首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wnt signals play a critical role in regulating the normal development of the mammary gland and dysregulation of Wnt signaling causes breast cancer. This pathway is involved in the earliest development of the mammary gland in embryos and its role extends through the functional differentiation of the gland during pregnancy. In this review, we summarize the molecular mechanisms through which Wnts regulate mammary gland development in the mouse.Key words: Wnt, mammary gland, embryo, postnatal, cancer, stem cell  相似文献   

2.
3.
The importance of systemic reproductive hormones in mammary gland development and breast cancer has been known for more than a century. In fact, the first targeted therapy for cancer was the development of tamoxifen, as an estrogen receptor (ER) antagonist. Based on studies performed primarily in a few breast cancer cell lines, the textbook concept of steroid hormone action at present is that on ligand binding, steroid receptors translocate into the nucleus and stimulate proliferation, and that this effect is mediated by specific coregulators. More recently, as nicely discussed by Brisken and O’Malley (2011), the concepts of specific receptor-positive sensor cells for systemic hormones, and paracrine mediators regulating the development and proliferation of proximal cells has been elegantly shown by the use of genetically engineered mice and chimeric transplantation experiments. One key question raised by these studies is, “How is the patterning of hormone receptor-positive sensor cells established during normal development?” As described by Visvader and Smith (2011), mammary stem cells lack the estrogen and progesterone receptors, and these receptors are first expressed at a still-undefined stage of the mammary cell hierarchy following the appearance of ductal and alveolar progenitors. So how is this process regulated appropriately to provide the correct temporal and spatial expression of the receptor-positive ductal and alveolar cells needed for normal ductal morphogenesis and alveolargenesis? Furthermore, what happens when this process is inappropriately regulated during early breast cancer progression when there may be a switch from paracrine to autocrine signaling mechanisms?Until recently, it was not possible to study these processes in primary mammary epithelial cells, because when these cells are grown under conventional cell culture conditions they rapidly lose the expression of steroid receptors. However, some recent success in culturing both primary mouse and human mammary cells in embedded 3D Matrigel cultures have provided at least a surrogate system to help dissect some of these paracrine mechanisms (Novaro et al. 2003; Graham et al. 2009). Still, it has not been possible to precisely mimic the patterning of receptor-positive cells observed in vivo in these surrogate in vitro models. So how can we specifically target steroid receptor-positive sensor cells to perform gain- and loss-of-function experiments in vivo? Recent advances using genetically engineered mouse models (Jeong et al. 2010; Mukherjee et al. 2010) may provide the key. In these models, Lydon, Demayo, and colleagues (Jeong et al. 2010) have inserted the Cre recombinase into the progesterone receptor gene allowing specific gene deletion only in that subset of mammary epithelial cells. Because the majority of ER positive cells are also progesterone receptor positive, this should facilitate loss-of-function studies of paracrine mediators for both steroid hormone receptors. Conversely, using a clever bigenic system for doxycycline-inducible expression, these same investigators have expressed one of the identified paracrine mediators, RANKL, in the mammary epithelium of progesterone receptor knockout mice exclusively in ER positive cells. Thus, this gain-of-function approach should help define the critical paracrine mediators of progesterone action and perhaps even the role of specific coregulators in this subset of cells.Downstream from the nuclear receptors, hormonal signaling is regulated by different chromatin contexts and differential recruitment of coactivators as well as corepressors (Brisken and O’Malley 2011). Numerous posttranslational modifications also play key roles in modulating the effects of coregulators, but these have been studied primarily in the HeLa, and to a lesser extent in MCF7, cell lines. Thus, we still know very little about these coregulators and their modifications in normal mammary epithelial cells. Because cell context and architecture are critical, studies, therefore, should be performed in primary mammary epithelial cells to provide a better understanding of how these coregulators and their posttranslational modifications affect normal mammary gland development. No doubt, coregulators may differentially influence hormone receptor-positive cells as compared to the receptor-negative adjacent cells, because most coregulators can also affect cells lacking steroid hormone receptors. Clearly, we are only at the tip of the iceberg when it comes to understanding the precise molecular mechanisms of hormone action in the normal mammary gland, and this will be critical for identifying alterations which occur during breast cancer progression.  相似文献   

