首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inactivation of host Rho GTPases is a widespread strategy employed by bacterial pathogens to manipulate mammalian cellular functions and avoid immune defenses. Some bacterial toxins mimic eukaryotic Rho GTPase-activating proteins (GAPs) to inactivate mammalian GTPases, probably as a result of evolutionary convergence. An intriguing question remains whether eukaryotic pathogens or parasites may use endogenous GAPs as immune-suppressive toxins to target the same key genes as bacterial pathogens. Interestingly, a RhoGAP domain-containing protein, LbGAP, was recently characterized from the parasitoid wasp Leptopilina boulardi, and shown to protect parasitoid eggs from the immune response of Drosophila host larvae. We demonstrate here that LbGAP has structural characteristics of eukaryotic RhoGAPs but that it acts similarly to bacterial RhoGAP toxins in mammals. First, we show by immunocytochemistry that LbGAP enters Drosophila immune cells, plasmatocytes and lamellocytes, and that morphological changes in lamellocytes are correlated with the quantity of LbGAP they contain. Demonstration that LbGAP displays a GAP activity and specifically interacts with the active, GTP-bound form of the two Drosophila Rho GTPases Rac1 and Rac2, both required for successful encapsulation of Leptopilina eggs, was then achieved using biochemical tests, yeast two-hybrid analysis, and GST pull-down assays. In addition, we show that the overall structure of LbGAP is similar to that of eukaryotic RhoGAP domains, and we identify distinct residues involved in its interaction with Rac GTPases. Altogether, these results show that eukaryotic parasites can use endogenous RhoGAPs as virulence factors and that despite their differences in sequence and structure, eukaryotic and bacterial RhoGAP toxins are similarly used to target the same immune pathways in insects and mammals.  相似文献   

2.
Do parasitoid preferences for different host species match virulence?   总被引:1,自引:0,他引:1  
Abstract.  Leptopilina boulardi is a parasitoid wasp specialist of Drosophila larvae of the melanogaster subgroup. In Mediterranean areas, natural populations are highly virulent against their main host Drosophila melanogaster . In Congo, populations are less virulent against D. melanogaster but are able to develop successfully inside the tropical African species Drosophila yakuba . Host preferences are compared between two laboratory isofemale lines of L. boulardi , obtained from populations of Congo and Tunisia, respectively, and differing in virulence levels against D. melanogaster and D. yakuba . Host selection is studied by offering female parasitoids a choice between larvae of the two host species. In agreement with optimal foraging models, the line highly virulent against D. melanogaster shows a clear preference for this host species. The other line, less virulent against D. melanogaster but more virulent against D. yakuba , prefers to oviposit on D. yakuba . Such preferences can be observed after a period of host-patch exploitation only, suggesting that experience plays an important role in the host-selection process. These results evidence the existence of intraspecific variability in preference between two host species in L. boulardi , a major requisite in theoretical models of parasite specialization by the host. They also sustain the hypothesis that intraspecific variation in parasitoid preferences between host species might mirror intraspecific variation in virulence.  相似文献   

3.
To protect its eggs, the endoparasitoid wasp Leptopilina boulardi injects immune suppressive factors into Drosophila melanogaster host larvae. These factors are localized in the female long gland and reservoir. We analyzed the protein content of these tissues and found that it strongly differed between virulent and avirulent parasitoid strains. Four protein bands present in virulent long glands were eluted and their immune suppressive effect was assessed in vivo, allowing demonstrating a major effect of one of these proteins. The corresponding cDNA encodes a predicted 30 kDa subunit containing a Ras homologous GTPase Activating Protein (RhoGAP) domain, suggesting a possible involvement in the regulation of actin cytoskeleton changes. Using Western-blot experiments, we showed that this protein is abundant in virulent female long glands but is undetectable in virulent females deprived of long glands or in long glands from avirulent wasps. Its potential role in modifying the morphology and the adhesive properties of the host lamellocytes, involved in Drosophila cellular immune responses, is discussed.  相似文献   

