comprising these EF-hands. Changes in conformation such as these could contribute to the order of magnitude higher affinity that S100B has for calcium in the presence of Zn(2+).  相似文献   

11.
We present three-dimensional structural models for a DNA oligomer containing a bulged guanosine based on proton NMR data and energy minimization computations. The nonexchangeable proton resonances of the duplex 5'd(GATGGGCAG).d(CTGCGCCATC) are assigned by nuclear Overhauser effect spectroscopy (NOESY) and correlated spectroscopy connectivities, and the NMR spectrum is compared with that of a regular 8-mer of similar sequence, 5'd(GATGGCAG).d(CTGCCATC). Experimental proton-proton distances are obtained from NOESY spectra acquired with mixing times of 100, 150, and 200 ms. A refined three-dimensional structure for the bulge-containing duplex is calculated from regular B DNA starting coordinates by using the AMBER molecular mechanics program [Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., & Weiner, P. (1984) J. Am. Chem. Soc. 106, 765-784]. We compare structures obtained by building the helix in three and four base pair increments with structures obtained by direct minimization of the entire nine base sequence, with and without experimental distance constraints. The general features of all the calculated structures are very similar. The helix is of the B family, with the extra guanine stacked into the helix, and the helix axis is bent by 18-23 degrees, in agreement with gel mobility data for bulge-containing sequences [Rice, J. A. (1987) Ph.D. Thesis, Yale University].  相似文献   

12.
The Alzheimer-linked neural protein S100B is a signaling molecule shown to control the assembly of intermediate filament proteins in a calcium-sensitive manner. Upon binding calcium, a conformational change occurs in S100B exposing a hydrophobic surface for target protein interactions. The synthetic peptide TRTK-12 (TRTKIDWNKILS), derived from random bacteriophage library screening, bears sequence similarity to several intermediate filament proteins and has the highest calcium-dependent affinity of any target molecule for S100B to date (K(d) <1 microm). In this work, the three-dimensional structure of the Ca(2+)-S100B-TRTK-12 complex has been determined by NMR spectroscopy. The structure reveals an extended, contiguous hydrophobic surface is formed on Ca(2+)-S100B for target interaction. The TRTK-12 peptide adopts a coiled structure that fits into a portion of this surface, anchored at Trp(7), and interacts with multiple hydrophobic contacts in helices III and IV of Ca(2+)-S100B. This interaction is strikingly different from the alpha-helical structures found for other S100 target peptides. By using the TRTK-12 interaction as a guide, in combination with other available S100 target structures, a recognition site on helix I is identified that may act in concert with the TRTK-12-binding site from helices III and IV. This would provide a larger, more complex site to interact with full-length target proteins and would account for the promiscuity observed for S100B target protein interactions.  相似文献   

13.
S100B and S100A10 are dimeric, EF‐hand proteins. S100B undergoes a calcium‐dependant conformational change allowing it to interact with a short contiguous sequence from the actin‐capping protein CapZ (TRTK12). S100A10 does not bind calcium but is able to recruit the N‐terminus of annexin A2 important for membrane fusion events, and to form larger multiprotein complexes such as that with the cation channel proteins TRPV5/6. In this work, we have designed, expressed, purified, and characterized two S100‐target peptide hybrid proteins comprised of S100A10 and S100B linked in tandem to annexin A2 (residues 1–15) and CapZ (TRTK12), respectively. Different protease cleavage sites (tobacco etch virus, PreScission) were incorporated into the linkers of the hybrid proteins. In situ proteolytic cleavage monitored by 1H‐15N HSQC spectra showed the linker did not perturb the structures of the S100A10‐annexin A2 or S100B‐TRTK12 complexes. Furthermore, the analysis of the chemical shift assignments (1H, 15N, and 13C) showed that residues T102‐S108 of annexin A2 formed a well‐defined α‐helix in the S100A10 hybrid while the TRTK12 region was unstructured at the N‐terminus with a single turn of α‐helix from D108‐K111 in the S100B hybrid protein. The two S100 hybrid proteins provide a simple yet extremely efficient method for obtaining high yields of intact S100 target peptides. Since cleavage of the S100 hybrid protein is not necessary for structural characterization, this approach may be useful as a scaffold for larger S100 complexes.  相似文献   

