首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
Methylation of histone H3 lysine 9 (H3K9me) and small RNAs are associated with constitutively silent chromatin in diverse eukaryotes including plants. In plants, silent transposons are also marked by cytosine methylation, especially at non‐CpG sites. Transposon‐specific non‐CpG methylation in plants is controlled by small RNAs and H3K9me. Although it is often assumed that small RNA directs H3K9me, interaction between small RNA and H3K9me has not been directly demonstrated in plants. We have previously shown that a mutation in the chromatin remodeling gene DDM1 (DECREASE IN DNA METHYLATION 1) induces a global decrease but a local increase of cytosine methylation and accumulation of small RNA at a locus called BONSAI. Here we show that de novo BONSAI methylation does not depend on RNAi but does depend on H3K9me. In mutants of H3K9 methyltransferase gene KRYPTONITE or the H3K9me‐dependent DNA methyltransferase gene CHROMOMETHYALSE3, the ddm1‐induced de novo cytosine methylation was abolished for all three contexts (CpG, CpHpG and CpHpH). Furthermore, RNAi mutants showed strong developmental defects when combined with the ddm1 mutation. Our results revealed unexpected interactions of epigenetic modifications that may be conserved among diverse eukaryotes.  相似文献   

4.
5.
Paramutation is the transfer of epigenetic information between alleles that leads to a heritable change in expression of one of these alleles. Paramutation at the tissue‐specifically expressed maize (Zea mays) b1 locus involves the low‐expressing B′ and high‐expressing B‐I allele. Combined in the same nucleus, B′ heritably changes B‐I into B′. A hepta‐repeat located 100‐kb upstream of the b1 coding region is required for paramutation and for high b1 expression. The role of epigenetic modifications in paramutation is currently not well understood. In this study, we show that the B′ hepta‐repeat is DNA‐hypermethylated in all tissues analyzed. Importantly, combining B′ and B‐I in one nucleus results in de novo methylation of the B‐I repeats early in plant development. These findings indicate a role for hepta‐repeat DNA methylation in the establishment and maintenance of the silenced B′ state. In contrast, nucleosome occupancy, H3 acetylation, and H3K9 and H3K27 methylation are mainly involved in tissue‐specific regulation of the hepta‐repeat. Nucleosome depletion and H3 acetylation are tissue‐specifically regulated at the B‐I hepta‐repeat and associated with enhancement of b1 expression. H3K9 and H3K27 methylation are tissue‐specifically localized at the B′ hepta‐repeat and reinforce the silenced B′ chromatin state. The B′ coding region is H3K27 dimethylated in all tissues analyzed, indicating a role in the maintenance of the silenced B′ state. Taken together, these findings provide insight into the mechanisms underlying paramutation and tissue‐specific regulation of b1 at the level of chromatin structure.  相似文献   

6.
Alcohol consumption during pregnancy can cause foetal alcohol syndrome and congenital heart disease. Nonetheless, the underlying mechanism of alcohol‐induced cardiac dysplasia remains unknown. We previously reported that alcohol exposure during pregnancy can cause abnormal expression of cardiomyogenesis‐related genes, and histone H3K9me3 hypomethylation was observed in alcohol‐treated foetal mouse heart. Hence, an imbalance in histone methylation may be involved in alcohol‐induced cardiac dysplasia. In this study, we investigated the involvement of G9α histone methyltransferase in alcohol‐induced cardiac dysplasia in vivo and in vitro using heart tissues of foetal mice and primary cardiomyocytes of neonatal mice. Western blotting revealed that alcohol caused histone H3K9me3 hypomethylation by altering G9α histone methyltransferase expression in cardiomyocytes. Moreover, overexpression of cardiomyogenesis‐related genes (MEF2C, Cx43, ANP and β‐MHC) was observed in alcohol‐exposed foetal mouse heart. Additionally, we demonstrated that G9α histone methyltransferase directly interacted with histone H3K9me3 and altered its methylation. Notably, alcohol did not down‐regulate H3K9me3 methylation after G9α suppression by short hairpin RNA in primary mouse cardiomyocytes, preventing MEF2C, Cx43, ANP and β‐MHC overexpression. These findings suggest that G9α histone methyltransferase‐mediated imbalance in histone H3K9me3 methylation plays a critical role in alcohol‐induced abnormal expression cardiomyogenesis‐related genes during pregnancy. Therefore, G9α histone methyltransferase may be an intervention target for congenital heart disease.  相似文献   