4.
The hymenopteran wasp Leptopilina boulardi (Figitidae) is a larval solitary parasitoid of Drosophila larvae of the melanogaster sub-group. The factors used by parasitoid females to prevent encapsulation of their eggs by the host are localized in the female long gland and reservoir. We report here the physiological effects of these factors on host haemocytes using in vivo injection experiments. The total number of haemocytes, the number of plasmatocytes and the number of crystal cells were not modified by injection of long gland extracts. In contrast, long gland extracts either from virulent or avirulent strains had a significant effect on the lamellocyte number. Compared to the Ringer control, the avirulent long gland products induced an increase of the lamellocyte number while virulent extracts induced a drastic decrease together with an alteration of the morphology of these cells. Interestingly, changes in the lamellocyte morphology were also observed following injection of the P4 protein, a major component of L. boulardi female long glands that displays a strong immune suppressive effect on Drosophila larvae. The implication of the P4 protein in suppressing the host cellular immunity is discussed in correlation with its predicted molecular function as a Rho-GAP protein.  相似文献   

5.
6.
7.
Two strains of Drosophila melanogaster (resistant and susceptible) were parasitized by a virulent or avirulent strain of the parasitoid wasp Leptopilina boulardi. The success of encapsulation depends on both the genetic status of the host strain and the genetic status of the parasitoid strain: the immune cellular reaction (capsule) is observed only with the resistant strain-avirulent strain combination. The total numbers of host haemocytes increased in all 4 combinations, suggesting that an immune reaction was triggered in all hosts. Resistant host larvae infected with the virulent or avirulent strains of parasitoid wasp had slightly more haemocytes per mm(3) than did susceptible host larvae at the beginning of the reaction (less than 15 h post-parasitization). This difference disappeared later. Only the virulent parasitoid strain caused the production of a high percentage of altered lamellocytes (from a discoid shape to a bipolar shape), half the total number of lamellocytes are altered. This suggests that the alteration of lamellocyte shape alone is not sufficient to explain the lack of capsule formation seen in resistant hosts parasitized by the virulent strain. Lastly, there were very few altered lamellocytes in resistant or susceptible hosts parasitized by the avirulent parasitoid strain, two combinations in which no capsule was formed. As is now established for Drosophila-parasitoid interactions, virus-like particles contained in the long gland of the female wasp affect the morphology of the lamellocytes. The results presented here are further proof of the action (direct or indirect) of virus like particles of the virulent strain on lamellocytes.  相似文献   

8.
Kacsoh BZ  Schlenke TA 《PloS one》2012,7(4):e34721
Among the most common parasites of Drosophila in nature are parasitoid wasps, which lay their eggs in fly larvae and pupae. D. melanogaster larvae can mount a cellular immune response against wasp eggs, but female wasps inject venom along with their eggs to block this immune response. Genetic variation in flies for immune resistance against wasps and genetic variation in wasps for virulence against flies largely determines the outcome of any fly-wasp interaction. Interestingly, up to 90% of the variation in fly resistance against wasp parasitism has been linked to a very simple mechanism: flies with increased constitutive blood cell (hemocyte) production are more resistant. However, this relationship has not been tested for Drosophila hosts outside of the melanogaster subgroup, nor has it been tested across a diversity of parasitoid wasp species and strains. We compared hemocyte levels in two fly species from different subgroups, D. melanogaster and D. suzukii, and found that D. suzukii constitutively produces up to five times more hemocytes than D. melanogaster. Using a panel of 24 parasitoid wasp strains representing fifteen species, four families, and multiple virulence strategies, we found that D. suzukii was significantly more resistant to wasp parasitism than D. melanogaster. Thus, our data suggest that the relationship between hemocyte production and wasp resistance is general. However, at least one sympatric wasp species was a highly successful infector of D. suzukii, suggesting specialists can overcome the general resistance afforded to hosts by excessive hemocyte production. Given that D. suzukii is an emerging agricultural pest, identification of the few parasitoid wasps that successfully infect D. suzukii may have value for biocontrol.  相似文献   

