首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wen F  Zhou R  Shen A  Choi A  Uribe D  Shi J 《PloS one》2012,7(3):e34194
Deregulated translation plays an important role in human cancer. We previously reported decreased eukaryotic initiation factor 3 subunit f (eIF3f) expression in pancreatic cancer. Whether decreased eIF3f expression can transform normal epithelial cells is not known. In our current study, we found evidence that stable knockdown of eIF3f in normal human pancreatic ductal epithelial cells increased cell size, nuclear pleomorphism, cytokinesis defects, cell proliferation, clonogenicity, apoptotic resistance, migration, and formation of 3-dimensional irregular masses. Our findings support the tumor suppressive role of eIF3f in pancreatic cancer. Mechanistically, we found that eIF3f inhibited both cap-dependent and cap-independent translation. An increase in the ribosomal RNA (rRNA) level was suggested to promote the generation of cancer. The regulatory mechanism of rRNA degradation in mammals is not well understood. We demonstrated here that eIF3f promotes rRNA degradation through direct interaction with heterogeneous nuclear ribonucleoprotein (hnRNP) K. We showed that hnRNP K is required for maintaining rRNA stability: under stress conditions, eIF3f dissociates hnRNP K from rRNA, thereby preventing it from protecting rRNA from degradation. We also demonstrated that rRNA degradation occurred in non-P body, non-stress granule cytoplasmic foci that contain eIF3f. Our findings established a new mechanism of rRNA decay regulation mediated by hnRNP K/eIF3f and suggest that the tumor suppressive function of eIF3f may link to impaired rRNA degradation and translation.  相似文献   

2.
The plant viral re‐initiation factor transactivator viroplasmin (TAV) activates translation of polycistronic mRNA by a re‐initiation mechanism involving translation initiation factor 3 (eIF3) and the 60S ribosomal subunit (60S). QJ;Here, we report a new plant factor—re‐initiation supporting protein (RISP)—that enhances TAV function in re‐initiation. RISP interacts physically with TAV in vitro and in vivo. Mutants defective in interaction are less active, or inactive, in transactivation and viral amplification. RISP alone can serve as a scaffold protein, which is able to interact with eIF3 subunits a/c and 60S, apparently through the C‐terminus of ribosomal protein L24. RISP pre‐bound to eIF3 binds 40S, suggesting that RISP enters the translational machinery at the 43S formation step. RISP, TAV and 60S co‐localize in epidermal cells of infected plants, and eIF3–TAV–RISP–L24 complex formation can be shown in vitro. These results suggest that RISP and TAV bridge interactions between eIF3‐bound 40S and L24 of 60S after translation termination to ensure 60S recruitment during repetitive initiation events on polycistronic mRNA; RISP can thus be considered as a new component of the cell translation machinery.  相似文献   

3.
Xiao H  Xu LH  Yamada Y  Liu DX 《PloS one》2008,3(1):e1494
  相似文献   

4.
The mTORC1 pathway is required for both the terminal muscle differentiation and hypertrophy by controlling the mammalian translational machinery via phosphorylation of S6K1 and 4E-BP1. mTOR and S6K1 are connected by interacting with the eIF3 initiation complex. The regulatory subunit eIF3f plays a major role in muscle hypertrophy and is a key target that accounts for MAFbx function during atrophy. Here we present evidence that in MAFbx-induced atrophy the degradation of eIF3f suppresses S6K1 activation by mTOR, whereas an eIF3f mutant insensitive to MAFbx polyubiquitination maintained persistent phosphorylation of S6K1 and rpS6. During terminal muscle differentiation a conserved TOS motif in eIF3f connects mTOR/raptor complex, which phosphorylates S6K1 and regulates downstream effectors of mTOR and Cap-dependent translation initiation. Thus eIF3f plays a major role for proper activity of mTORC1 to regulate skeletal muscle size.  相似文献   

5.
The simultaneous interaction of poly(A)-binding protein (PABP) with eukaryotic translation initiation factor 4G (eIF4G) and the mRNA 3′ poly(A) tail promotes translation initiation. We previously showed that the interaction of PABP-interacting protein 1 (Paip1) with PABP and eukaryotic translation initiation factor 3 (eIF3; via the eIF3g subunit) further stimulates translation. Here, we demonstrate that the interaction of eIF3 with Paip1 is regulated by amino acids through the mTORC1 signaling pathway. The Paip1-eIF3 interaction is impaired by the mTORC1 inhibitors, rapamycin and PP242. We show that ribosomal protein S6 kinases 1 and 2 (S6K1/2) promote the interaction of eIF3 with Paip1. The enhancement of Paip1-eIF3 interaction by amino acids is abrogated by an S6K inhibitor or shRNA against S6K1/2. S6K1 interacts with eIF3f and, in vitro, phosphorylates eIF3. Finally, we show that S6K inhibition leads to a reduction in translation by Paip1. We propose that S6K1/2 phosphorylate eIF3 to stimulate Paip1-eIF3 interaction and consequent translation initiation. Taken together, these data demonstrate that eIF3 is a new translation target of the mTOR/S6K pathway.  相似文献   