4.
The nonreceptor protein-tyrosine kinase c-Src is frequently overexpressed and/or activated in a variety of cancers, including those of the breast. Several heterologous binding partners of c-Src have been shown to regulate its catalytic activity by relieving intramolecular autoinhibitory interactions. One such protein, p130Cas (Cas), is expressed at high levels in both breast cancer cell lines and breast tumors, providing a potential mechanism for c-Src activation in breast cancers. The Cas-binding protein BCAR3 (breast cancer antiestrogen resistance-3) is expressed at high levels in invasive breast cancer cell lines, and this molecule has previously been shown to coordinate with Cas to increase c-Src activity in COS-1 cells. In this study, we show for the first time using gain- and loss-of-function approaches that BCAR3 regulates c-Src activity in the endogenous setting of breast cancer cells. We further show that BCAR3 regulates the interaction between Cas and c-Src, both qualitatively as well as quantitatively. Finally, we present evidence that the coordinated activity of these proteins contributes to breast cancer cell adhesion signaling and spreading. Based on these data, we propose that the c-Src/Cas/BCAR3 signaling axis is a prominent regulator of c-Src activity, which in turn controls cell behaviors that lead to aggressive and invasive breast tumor phenotypes.  相似文献   

5.
Systematic perturbation screens provide comprehensive resources for the elucidation of cancer driver genes. The perturbation of many genes in relatively few cell lines in such functional screens necessitates the development of specialized computational tools with sufficient statistical power. Here we developed APSiC (Analysis of Perturbation Screens for identifying novel Cancer genes) to identify genetic drivers and effectors in perturbation screens even with few samples. Applying APSiC to the shRNA screen Project DRIVE, APSiC identified well-known and novel putative mutational and amplified cancer genes across all cancer types and in specific cancer types. Additionally, APSiC discovered tumor-promoting and tumor-suppressive effectors, respectively, for individual cancer types, including genes involved in cell cycle control, Wnt/β-catenin and hippo signalling pathways. We functionally demonstrated that LRRC4B, a putative novel tumor-suppressive effector, suppresses proliferation by delaying cell cycle and modulates apoptosis in breast cancer. We demonstrate APSiC is a robust statistical framework for discovery of novel cancer genes through analysis of large-scale perturbation screens. The analysis of DRIVE using APSiC is provided as a web portal and represents a valuable resource for the discovery of novel cancer genes.  相似文献   

6.
Metastatic breast cancer is incurable. In order to improve patient survival, it is critical to develop a better understanding of the molecular mechanisms that regulate metastasis and the underlying process of cell motility. Here, we focus on the role of the adaptor molecule Breast Cancer Antiestrogen Resistance 3 (BCAR3) in cellular processes that contribute to cell motility, including protrusion, adhesion remodeling, and contractility. Previous work from our group showed that elevated BCAR3 protein levels enhance cell migration, while depletion of BCAR3 reduces the migratory and invasive capacities of breast cancer cells. In the current study, we show that BCAR3 is necessary for membrane protrusiveness, Rac1 activity, and adhesion disassembly in invasive breast cancer cells. We further demonstrate that, in the absence of BCAR3, RhoA-dependent signaling pathways appear to predominate, as evidenced by an increase in RhoA activity, ROCK-mediated phosphorylation of myosin light chain II, and large ROCK/mDia1-dependent focal adhesions. Taken together, these data establish that BCAR3 functions as a positive regulator of cytoskeletal remodeling and adhesion turnover in invasive breast cancer cells through its ability to influence the balance between Rac1 and RhoA signaling. Considering that BCAR3 protein levels are elevated in advanced breast cancer cell lines and enhance breast cancer cell motility, we propose that BCAR3 functions in the transition to advanced disease by triggering intracellular signaling events that are essential to the metastatic process.  相似文献   

