首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

In S. cerevisiae, the mitotic exit network (MEN) proteins, including the Polo-like protein kinase Cdc5 and the protein phosphatase Cdc14, are required for exit from mitosis. In pre-anaphase cells, Cdc14 is sequestered to the nucleolus by Net1 as a part of the RENT complex. When cells are primed to exit mitosis, the RENT complex is disassembled and Cdc14 is released from the nucleolus.  相似文献   

2.
Budding yeast Cdc14 phosphatase plays essential roles in mitotic exit. Cdc14 is sequestered in the nucleolus by its inhibitor Net1/Cfi1 and is only released from the nucleolus during anaphase to inactivate mitotic CDK. It is believed that the mitotic exit network (MEN) is required for the release of Cdc14 from the nucleolus because liberation of Cdc14 by net1/cfi1 mutations bypasses the essential role of the MEN. But how the MEN residing at the spindle pole body (SPB) controls the association of Cdc14 with Net1/Cfi1 in the nucleolus is not yet understood. We found that Cdc14-5GFP was released from the nucleolus in the MEN mutants (tem1, cdc15, dbf2, and nud1), but not in the cdc5 cells during early anaphase. The Cdc14 liberation from the nucleolus was inhibited by the Mad2 checkpoint and by the Bub2 checkpoint in a different manner when microtubule organization was disrupted. We observed Cdc14-5GFP at the SPB in addition to the nucleolus. The SPB localization of Cdc14 was significantly affected by the MEN mutations and the bub2 mutation. We conclude that Cdc14 is released from the nucleolus at the onset of anaphase in a CDC5-dependent manner and that MEN factors possibly regulate Cdc14 release from the SPB.  相似文献   

3.
The Saccharomyces cerevisiae Cdc14 protein phosphatase and Dbf2 protein kinase have been implicated to act during late M phase, but their functions are not known. We report here that CDC14 is a low-copy suppressor of the dbf2-2 mutation at 37° C. The kinase activity of Dbf2 accumulated at a high level, in vivo, during a cdc14 arrest and was also much higher in cdc14 mutant cells at the permissive temperature of growth, therefore in cycling mutant cells than in cycling wild-type cells. This correlated with the accumulation of the more slowly migrating form of Dbf2, previously shown to correspond to the hyperphosphorylated form of the protein. The finding that the dbf2-2 mutation could be rescued following overproduction of catalytically inactive forms of Cdc14 suggested that the control of Dbf2 activity by Cdc14 might be only indirect and independent of Cdc14 phosphatase activity. However, it was found that Cdc14 could form oligomers within the cell, thus leaving open the possibility that catalytically inactive Cdc14 might associate with wild-type Cdc14 and rescue dbf2-2 in a phosphatase-dependent manner. We confirmed that overexpression of CDC14 could rescue mutations in CDC15, which encodes another kinase also implicated to act in late M phase. Cells of a cdc15-2dbf2-2 double mutant died at temperatures much lower than did either single mutant, whereas there was only a slight additive phenotype in the cdc14-1 dbf2-2 and cdc14-1 cdc15-2 double mutant cells. Finally, functional association between Cdc14 and Dbf2 (and also Cdc15) was confirmed by the finding that the cdc14, dbf2 and cdc15 mutations could be partially rescued by the addition of 1.2 M sorbitol to the culture medium. Our data are the first to demonstrate a functional link between Cdc14 and Dbf2 based on both biochemical and genetic information. Received: 19 September 1997 / Accepted: 4 December 1997  相似文献   

4.
The mitotic exit network (MEN), a Ras-like signaling cascade, promotes the release of the protein phosphatase Cdc14 from the nucleolus and is essential for cells to exit from mitosis in Saccharomyces cerevisiae. We have characterized the functional domains of one of the MEN components, the protein kinase Cdc15, and investigated the role of these domains in mitotic exit. We show that a region adjacent to Cdc15's kinase domain is required for self-association and for binding to spindle pole bodies and that this domain is essential for CDC15 function. Furthermore, we find that overexpression of CDC15 lacking the C-terminal 224 amino acids results in hyperactivation of MEN and premature release of Cdc14 from the nucleolus, suggesting that this domain within Cdc15 functions to inhibit MEN signaling. Our findings indicate that multiple modes of MEN regulation occur through the protein kinase Cdc15.  相似文献   