6.
Holz MK  Ballif BA  Gygi SP  Blenis J 《Cell》2005,123(4):569-580
In response to nutrients, energy sufficiency, hormones, and mitogenic agents, S6K1 phosphorylates several targets linked to translation. However, the molecular mechanisms whereby S6K1 is activated, encounters substrate, and contributes to translation initiation are poorly understood. We show that mTOR and S6K1 maneuver on and off the eukaryotic initiation factor 3 (eIF3) translation initiation complex in a signal-dependent, choreographed fashion. When inactive, S6K1 associates with the eIF3 complex, while the S6K1 activator mTOR/raptor does not. Cell stimulation promotes mTOR/raptor binding to the eIF3 complex and phosphorylation of S6K1 at its hydrophobic motif. Phosphorylation results in S6K1 dissociation, activation, and subsequent phosphorylation of its translational targets, including eIF4B, which is then recruited into the complex in a phosphorylation-dependent manner. Thus, the eIF3 preinitiation complex acts as a scaffold to coordinate a dynamic sequence of events in response to stimuli that promote efficient protein synthesis.  相似文献   

7.
The GTP-binding eukaryotic translation initiation factor eIF2 delivers initiator methionyl-tRNA to the 40 S ribosomal subunit. The factor eIF5 stimulates hydrolysis of GTP by eIF2 upon AUG codon recognition, whereas the factor eIF2B promotes guanine nucleotide exchange on eIF2 to recycle the factor for additional rounds of translation initiation. The GTP-binding (G) domain resides in the gamma subunit of the heterotrimeric eIF2; however, only eIF2beta, and not eIF2gamma, has been reported to directly bind to eIF5 or eIF2B. Using proteins expressed in yeast or recombinant systems we show that full-length yeast eIF2gamma, as well as its isolated G domain, binds directly to eIF5 and the epsilon subunit of eIF2B, and we map the interaction sites to the catalytically important regions of these factors. Consistently, an internal deletion of residues 50-100 of yeast eIF5 impairs the interaction with recombinant eIF2gamma-G domain and abolishes the ability of eIF5 to stimulate eIF2 GTPase activity in translation initiation complexes in vitro. Thus, rather than allosterically regulating eIF2gamma-G domain function via eIF2beta, our data support a model in which the GTPase-activating factor eIF5 and the guanine-nucleotide exchange factor eIF2B modulate eIF2 function through direct interactions with the eIF2gamma-G domain.  相似文献   

8.
Ubiquitination of the CSF3R [CSF3 (colony-stimulating factor 3) receptor] occurs after activated CSF3Rs are internalized and reside in early endosomes. CSF3R ubiquitination is crucial for lysosomal routing and degradation. The E3 ligase SOCS3 (suppressor of cytokine signalling 3) has been shown to play a major role in this process. Deubiquitinating enzymes remove ubiquitin moieties from target proteins by proteolytic cleavage. Two of these enzymes, AMSH [associated molecule with the SH3 domain of STAM (signal transducing adaptor molecule)] and UBPY (ubiquitin isopeptidase Y), interact with the general endosomal sorting machinery. Whether deubiquitinating enzymes control CSF3R trafficking from early towards late endosomes is unknown. In the present study, we asked whether AMSH, UBPY or a murine family of deubiquitinating enzymes could fulfil such a role. This DUB family (deubiquitin enzyme family) comprises four members (DUB1, DUB1A, DUB2 and DUB2A), which were originally described as being haematopoietic-specific and cytokine-inducible, but their function in cytokine receptor routing and signalling has remained largely unknown. We show that DUB2A expression is induced by CSF3 in myeloid 32D cells and that DUB2 decreases ubiquitination and lysosomal degradation of the CSF3R, leading to prolonged signalling. These results support a model in which CSF3R ubiquitination is dynamically controlled at the early endosome by feedback mechanisms involving CSF3-induced E3 ligase (SOCS3) and deubiquitinase (DUB2A) activities.  相似文献   