14.
The three-dimensional structure in aqueous solution of recombinant (15)N labeled RicC3, a 2S albumin protein from the seeds of castor bean (Ricinus communis), has been determined by NMR methods. The computed structures were based on 1564 upper limit distance constraints derived from NOE cross-correlation intensities measured in the 2D-NOESY and 3D-HSQC-NOESY experiments, 70 phi torsion angle constraints obtained from (3)J(HNH)(alpha) couplings measured in the HNHA experiment, and 30 psi torsion angle constraints derived from (3)J(H)(alpha)(Ni+1) couplings measured in the HNHB experiment. The computed structures showed a RMSD radius of 0.64 A for the structural core. The resulting structure consists of five amphipatic helices arranged in a right-handed super helix, a folding motif first observed in nonspecific lipid transfer proteins. Different than the latter, RicC3 does have not an internal cavity, a fact that can be related to the exchange in the pairing of disulfide bridges in the segment.CXC. Previous attempts to determine high resolution structures of a 2S albumin protein by either X-ray crystallography or NMR methods failed because of the heterogeneity of the protein prepared from natural sources. Both 2S albumins and nonspecific lipid transfer proteins belong to the prolamine superfamily, some of whose members are food allergens. The solution structure for recombinant RicC3 determined here is a suitable representative structure for the broad family of seed 2S albumin proteins, which may help to establish meaningful relationships between structure and allergenicity. RicC3 is also the peptidic component of the immunomodulator Inmunoferon, a widely used pharmaceutical product, and its structure is expected to help understand its pharmaceutical activity.  相似文献   

15.
The EF-hand calcium-binding protein S100B has been shown to interact in vitro in a calcium-sensitive manner with many substrates. These potential S100B target proteins have been screened for the preservation of a previously identified consensus sequence across species. The results were compared to known structural and in vitro properties of the proteins to rationalize choices for potential binding partners. Our approach uncovered four oligomeric proteins tubulin (alpha and beta), glial fibrillary acidic protein (GFAP), desmin, and vimentin that have conserved regions matching the consensus sequence. In the type III intermediate filament proteins (GFAP, vimentin, and desmin), this region corresponds to a portion of a coiled-coil (helix 2A), the structural element responsible for their assembly. In tubulin, the sequence matches correspond to regions of alpha and beta tubulin found at the alpha beta tubulin interface. In both cases, these consensus sequence matches provide a logical explanation for in vitro observations that S100B is able to inhibit oligomerization of these proteins.  相似文献   

16.
The NMR assignments of backbone 1H, 13C,and 15N resonances for calcium-bound human S100B werecompleted via heteronuclear multidimensional NMR spectroscopic techniques.NOE correlations, amide exchange, 3JHNHcoupling constants, and CSI analysis were used to identify the secondarystructure for Ca-S100B. The protein is comprised of four helices (helix I,Glu2-;Arg20; helix II,Glu31-;Asn38; helix III,Gln50-;Thr59; helix IV,Phe70-;Phe87), three loops (loop I,Glu21-;His25; loop II,Glu39-;Glu49; loop III,Leu60-;Gly66), and two -strands(strand I, Lys26>-;Lys28; strand II,Glu67-;Asp69) which form a shortantiparallel -sheet. Helix IV is extended by approximately one turnwhen compared to the secondary structures of apo-rat [Drohat et al. (1996)Biochemistry, 35, 11577-;11588] and bovine S100B [Kilby et al. (1996)Structure, 4, 1041-;1052]. In addition, several residues outside thecalcium-binding loops in S100B undergo significant backbone chemical shiftchanges upon binding calcium which are not observed in the related proteincalbindin D9k. Together these observations support previoussite-directed mutagenesis, absorption spectroscopy, and cysteine chemicalreactivity experiments, suggesting that the C-terminus in Ca-S100B isimportant for interactions with other proteins.  相似文献   