5.
In budding yeast, the protein phosphatase Cdc14 controls exit from mitosis. Its activity is regulated by a competitive inhibitor Cfi1/Net1, which binds to and sequesters Cdc14 in the nucleolus. During anaphase, Cdc14 is released from its inhibitor by the action of two regulatory networks. The Cdc Fourteen Early Anaphase Release (FEAR) network initiates Cdc14 release from Cfi1/Net1 during early anaphase, and the Mitotic Exit Network (MEN) promotes Cdc14 release during late anaphase. Here, we investigate the relationship among FEAR network components and propose an order in which they function to promote Cdc14 release from the nucleolus. Furthermore, we examine the role of the protein kinase Cdc5, which is a component of both the FEAR network and the MEN, in Cdc14 release from the nucleolus. We find that overexpression of CDC5 led to Cdc14 release from the nucleolus in S phase-arrested cells, which correlated with the appearance of phosphorylated forms of Cdc14 and Cfi1/Net1. Cdc5 promotes Cdc14 phosphorylation and, by stimulating the MEN, Cfi1/Net1 phosphorylation. Furthermore, we suggest that Cdc14 release from the nucleolus only occurs when Cdc14 and Cfi1/Net1 are both phosphorylated.  相似文献   

6.
LTE1 encodes a homolog of GDP-GTP exchange factors for the Ras superfamily and is required at low temperatures for cell cycle progression at the stage of the termination of M phase inSaccharomyces cerevisiae. We isolated extragenic suppressors which suppress the cold sensitivity oflte1 cells and confer a temperature-sensitive phenotype on cells. Cells mutant for the suppressor alone were arrested at telophase at non-permissive temperatures and the terminal phenotype was almost identical to that oflte1 cells at non-permissive temperatures. Genetic analysis revealed that the suppressor is allelic toCDC15, which encodes a protein kinase. Thecdc15 mutations thus isolated were recessive with regard to the temperature-sensitive phenotype and were dominant with respect to suppression oflte1. We isolatedCDC14 as a low-copy-number suppressor ofcdc15-rlt1.CDC14 encodes a phosphotyrosine phosphatase (PTPase) and is essential for termination of M phase. An extra copy ofCDC14 suppressed the temperature sensitivity ofcdc15-rlt1 cells, but not that ofcdc15-1 cells. In addition, some residues that are essential for the Cdc14 PTPase activity were found to be non-essential for the suppression. These results strongly indicate that Cdc14 possesses dual functions; PTPase activity is needed for one function but not for the other. We postulate that the cooperative action of Cdc14 and Cdc15 plays an essential role in the termination of M phase.  相似文献   

7.
Exit from mitosis in budding yeast is triggered by activation of the key mitotic phosphatase Cdc14. At anaphase onset, the protease separase and Zds1 promote the downregulation of PP2ACdc55 phosphatase, which facilitates Cdk1-dependent phosphorylation of Net1 and provides the first wave of Cdc14 activity. Once Cdk1 activity starts to decline, the mitotic exit network (MEN) is activated to achieve full Cdc14 activation. Here we describe how the PP2ACdc55 phosphatase could act as a functional link between FEAR and MEN due to its action on Bfa1 and Mob1. We demonstrate that PP2ACdc55 regulates MEN activation by facilitating Cdc5- and Cdk1-dependent phosphorylation of Bfa1 and Mob1, respectively. Downregulation of PP2ACdc55 initiates MEN activity up to Cdc15 by Bfa1 inactivation. Surprisingly, the premature Bfa1 inactivation observed does not entail premature MEN activation, since an additional Cdk1-Clb2 inhibitory signal acting towards Dbf2-Mob1 activity restrains MEN activity until anaphase. In conclusion, we propose a clear picture of how PP2ACdc55 functions affect the regulation of various MEN components, contributing to mitotic exit.  相似文献   