7.
C-C chemokine receptor 5 (CCR5) is a receptor for chemokines and a co-receptor for HIV-1 entry into the target CD4+ cells. CCR5 delta 32 deletion is a loss-of-function mutation, resistant to HIV-1 infection. We tried to induce the CCR5 delta 32 mutation harnessing the genome editing technique, CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR and CRISPR associated protein 9, Cas9) in the commonly used cell line human embryonic kidney HEK 293T cells. Surprisingly, we found that HEK293T cells are heterozygous for CCR5 delta 32 mutation, in contrast to the wild type CCR5 cells, human acute T cell leukemia cell line Jurkat and human breast adenocarcinoma cell line MDA-MB-231 cells. This finding indicates that at least one human cell line is heterozygous for the CCR5 delta 32 mutation. We also found that in PCR amplification, wild type CCR5 DNA and mutant delta 32 DNA can form mismatched heteroduplex and move slowly in gel electrophoresis.  相似文献   

8.
Cancer is one of the most catastrophic human genetic diseases. Experimental animal cancer models are essential for gaining insights into the complex interactions of different cells and genes in tumor initiation, promotion, and progression. Mouse models have been extensively used to analyze the genetic basis of cancer susceptibility. They have led to the identification of multiple loci that confer, either alone or in specific combinations, an increased susceptibility to cancer, some of which have direct translatability to human cancer. Additionally, wild-derived inbred mouse strains are an advantageous reservoir of novel genetic polymorphisms of cancer susceptibility genes, because of the evolutionary divergence between wild and classical inbred strains. Here, we review mapped Stmm (skin tumor modifier of MSM) loci using a Japanese wild-derived inbred mouse strain, MSM/Ms, and describe recent advances in our knowledge of the genes responsible for Stmm loci in the 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) two-stage skin carcinogenesis model.  相似文献   

9.
Genome-wide association studies have revealed that many low-penetrance cancer susceptibility loci are located throughout the genome; however, a very limited number of genes have been identified so far. Using a forward genetics approach to map such loci in a mouse skin cancer model, we previously identified strong genetic loci conferring resistance to early-stage chemically induced skin papillomas on chromosome 7 with a large number of [(FVB/N×MSM/Ms)×FVB/N] F1 backcross mice. In this report, we describe a combination of congenic mapping and allele-specific alteration analysis of the loci on chromosome 7. We used linkage analysis and congenic mouse strains to refine the location of Stmm1 (Skin tumor modifier of MSM 1) locus within a genetic interval of about 3 cM on proximal chromosome 7. In addition, we used patterns of allele-specific imbalances in tumors from F1 backcross and N10 congenic mice to narrow down further the region of Stmm1 locus to a physical distance of about 5.4 Mb. To gain the insight into the function of Stmm1 locus, we carried out a long term BrdU labelling experiments with congenic mice containing Stmm1 locus. Interestingly, we observed a decrease of BrdU-LRCs (Label Retaining Cells) in a congenic strain heterozygous or homozygous for MSM allele of Stmm1. These results suggest that Stmm1 responsible genes may have an influence on papillomagenesis in the two-stage skin carcinogenesis by regulating epidermal quiescent stem cells.  相似文献   

10.
Identifying key mediators of cancer cell invasion and metastasis is critical to the development of more effective cancer therapies. We previously identified Filamin A interacting protein 1-like (FILIP1L) as an important inhibitor of cell migration and invasion in ovarian cancer. FILIP1L expression was inversely correlated with the invasive potential of ovarian cancer cell lines and ovarian cancer specimens. We also demonstrated that DNA methylation in the FILIP1L promoter was a mechanism by which FILIP1L was down-regulated in ovarian cancer. In our present study, we tested this observation in other cancer histologies: breast, colon, lung and pancreatic cancers. Both mRNA and protein expression of FILIP1L were down-regulated in these cancer cells compared with their normal epithelial cells. As in ovarian cancer, DNA methylation is a mechanism by which FILIP1L is down-regulated in these cancer histologies. Methylation status of the FILIP1L promoter was inversely correlated with FILIP1L expression. Reduced methylation in the FILIP1L promoter following treatment with a DNA demethylating agent was associated with restoration of FILIP1L expression in these cancer cells. Further, FILIP1L expression was inversely correlated with the invasive potential of these cancer cells. Re-expression of FILIP1L in FILIP1L-low expressing, highly-invasive cancer cell lines resulted in inhibition of cell invasion. Correspondingly, knockdown of FILIP1L in FILIP1L-high expressing, low-invasive cancer cell lines resulted in increase of cell invasion. Overall, these findings suggest that down-regulation of FILIP1L associated with DNA methylation is related with the invasive phenotype in various cancers. Thus, modulation of FILIP1L expression has the potential to be a target for cancer therapy.  相似文献   