17.
The solution NMR structure is reported for Ca(2+)-loaded S100B bound to a 12-residue peptide, TRTK-12, from the actin capping protein CapZ (alpha1 or alpha2 subunit, residues 265-276: TRTKIDWNKILS). This peptide was discovered by Dimlich and co-workers by screening a bacteriophage random peptide display library, and it matches exactly the consensus S100B binding sequence ((K/R)(L/I)XWXXIL). As with other S100B target proteins, a calcium-dependent conformational change in S100B is required for TRTK-12 binding. The TRTK-12 peptide is an amphipathic helix (residues W7 to S12) in the S100B-TRTK complex, and helix 4 of S100B is extended by three or four residues upon peptide binding. However, helical TRTK-12 in the S100B-peptide complex is uniquely oriented when compared to the three-dimensional structures of other S100-peptide complexes. The three-dimensional structure of the S100B-TRTK peptide complex illustrates that residues in the S100B binding consensus sequence (K4, I5, W7, I10, L11) are all involved in the S100B-peptide interface, which can explain its orientation in the S100B binding pocket and its relatively high binding affinity. A comparison of the S100B-TRTK peptide structure to the structures of apo- and Ca(2+)-bound S100B illustrates that the binding site of TRTK-12 is buried in apo-S100B, but is exposed in Ca(2+)-bound S100B as necessary to bind the TRTK-12 peptide.  相似文献   

18.
We report for the first time, oriented-sample solid-state NMR experiments, specifically polarization inversion spin exchange at the magic angle (PISEMA) and 1H-15N heteronuclear chemical shift correlation (HETCOR), applied to an integral seven-transmembrane protein, bacteriorhodopsin (bR), in natural membranes. The spectra of [15N]Met-bR revealed clearly distinguishable signals from the helical and loop regions. By deconvolution of the helix resonances, it was possible to establish constraints for some helix tilt angles. It was estimated that the extracellular section of helix B has a tilt of less than 5 degrees from the membrane normal, while the tilt of helix A was estimated to be 18-22 degrees , both of which are in agreement with most crystal structures. Comparison of the experimental PISEMA spectrum with simulated spectra based on crystal structures showed that PISEMA and HETCOR experiments are extremely sensitive to the polytopic protein structure, and the solid-state NMR spectra for membrane-embedded bR matched most favorably with the recent 1FBB electron crystallography structure. These results suggest that this approach has the potential to yield structural and orientational constraints for large integral polytopic proteins whilst intercalated and functionally competent in a natural membrane.  相似文献   

19.
Three-dimensional structures of only a handful of membrane proteins have been solved, in contrast to the thousands of structures of water-soluble proteins. Difficulties in crystallization have inhibited the determination of the three-dimensional structure of membrane proteins by x-ray crystallography and have spotlighted the critical need for alternative approaches to membrane protein structure. A new approach to the three-dimensional structure of membrane proteins has been developed and tested on the integral membrane protein, bacteriorhodopsin, the crystal structure of which had previously been determined. An overlapping series of 13 peptides, spanning the entire sequence of bacteriorhodopsin, was synthesized, and the structures of these peptides were determined by NMR in dimethylsulfoxide solution. These structures were assembled into a three-dimensional construct by superimposing the overlapping sequences at the ends of each peptide. Onto this construct were written all the distance and angle constraints obtained from the individual solution structures along with a limited number of experimental inter-helical distance constraints, and the construct was subjected to simulated annealing. A three-dimensional structure, determined exclusively by the experimental constraints, emerged that was similar to the crystal structure of this protein. This result suggests an alternative approach to the acquisition of structural information for membrane proteins consisting of helical bundles.  相似文献   

20.
Koch M  Fritz G 《The FEBS journal》2012,279(10):1799-1810
S100A2 is an EF-hand calcium ion (Ca(2+))-binding protein that activates the tumour suppressor p53. In order to understand the molecular mechanisms underlying the Ca(2+) -induced activation of S100A2, the structure of Ca(2+)-bound S100A2 was determined at 1.3 ? resolution by X-ray crystallography. The structure was compared with Ca(2+) -free S100A2 and with other S100 proteins. Binding of Ca(2+) to S100A2 induces small structural changes in the N-terminal EF-hand, but a large conformational change in the C-terminal EF-hand, reorienting helix III by approximately 90°. This movement is accompanied by the exposure of a hydrophobic cavity between helix III and helix IV that represents the target protein interaction site. This molecular reorganization is associated with the breaking and new formation of intramolecular hydrophobic contacts. The target binding site exhibits unique features; in particular, the hydrophobic cavity is larger than in other Ca(2+)-loaded S100 proteins. The structural data underline that the shape and size of the hydrophobic cavity are major determinants for target specificity of S100 proteins and suggest that the binding mode for S100A2 is different from that of other p53-interacting S100 proteins. Database Structural data are available in the Protein Data Bank database under the accession number 4DUQ  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号