8.
In budding yeast, three interdigitated pathways regulate mitotic exit (ME): mitotic cyclin–cyclin-dependent kinase (Cdk) inactivation; the Cdc14 early anaphase release (FEAR) network, including a nonproteolytic function of separase (Esp1); and the mitotic exit network (MEN) driven by interaction between the spindle pole body and the bud cortex. Here, we evaluate the contributions of these pathways to ME kinetics. Reducing Cdk activity is critical for ME, and the MEN contributes strongly to ME efficiency. Esp1 contributes to ME kinetics mainly through cohesin cleavage: the Esp1 requirement can be largely bypassed if cells are provided Esp1-independent means of separating sister chromatids. In the absence of Esp1 activity, we observed only a minor ME delay consistent with a FEAR defect. Esp1 overexpression drives ME in Cdc20-depleted cells arrested in metaphase. We have found that this activity of overexpressed Esp1 depended on spindle integrity and the MEN. We defined the first quantitative measure for Cdc14 release based on colocalization with the Net1 nucleolar anchor. This measure indicates efficient Cdc14 release upon MEN activation; release driven by Esp1 in the absence of microtubules was inefficient and incapable of driving ME. We also found a novel role for the MEN: activating Cdc14 nuclear export, even in the absence of Net1.  相似文献   

9.
In Saccharomyces cerevisiae exit from mitosis requires the Cdc14 phosphatase to reverse CDK-mediated phosphorylation. Cdc14 is released from the nucleolus by the Cdc14 early anaphase release (FEAR) and mitotic exit network (MEN) pathways. In meiosis, the FEAR pathway is essential for exit from anaphase I. The MEN component Cdc15 is required for the formation of mature spores. To analyze the role of Cdc15 during sporulation, a conditional mutant in which CDC15 expression was controlled by the CLB2 promoter was used. Cdc15-depleted cells proceeded normally through the meiotic divisions but were unable to properly disassemble meiosis II spindles. The morphology of the prospore membrane was aberrant and failed to capture the nuclear lobes. Cdc15 was not required for Cdc14 release from the nucleoli, but it was essential to maintain Cdc14 released and for its nucleo-cytoplasmic transport. However, cells carrying a CDC14 allele with defects in nuclear export (Cdc14-DeltaNES) were able to disassemble the spindle and to complete spore formation, suggesting that the Cdc14 nuclear export defect was not the cause of the phenotypes observed in cdc15 mutants.  相似文献   

10.
LTE1 encodes a homolog of GDP-GTP exchange factors for the Ras superfamily and is required at low temperatures for cell cycle progression at the stage of the termination of M phase inSaccharomyces cerevisiae. We isolated extragenic suppressors which suppress the cold sensitivity oflte1 cells and confer a temperature-sensitive phenotype on cells. Cells mutant for the suppressor alone were arrested at telophase at non-permissive temperatures and the terminal phenotype was almost identical to that oflte1 cells at non-permissive temperatures. Genetic analysis revealed that the suppressor is allelic toCDC15, which encodes a protein kinase. Thecdc15 mutations thus isolated were recessive with regard to the temperature-sensitive phenotype and were dominant with respect to suppression oflte1. We isolatedCDC14 as a low-copy-number suppressor ofcdc15-rlt1.CDC14 encodes a phosphotyrosine phosphatase (PTPase) and is essential for termination of M phase. An extra copy ofCDC14 suppressed the temperature sensitivity ofcdc15-rlt1 cells, but not that ofcdc15-1 cells. In addition, some residues that are essential for the Cdc14 PTPase activity were found to be non-essential for the suppression. These results strongly indicate that Cdc14 possesses dual functions; PTPase activity is needed for one function but not for the other. We postulate that the cooperative action of Cdc14 and Cdc15 plays an essential role in the termination of M phase.  相似文献   

11.
The S. cerevisiae CDC40 gene was originally identified as a cell-division-specific gene that is essential only at elevated temperatures. Cells carrying mutations in this gene arrest with a large bud and a single nucleus with duplicated DNA content. Cdc40p is also required for spindle establishment or maintenance. Sequence analysis reveals that CDC40 is identical to PRP17, a gene involved in pre-mRNA splicing. In this paper, we show that Cdc40p is required at all temperatures for efficient entry into S-phase and that cell cycle arrest associated with cdc40 mutations is independent of all the known checkpoint mechanisms. Using immunofluorescence, we show that Cdc40p is localized to the nuclear membrane, weakly associated with the nuclear pore. Our results point to a link between cell cycle progression, pre-mRNA splicing, and mRNA export. Received: 9 April 1998 / Accepted: 10 August 1998  相似文献   

12.