11.
12.
Sarcolemmal membrane-associated protein (SLMAP) is a tail-anchored protein involved in fundamental cellular processes, such as myoblast fusion, cell cycle progression, and chromosomal inheritance. Further, SLMAP misexpression is associated with endothelial dysfunctions in diabetes and cancer. SLMAP is part of the conserved striatin-interacting phosphatase and kinase (STRIPAK) complex required for specific signaling pathways in yeasts, filamentous fungi, insects, and mammals. In filamentous fungi, STRIPAK was initially discovered in Sordaria macrospora, a model system for fungal differentiation. Here, we functionally characterize the STRIPAK subunit PRO45, a homolog of human SLMAP. We show that PRO45 is required for sexual propagation and cell-to-cell fusion and that its forkhead-associated (FHA) domain is essential for these processes. Protein-protein interaction studies revealed that PRO45 binds to STRIPAK subunits PRO11 and SmMOB3, which are also required for sexual propagation. Superresolution structured-illumination microscopy (SIM) further established that PRO45 localizes to the nuclear envelope, endoplasmic reticulum, and mitochondria. SIM also showed that localization to the nuclear envelope requires STRIPAK subunits PRO11 and PRO22, whereas for mitochondria it does not. Taken together, our study provides important insights into fundamental roles of the fungal SLMAP homolog PRO45 and suggests STRIPAK-related and STRIPAK-unrelated functions.  相似文献   

13.
14.
15.
16.
Hyperthyroidism is characterized by an increased metabolic rate with the alteration of immune activity. The pineal hormone melatonin regulates various physiological activities through sensitization of MT1 and MT2 membrane receptors in mammals. In the present study we have evaluated the involvement of MT1 and MT2 receptors in melatonin mediated modulation of thyroid hormones and splenocyte proliferation in experimentally induced hyperthyroidic mice. The l-thyroxine treatment induced the hyperthyroidism in mice evidenced with hypersecretion of T3 and T4 hormones from thyroid gland. Hyperthyroidic state increased the TSH hormone level which might be inducing hyper activity in thyroid gland. Exogenous melatonin suppressed the thyroid hormones level as well as TSH level in circulation. The l-thyroxine treatment increased the splenocyte proliferation and showed synergic effects along with melatonin. l-thyroxine treated mice alone or along with melatonin treatment showed differential expression pattern of MT1 and MT2 receptors protein in thyroid and spleen tissues. It seems that melatonin regulates thyroid hormones and splenocyte proliferation through activation of MT1 and MT2 receptors.  相似文献   

17.
Free d-aspartate (d-Asp) occurs in substantial amounts in glandular tissues. This paper reviews the existing work on d-Asp in vertebrate exocrine and endocrine glands, with emphasis on functional roles. Endogenous d-Asp was detected in salivary glands. High d-Asp levels in the parotid gland during development suggest an involvement of the amino acid in the regulation of early developmental phases and/or differentiation processes. d-Asp has a prominent role in the Harderian gland, where it elicits exocrine secretion through activation of the ERK1/2 pathway. Interestingly, the increase in NOS activity associated with d-Asp administration in the Harderian gland suggests a potential capability of d-Asp to induce vasodilatation. In mammals, an increase in local concentrations of d-Asp facilitates the secretion of anterior pituitary hormones, i.e., PRL, LH and GH, whereas it inhibits the secretion of POMC/α-MSH from the intermediate pituitary and of oxytocin from the posterior pituitary. d-Asp also acts as a negative regulator for melatonin synthesis in the pineal gland. Further, d-Asp can stereo-specifically modulate the production of sex steroids, thus taking part in the endocrine control of reproductive activity. Although d-Asp receptors remain to be characterized, gene expression of NR1 and NR2 subunits of NMDAr responds to d-Asp in the testis.  相似文献   

18.