9.
Carton Y  Nappi AJ 《Immunogenetics》2001,52(3-4):157-164
Host-parasite relationships represent integrating adaptations of considerable complexity involving the host's immune capacity to both recognize and destroy the parasite, and the latter's ability to successfully invade the host and to circumvent its immune response. Compatibility in Drosophila-parasitic wasp (parasitoid) associations has been shown to have a genetic basis, and to be both species and strain specific. Studies using resistant and susceptible strains of Drosophila melanogaster infected with virulent and avirulent strains of the wasp Leptopilina boulardi demonstrate that the success of the host cellular immune response depends on the genetic status of both host and parasitoid. Immunological, physiological, biochemical, and genetic data form the bases of a two-component model proposed here to account for the observed specificity and complexity of two coevolved adaptations, host nonself recognition and parasitoid virulence.  相似文献   

10.
In insects, eukaryotic endoparasites encounter a series of innate immune effector responses mediated in large part by circulating blood cells (hemocytes) that rapidly form multilayer capsules around foreign organisms. Critical components of the encapsulation response are chemical and enzyme-catalyzed oxidations involving phenolic and catecholic substrates that lead to synthesis of eumelanin. These responses are initiated immediately upon infection and are very site-specific, provoking no undesirable systemic responses in the host. In this study, we were interested to learn if the principal oxidation pathways leading to the synthesis of eumelanin in larvae of Drosophila melanogaster were targets for inhibition by immune suppressive factors (ISF) derived from a virulent strain of the endoparasitic wasp Leptopilina boulardi. Comparative in vitro assays monitored by sensitive electrochemical detection methods showed that ISF derived from female reproductive tissues significantly diminished the oxidations of the two diphenol eumelanin precursors, dopamine and 5,6-dihydroxyindole (DHI). The oxidations of the monophenol tyrosine, and two other related diphenols, dopa and 5,6-dihydroxyindole-2-carboxylic acid (DHICA), were not significantly inhibited by ISF. The data suggest that melanogenesis represents at least one of the host responses suppressed by L. boulardi ISF, and that the oxidation pathways selectively targeted for inhibition are those synthesizing decarboxylated pigment precursors derived from DHI. These observations, together with previous reports of adverse effects of ISF on the ability of hemocytes to adhere to foreign surfaces, suggest a multifaceted approach by the parasitoid to circumvent the innate immune response of D. melanogaster.  相似文献   

11.
During an infection, malaria parasites compete for limited amounts of food and enemy-free space. Competition affects parasite growth rate, transmission and virulence, and is thus important for parasite evolution. Much evolutionary theory assumes that virulent clones outgrow avirulent ones, favouring the evolution of higher virulence. We infected laboratory mice with a mixture of two Plasmodium chabaudi clones: one virulent, the other avirulent. Using real-time quantitative PCR to track the two parasite clones over the course of the infection, we found that the virulent clone overgrew the avirulent clone. However, host genotype had a major effect on the outcome of competition. In a relatively resistant mouse genotype (C57B1/6J), the avirulent clone was suppressed below detectable levels after 10 days, and apparently lost from the infection. By contrast, in more susceptible mice (CBA/Ca), the avirulent clone was initially suppressed, but it persisted, and during the chronic phase of infection it did better than it did in single infections. Thus, the qualitative outcome of competition depended on host genotype. We suggest that these differences may be explained by different immune responses in the two mouse strains. Host genotype and resistance could therefore play a key role in the outcome of within-host competition between parasite clones and in the evolution of parasite virulence.  相似文献   

12.
Two Leishmania membrane glycoconjugates, gp63 and lipophosphoglycan, have been implicated in parasite attachment and uptake into the host macrophage. Moreover, recent data suggest that parasite virulence is associated with high expression of gp63. In this study we have surveyed gp63 gene copy number, in addition to the level of expression of gp63 mRNA and protein in several Leishmania major isolates, as well as virulent and avirulent strains and clones. The highest level of gp63 expression was found in the avirulent cloned line LRC-L119.3G7, which expresses about a 15-fold higher level of gp63 RNA and protein than the virulent cloned line LRC-L137/7/V121, suggesting that large amounts of gp63 are not sufficient for infectivity and do not correlate with virulence. L119.3G7 has eight copies of the gp63 gene compared to five copies in the virulent cloned line V121 and its parental virulent isolate LRC-L137. A series of avirulent clones derived from LRC-L137 also had five copies of the gene, suggesting that gp63 copy number is maintained among closely related parasites. Different virulent isolates of L. major from different geographic regions exhibited six copies of the gp63 gene. The variation in total gene copy number is due to different numbers of the tandemly repeated gp63 isogene in different strains. Our data show that there is wide variability between strains of L. major in the copy number of gp63 genes as well as in the amount of RNA and protein expressed.  相似文献   