Background  

Termination of protein synthesis in eukaryotes involves at least two polypeptide release factors (eRFs) – eRF1 and eRF3. The highly conserved translation termination factor eRF1 in Saccharomyces cerevisiae is encoded by the essential gene SUP45.  相似文献   

13.

Background  

Shaker codes for a Drosophila voltage-dependent potassium channel. Flies carrying Shaker null or hypomorphic mutations sleep 3–4 h/day instead of 8–14 h/day as their wild-type siblings do. Shaker-like channels are conserved across species but it is unknown whether they affect sleep in mammals. To address this issue, we studied sleep in Kcna2 knockout (KO) mice. Kcna2 codes for Kv1.2, the alpha subunit of a Shaker-like voltage-dependent potassium channel with high expression in the mammalian thalamocortical system.  相似文献   

14.
The mitotic exit network (MEN) is a spindle pole body (SPB)–associated, GTPase-driven signaling cascade that controls mitotic exit. The inhibitory Bfa1–Bub2 GTPase-activating protein (GAP) only associates with the daughter SPB (dSPB), raising the question as to how the MEN is regulated on the mother SPB (mSPB). Here, we show mutual regulation of cyclin-dependent kinase 1 (Cdk1) and the MEN. In early anaphase Cdk1 becomes recruited to the mSPB depending on the activity of the MEN kinase Cdc15. Conversely, Cdk1 negatively regulates binding of Cdc15 to the mSPB. In addition, Cdk1 phosphorylates the Mob1 protein to inhibit the activity of Dbf2–Mob1 kinase that regulates Cdc14 phosphatase. Our data revise the understanding of the spatial regulation of the MEN. Although MEN activity in the daughter cells is controlled by Bfa1–Bub2, Cdk1 inhibits MEN activity at the mSPB. Consistent with this model, only triple mutants that lack BUB2 and the Cdk1 phosphorylation sites in Mob1 and Cdc15 show mitotic exit defects.  相似文献   

15.
Exit from mitosis is regulated by Cdc14, which plays an essential role intriggering cyclin-dependent kinase inactivation. Throughout most of the cell cycle,Cdc14 is sequestered in the nucleolus where it remains inactive. After thecompletion of anaphase, an essential signaling cascade, named the Mitotic ExitNetwork, or MEN, promotes Cdc14 release. Cdc14 is also released from thenucleolus in early anaphase by another, nonessential, pathway called FEAR(CdcFourteen Early Anaphase Release). Separase (Esp1), polo kinase (Cdc5), thekinetochore protein Slk19, and Spo12, whose molecular function remains unknown,have been identified as members of the FEAR pathway. In meiosis, mutations inCDC14 and its FEAR pathway regulators, CDC5, SLK19, and SPO12, all form ascithat contain only two diploid spores because of a defect in the ability to exit meiosisI. Thus although the FEAR pathway is dispensible for mitotic exit it, is essential formeiosis I exit. The way that the genes of the Mitotic Exit Network contribute tocoordinating meiotic progression is less clear. Here, we explore this issue. Ourresults demonstrate that the orderly transition from meiosis I to meiosis II isaccomplished by eliminating MEN function and using the FEAR pathway tomodulate cyclin dependent kinase activity, in part through the actions of SIC1.  相似文献   