7.
Epigenetic silencing of cancer‐related genes by abnormal methylation and the reversal of this process by DNA methylation inhibitors represents a promising strategy in cancer therapy. As DNA methylation affects gene expression and chromatin structure, we investigated the effects of novel DNMT (DNA methyltransferase) inhibitor, RG108, alone and in its combinations with structurally several HDAC (histone deacetylase) inhibitors [sodium PB (phenyl butyrate) or BML‐210 (N‐(2‐aminophenyl)‐N′phenyloctanol diamine), and all‐trans RA (retinoic acid)] in the human PML (promyelocytic leukaemia) NB4 cells. RG108 at different doses from 20 to 100 μM caused time‐, but not a dose‐dependent inhibition of NB4 cell proliferation without cytotoxicity. Temporal pretreatment with RG108 before RA resulted in a dose‐dependent cell growth inhibition and remarkable acceleration of granulocytic differentiation. Prolonged treatments with RG108 and RA in the presence of HDAC inhibitors significantly increased differentiation. RG108 caused time‐dependent re‐expression of methylation‐silenced E‐cadherin, with increase after temporal or continuous treatments with RG108 and RA, or RA together with PB in parallel, in cell maturation, suggesting the role of E‐cadherin as a possible therapeutic marker. These processes required both PB‐induced hyperacetylation of histone H4 and trimethylation of histone H3 at lysine 4, indicating the cooperative action of histone modifications and DNA methylation/demethylation in derepression of E‐cadherin. This work provides novel experimental evidence of the beneficial role of the DNMT inhibitor RG108 in combinations with RA and HDACIs in the effective differentiation of human PML based on epigenetics.  相似文献   

8.
9.
Holocarboxylase synthetase (HLCS) is a chromatin protein that facilitates the creation of histone H3 lysine 9-methylation (H3K9me) gene repression marks through physical interactions with the histone methyltransferase EHMT-1. HLCS knockdown causes a depletion of H3K9me marks in mammalian cell cultures and severe phenotypes such as short lifespan and low stress resistance in Drosophila melanogaster. HLCS displays a punctuate distribution pattern in chromatin despite lacking a strong DNA-binding domain. Previous studies suggest that the binding of HLCS to chromatin depends on DNA methylation. We tested the hypothesis that HLCS interacts physically with the DNA methyltransferase DNMT1 and the methyl CpG binding protein MeCP2 to facilitate the binding of HLCS to chromatin, and that these interactions contribute toward the repression of long-terminal repeats (LTRs) by H3K9me marks. Co-immunoprecipitation and limited proteolysis assays provided evidence suggesting that HLCS interacts physically with both DNMT1 and MeCP2. The abundance of H3K9me marks was 207% greater in the LTR15 locus in HLCS overexpression human embryonic kidney HEK293 cells compared with controls. This gain in H3K9me was inversely linked with a 87% decrease in mRNA coding for LTRs. Effects of HLCS abundance on LTR expression were abolished when DNA methylation marks were erased by treating cells with 5-azacytidine. We conclude that interactions between DNA methylation and HLCS are crucial for mediating gene repression by H3K9me, thereby providing evidence for epigenetic synergies between the protein biotin ligase HLCS and dietary methyl donors.  相似文献   