Background

A highly sensitive, rapid and cost efficient method that can detect active botulinum neurotoxin (BoNT) in complex biological samples such as foods or serum is desired in order to 1) counter the potential bioterrorist threat 2) enhance food safety 3) enable future pharmacokinetic studies in medical applications that utilize BoNTs.

Methodology/Principal Findings

Here we describe a botulinum neurotoxin serotype A assay with a large immuno-sorbent surface area (BoNT/A ALISSA) that captures a low number of toxin molecules and measures their intrinsic metalloprotease activity with a fluorogenic substrate. In direct comparison with the “gold standard” mouse bioassay, the ALISSA is four to five orders of magnitudes more sensitive and considerably faster. Our method reaches attomolar sensitivities in serum, milk, carrot juice, and in the diluent fluid used in the mouse assay. ALISSA has high specificity for the targeted type A toxin when tested against alternative proteases including other BoNT serotypes and trypsin, and it detects the holotoxin as well as the multi-protein complex form of BoNT/A. The assay was optimized for temperature, substrate concentration, size and volume proportions of the immuno-sorbent matrix, enrichment and reaction times. Finally, a kinetic model is presented that is consistent with the observed improvement in sensitivity.

Conclusions/Significance

The sensitivity, specificity, speed and simplicity of the BoNT ALISSA should make this method attractive for diagnostic, biodefense and pharmacological applications.  相似文献   

19.
Transforming growth factor-β1 (TGF-β) was first implicated in mammary epithelial development by Daniel and Silberstein in 1987 and in breast cancer cells and hormone resistance by Lippman and colleagues in 1988. TGF-β is critically important for mammary morphogenesis and secretory function through specific regulation of epithelial proliferation, apoptosis, and extracellular matrix. Differential TGF-β effects on distinct cell types are compounded by regulation at multiple levels and the influence of context on cellular responses. Studies using controlled expression and conditional-deletion mouse models underscore the complexity of TGF-β biology across the cycle of mammary development and differentiation. Early loss of TGF-β growth regulation in breast cancer evolves into fundamental deregulation that mediates cell interactions and phenotypes driving invasive disease. Two outstanding issues are to understand the mechanisms of biological control in situ and the circumstances by which TGF-β regulation is subverted in neoplastic progression.The discovery of a “transforming growth factor” in normal tissue and serum in the early 1980s rapidly led to the identification of a large family of polypeptides whose action is involved in all aspects of development, homeostasis, and cancer (Moses and Roberts 2008). The activity of transforming growth factor-β1 (TGF-β) was first implicated in mammary epithelial development in 1987 by a canonical experiment by Daniel and Silberstein. Pellets containing TGF-β implanted into mouse mammary gland during ductal morphogenesis were shown to induce rapid regression of advancing endbuds, which was among the first demonstration of its potent inhibitory, rather than transforming, activity (Silberstein and Daniel 1987). However, soon after, Lippman and colleagues showed that TGF-β was produced by breast cancer cells, which in turn contributed to their hormone resistance (Knabbe et al. 1987). These two diametrically opposed actions have continued to fascinate those studying its sundry roles in mammary biology and breast cancer. After nearly a quarter century, this brief article underscores the major two themes in mammary biology: Although TGF-β orchestrates tissue composition and critical controls during mammary development, its subversion during cancer progressively undermines homeostasis and actively drives malignancy.  相似文献   

20.
Deamidase of Pup (Dop), the prokaryotic ubiquitin-like protein (Pup)-deconjugating enzyme, is critical for the full virulence of Mycobacterium tuberculosis and is unique to bacteria, providing an ideal target for the development of selective chemotherapies. We used a combination of genetics and chemical biology to characterize the mechanism of depupylation. We identified an aspartate as a potential nucleophile in the active site of Dop, suggesting a novel protease activity to target for inhibitor development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号