16.
17.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

18.
Cdc14 phosphatase is a key regulator of exit from mitosis, acting primarily through antagonism of cyclin-dependent kinase, and is also thought to be important for meiosis. Cdc14 is released from its sequestration site in the nucleolus in two stages, first by the non-essential Cdc Fourteen Early Anaphase Release (FEAR) pathway and later by the essential Mitotic Exit Network (MEN), which drives efficient export of Cdc14 to the cytoplasm. We find that Cdc14 is confined to the nucleus during early mitotic anaphase release, and during its meiosis I release. Proteins whose degradation is directed by Cdc14 as a requirement for mitotic exit (e.g. the B-type cyclin, Clb2), remain stable during mitotic FEAR, a result consistent with Cdc14 being restricted to the nucleus and not participating directly in mitotic exit. Cdc14 released by the FEAR pathway has been proposed to have a wide variety of activities, all of which are thought to promote passage through anaphase. Proposed functions of FEAR include stabilization of anaphase spindles, resolution of the rDNA to allow its segregation, and priming of the MEN so that mitotic exit can occur promptly and efficiently. We tested the model for FEAR functions using the FEAR-deficient mutation net1-6cdk. Our cytological observations indicate that, contrary to the current model, FEAR is fully dispensable for timely progression through a series of anaphase landmarks and mitotic exit, although it is required for timely rDNA segregation. The net1-6cdk mutation suppresses temperature-sensitive mutations in MEN genes, suggesting that rather than activating mitotic exit, FEAR either inhibits the MEN or has no direct effect upon it. One interpretation of this result is that FEAR delays MEN activation to ensure that rDNA segregation occurs before mitotic exit. Our findings clarify the distinction between FEAR and MEN-dependent Cdc14 activities and will help guide emerging quantitative models of this cell cycle transition.  相似文献   

19.
In the budding yeast Saccharomyces cerevisiae, Cdc14 is sequestered within the nucleolus before anaphase entry through its association with Net1/Cfi1, a nucleolar protein. Protein phosphatase PP2ACdc55 dephosphorylates Net1 and keeps it as a hypophosphorylated form before anaphase. Activation of the Cdc fourteen early anaphase release (FEAR) pathway after anaphase entry induces a brief Cdc14 release from the nucleolus. Some of the components in the FEAR pathway, including Esp1, Slk19, and Spo12, inactivate PP2ACdc55, allowing the phosphorylation of Net1 by mitotic cyclin-dependent kinase (Cdk) (Clb2-Cdk1). However, the function of another FEAR component, the Polo-like kinase Cdc5, remains elusive. Here, we show evidence indicating that Cdc5 promotes Cdc14 release primarily by stimulating the degradation of Swe1, the inhibitory kinase for mitotic Cdk. First, we found that deletion of SWE1 partially suppresses the FEAR defects in cdc5 mutants. In contrast, high levels of Swe1 impair FEAR activation. We also demonstrated that the accumulation of Swe1 in cdc5 mutants is responsible for the decreased Net1 phosphorylation. Therefore, we conclude that the down-regulation of Swe1 protein levels by Cdc5 promotes FEAR activation by relieving the inhibition on Clb2-Cdk1, the kinase for Net1 protein.  相似文献   

20.
The completion of chromosome segregation during anaphase requires the hypercondensation of the ~1-Mb rDNA array, a reaction dependent on condensin and Cdc14 phosphatase. Using systematic genetic screens, we identified 29 novel genetic interactions with budding yeast condensin. Of these, FOB1, CSM1, LRS4, and TOF2 were required for the mitotic condensation of the tandem rDNA array localized on chromosome XII. Interestingly, whereas Fob1 and the monopolin subunits Csm1 and Lrs4 function in rDNA condensation throughout M phase, Tof2 was only required during anaphase. We show that Tof2, which shares homology with the Cdc14 inhibitor Net1/Cfi1, interacts with Cdc14 phosphatase and its deletion suppresses defects in mitotic exit network (MEN) components. Consistent with these genetic data, the onset of Cdc14 release from the nucleolus was similar in TOF2 and tof2Δ cells; however, the magnitude of the release was dramatically increased in the absence of Tof2, even when the MEN pathway was compromised. These data support a model whereby Tof2 coordinates the biphasic release of Cdc14 during anaphase by restraining a population of Cdc14 in the nucleolus after activation of the Cdc14 early anaphase release (FEAR) network, for subsequent release by the MEN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号