13.
Polydnaviruses are rarely studied for their natural variation in immune suppressive abilities. The polydnavirus harboring braconid Cotesia sesamiae, a widespread endoparasitoid of Busseola fusca and Sesamia calamistis in sub-Saharan Africa exists as two biotypes. In Kenya, the western biotype completes development in B. fusca larvae. However, eggs of the coastal C. sesamiae are encapsulated in this host and ultimately, no parasitoids emerge from parasitized B. fusca larvae. Both biotypes develop successfully in S. calamistis larvae. Encapsulation activity by B. fusca larvae towards eggs of the avirulent C. sesamiae was detectable six hours post-parasitization. The differences in encapsulation of virulent and avirulent strains were associated with differences in nucleotide sequences and expression of a CrV1 polydnavirus (PDV) gene, which is associated with haemocyte inactivation in the Cotesia rubecula/Pieris rapae system. CrV1 expression was faint or absent in fat body and haemolymph samples from B. fusca parasitized by the avirulent C. sesamiae, which exhibited encapsulation of eggs. Expression was high in fat body and haemolymph samples from both B. fusca and S. calamistis larvae parasitized by the virulent C. sesamiae, encapsulation in the former peaking at the same time points as CrV1 expression in the latter. Non synonymous difference in CrV1 gene sequences between virulent and avirulent wasp suggests that variations in B. fusca parasitism by C. sesamiae may be due to qualitative differences in CrV1-haemocyte interactions.  相似文献   

14.
In parasites such as Leishmania, the study of molecular events induced in response to heat stress is of immense interest since temperature increase is an integral part of the life cycle. Protein phosphorylation is known to control major steps of proliferation and differentiation in eukaryotic cells. Studies on intracellular signaling systems in protozoa are relatively recent. We have examined the effect of heat shock on the protein phosphorylation status in promastigotes of Leishmania donovani. The patterns of total protein phosphorylation and specific phosphorylation at tyrosine residues were examined using [32P]-orthophosphate labelling of the parasites and immunoblotting with a monoclonal anti-phosphotyrosine antibody. The major proteins of L. donovani that were phosphorylated at 24 degrees C had apparent molecular weights of 110, 105, 66-68, 55, 36-40 and 20 kDa. Heat shock (from 24 to 37 degrees C) led to a significant decrease in phosphorylation of the majority of phosphoproteins in the virulent promastigotes. On the other hand, the avirulent promastigotes did not show any decrease in protein phosphorylation on exposure to heat stress. Predominant phosphorylation at tyrosine residues was detectable in proteins of putative size 105-110 kDa in both virulent and avirulent parasites. Heat shock led to a reduction in the level of phosphotyrosine in both these proteins in the case of virulent parasites, while no such reduction was detectable in avirulent parasites. Significant modifications in the phosphorylation status of proteins in response to heat stress including that of tyrosine containing proteins, observed exclusively in virulent parasites, suggest that modulation of protein phosphorylation/dephosphorylation may play a role in signal transduction pathways in the parasite upon heat shock encountered on entering the mammalian host.  相似文献   