10.
Among other targets, the protein lysine methyltransferase PR‐Set7 induces histone H4 lysine 20 monomethylation (H4K20me1), which is the substrate for further methylation by the Suv4‐20h methyltransferase. Although these enzymes have been implicated in control of replication origins, the specific contribution of H4K20 methylation to DNA replication remains unclear. Here, we show that H4K20 mutation in mammalian cells, unlike in Drosophila, partially impairs S‐phase progression and protects from DNA re‐replication induced by stabilization of PR‐Set7. Using Epstein–Barr virus‐derived episomes, we further demonstrate that conversion of H4K20me1 to higher H4K20me2/3 states by Suv4‐20h is not sufficient to define an efficient origin per se, but rather serves as an enhancer for MCM2‐7 helicase loading and replication activation at defined origins. Consistent with this, we find that Suv4‐20h‐mediated H4K20 tri‐methylation (H4K20me3) is required to sustain the licensing and activity of a subset of ORCA/LRWD1‐associated origins, which ensure proper replication timing of late‐replicating heterochromatin domains. Altogether, these results reveal Suv4‐20h‐mediated H4K20 tri‐methylation as a critical determinant in the selection of active replication initiation sites in heterochromatin regions of mammalian genomes.  相似文献   

11.
12.
13.
14.
表观遗传学主要包括DNA甲基化、组蛋白修饰和非编码RNA,组蛋白甲基化作为组蛋白修饰中的一种重要修饰,在植物体的发育和环境适应中发挥着重要作用。组蛋白甲基化主要发生在赖氨酸残基上,同时根据不同的赖氨酸位点和每个赖氨酸位点甲基化程度的不同,形成了不同的赖氨酸甲基化修饰。根据对基因的不同功能,通常将组蛋白赖氨酸甲基化修饰分为2大类:(1)能够促进基因表达的,如H3K4me3和H3K36me3;(2)能够抑制基因表达的,如H3K9me2和H3K27me3。不同的组蛋白赖氨酸甲基化去甲基化过程需要相应的阅读(reader)、书写(writer)和擦除(eraser)3种蛋白。同时,组蛋白赖氨酸甲基化的遗传性质目前还不是很清楚。综述了植物中组蛋白赖氨酸甲基化建立与去除过程,以及对组蛋白赖氨酸甲基化可遗传性的探讨。  相似文献   

15.
16.
Olivier Binda 《Epigenetics》2013,8(5):457-463
Lysine methylation of histones and non-histone proteins has emerged in recent years as a posttranslational modification with wide-ranging cellular implications beyond epigenetic regulation. The molecular interactions between lysine methyltransferases and their substrates appear to be regulated by posttranslational modifications surrounding the lysine methyl acceptor. Two very interesting examples of this cross-talk between methyl-lysine sites are found in the SET (Su(var)3–9, Enhancer-of-zeste, Trithorax) domain-containing lysine methyltransferases SET7 and SETDB1, whereby the histone H3 trimethylated on lysine 4 (H3K4me3) modification prevents methylation by SETDB1 on H3 lysine 9 (H3K9) and the histone H3 trimethylated on lysine 9 (H3K9me3) modification prevents methylation by SET7 on H3K4. A similar cross-talk between posttranslational modifications regulates the functions of non-histone proteins such as the tumor suppressor p53 and the DNA methyltransferase DNMT1. Herein, in cis effects of acetylation, phosphorylation, as well as arginine and lysine methylation on lysine methylation events will be discussed.  相似文献   

17.
18.
Intrahepatic cholangiocarcinoma (iCCA) is an aggressive malignancy with increasing incidence. It has been suggested that DNA methylation drives cancer development. However, the molecular mechanisms underlying iCCA progression and the roles of DNA methylation still remain elusive. In this study, weighted correlation networks were constructed to identify gene modules and hub genes associated with the tumour stage. We identified 12 gene modules, two of which were significantly positively or negatively related to the tumour stage, respectively. Key hub genes SLC2A1, CDH3 and EFHD2 showed increased expression across the tumour stage and were correlated with poor survival, whereas decrease of FAM171A1, ONECUT1 and PHYHIPL was correlated with better survival. Pathway analysis revealed hedgehog pathway was activated in CDH3 up-regulated tumours, and chromosome separation was elevated in tumours expressing high EFHD2. JAK-STAT pathway was overrepresented in ONECUT1 down-regulated tumours, whereas Rho GTPases-formins signalling was activated in PHYHIPL down-regulated tumours. Finally, significant negative associations between expression of EFHD2, PHYHIPL and promoter DNA methylation were detected, and alterations of DNA methylation were correlated with tumour survival. In summary, we identified key genes and pathways that may participate in progression of iCCA and proposed putative roles of DNA methylation in iCCA.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号