15.
16.
17.
A virulent strain of Babesia bovis (“L” strain) was rendered avirulent by irradiation with 35 krads with a γ source. Another virulent strain of B. bovis (“C” strain) was made avirulent by rapid blood passage through 12 splenectomised calves. Both the parent virulent and their respective avirulent strains were injected into susceptible cattle. A nonfatal disease was observed in those intact cattle that had avirulent parasites; however, a fatal disease was produced in those animals that had received virulent parasites and in splenectomised calves that had received avirulent parasites. Blood kinin levels rose and plasma kininogen levels fell significantly in those animals infected with both virulent strains. Nonsignificant changes occurred with these parameters in animals infected with avirulent parasites. Preparations of disrupted parasites were obtained from the four parasite populations. Both virulent strains contained high levels of protease. The avirulent forms contained insignificant amounts. As parasite doubling times and maximum parasitaemias were the same for all four parasite populations, we conclude that these enzymes are not obligatory for parasite multiplication in the vertebrate host. Their role in producing pathological changes in the host is discussed.  相似文献   

18.
3,4-Dihydroxyphenylalanine, 5-6-dihydroxyindole, and N-acetylarterenone were detected by electrochemical methods in the hemolymph of immune reactive larvae of Drosophila melanogaster following parasitization by the wasp Leptopilina boulardi. Determinations of the catechols were made after separation by reverse phase, ion-pairing high pressure liquid chromatography with electrochemical detection. The presence of 5,6-dihydroxyindole unequivocally establishes the eumelanin pathway in the defense response of Drosophila, and confirms previous investigations which have implicated certain catecholamine metabolizing enzymes in insect immunity. The occurrence of N-acetylarterenone, a derivative of the principal sclerotizing agent N-acetyldopamine, verifies the existence and proposed involvement of quinone methide isomerase in the regulation of catecholamine metabolism, and suggests that the cellular capsule formed by Drosophila in immune reactions against parasites is most likely a composite of both eumelanin and sclerotin. The absence of 3,4-dihydroxyphenylacetic acid in hemolymph samples from immune reactive hosts suggests that during parasitization certain catecholamines and metabolic precursors may be re-employed in alternate pathways, some of which may be used in defense reactions.  相似文献   

19.
The position of mobile genetic elements (MGE) within eukaryotic genomes is often highly variable and we have exploited this phenomenon to develop a novel approach to strain differentiation in Toxoplasma gondii. Two PCR based strategies were designed in which specific primers were used to amplify T. gondii MGE's revealing information on element size and positional variation. The first PCR strategy involved the use of a standard two primer PCR while the second strategy used a single specific primer in a step-up PCR protocol. This approach was applied to T. gondii reference strains which were either acute virulent or avirulent to mice. The use of a standard two primer PCR reaction revealed the presence of a virulence related marker in which all avirulent strains possessed an additional 688 bp band. The single primer PCR strategy demonstrated that all virulent strains had identical banding patterns suggesting invariance within this group of strains. However, all avirulent strains had different banding patterns indicating the presence of a number of individual lineages within this group. The applicability and sensitivity of MGE-PCR in epidemiological studies was demonstrated by direct amplification of T. gondii from sheep tissue samples. All sheep isolates, tested in this way, gave identical banding patterns suggesting the presence of an endemic Toxoplasma strain on this farm.  相似文献   

20.
Nathan T Mortimer 《Fly》2013,7(4):242-248
In nature, larvae of the fruit fly Drosophila melanogaster are commonly infected by parasitoid wasps. Following infection, flies mount an immune response termed cellular encapsulation in which fly immune cells form a multilayered capsule that covers and kills the wasp egg. Parasitoids have thus evolved virulence factors to suppress cellular encapsulation. To uncover the molecular mechanisms underlying the antiwasp response, we and others have begun identifying and functionally characterizing these virulence factors. Our recent work on the Drosophila parasitoid Ganaspis sp.1 has demonstrated that a virulence factor encoding a SERCA-type calcium pump plays an important role in Ganaspis sp.1 virulence. This venom SERCA antagonizes fly immune cell calcium signaling and thereby prevents the activation of the encapsulation response. In this way, the study of wasp virulence factors has revealed a novel aspect of fly immunity, namely a role for calcium signaling in fly immune cell activation, which is conserved with human immunity, again illustrating the marked conservation between fly and mammalian immune responses. Our findings demonstrate that the cellular encapsulation response can serve as a model of immune cell function and can also provide valuable insight into basic cell biological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号