9.
eIF3j is one of the eukaryotic translation factors originally reported as the labile subunit of the eukaryotic translation initiation factor eIF3. The yeast homolog of this protein, Hcr1, has been implicated in stringent AUG recognition as well as in controlling translation termination and stop codon readthrough. Using a reconstituted mammalian in vitro translation system, we showed that the human protein eIF3j is also important for translation termination. We showed that eIF3j stimulates peptidyl-tRNA hydrolysis induced by a complex of eukaryotic release factors, eRF1-eRF3. Moreover, in combination with the initiation factor eIF3, which also stimulates peptide release, eIF3j activity in translation termination increases. We found that eIF3j interacts with the pre-termination ribosomal complex, and eRF3 destabilises this interaction. In the solution, these proteins bind to each other and to other participants of translation termination, eRF1 and PABP, in the presence of GTP. Using a toe-printing assay, we determined the stage at which eIF3j functions – binding of release factors to the A-site of the ribosome before GTP hydrolysis. Based on these data, we assumed that human eIF3j is involved in the regulation of translation termination by loading release factors into the ribosome.  相似文献   

10.
Mammalian target‐of‐rapamycin (mTOR) triggers S6 kinase (S6K) activation to phosphorylate targets linked to translation in response to energy, nutrients, and hormones. Pathways of TOR activation in plants remain unknown. Here, we uncover the role of the phytohormone auxin in TOR signalling activation and reinitiation after upstream open reading frame (uORF) translation, which in plants is dependent on translation initiation factor eIF3h. We show that auxin triggers TOR activation followed by S6K1 phosphorylation at T449 and efficient loading of uORF‐mRNAs onto polysomes in a manner sensitive to the TOR inhibitor Torin‐1. Torin‐1 mediates recruitment of inactive S6K1 to polysomes, while auxin triggers S6K1 dissociation and recruitment of activated TOR instead. A putative target of TOR/S6K1—eIF3h—is phosphorylated and detected in polysomes in response to auxin. In TOR‐deficient plants, polysomes were prebound by inactive S6K1, and loading of uORF‐mRNAs and eIF3h was impaired. Transient expression of eIF3h‐S178D in plant protoplasts specifically upregulates uORF‐mRNA translation. We propose that TOR functions in polysomes to maintain the active S6K1 (and thus eIF3h) phosphorylation status that is critical for translation reinitiation.  相似文献   

11.
eIF3f is a subunit of eukaryotic initiation factor 3 (eIF3). We previously showed that eIF3f is phosphorylated by cyclin dependent kinase 11 (CDK11p46) which is an important effector in apoptosis. Here, we identified a second eIF3f phosphorylation site (Thr119) by CDK11p46 during apoptosis. We demonstrated that eIF3f is directly phosphorylated by CDK11p46 in vivo. Phosphorylation of eIF3f plays an important role in regulating its function in translation and apoptosis. Phosphorylation of eIF3f enhances the association of eIF3f with the core eIF3 subunits during apoptosis. Our data suggested that eIF3f may inhibit translation by increasing the binding to the eIF3 complex during apoptosis.

Structured summary

MINT-6948874: EIF3b (uniprotkb:P55884) physically interacts (MI:0218) with EIF3f (uniprotkb:O00303) by anti bait coimmunoprecipitation (MI:0006)MINT-6948891: EIF3b (uniprotkb:P55884) physically interacts (MI:0218) with EIF3c (uniprotkb:Q99613), EIF3a (uniprotkb:Q14152) and EIF3f (uniprotkb:O00303) by anti bait coimmunoprecipitation (MI:0006)MINT-6948836, MINT-6948849, MINT-6948862: CDK11p46 (uniprotkb:P21127) phosphorylates (MI:0217) EIF3f (uniprotkb:O00303) by protein kinase assay (MI:0424)  相似文献   

12.
The nonsegmented, negative-sense RNA genome of measles virus (MV) is encapsidated by the virus-encoded nucleocapsid protein (N). In this study, we searched for N-binding cellular proteins by using MV-N as bait and screening the human T-cell cDNA library by yeast two-hybrid assay and isolated the p40 subunit of eukaryotic initiation factor 3 (eIF3-p40) as a binding partner. The interaction between MV-N and eIF3-p40 in mammalian cells was confirmed by coimmunoprecipitation. Since eIF3-p40 is a translation initiation factor, we analyzed the potential inhibitory effect of MV-N on protein synthesis. Glutathione S-transferase (GST)-fused MV-N (GST-N) inhibited translation of reporter mRNAs in rabbit reticulocyte lysate translation system in a dose-dependent manner. Encephalomyocarditis virus internal ribosomal entry site-mediated translation, which requires canonical initiation factors to initiate translation, was also inhibited by GST-N. In contrast, a unique form of translation mediated by the intergenic region of Plautia stali intestine virus, which can assemble 80S ribosomes in the absence of canonical initiation factors, was scarcely affected by GST-N. In vivo expression of MV-N induced by the Cre/loxP switching system inhibited the synthesis of a transfected reporter protein, as well as overall protein synthesis. These results suggest that MV-N targets eIF3-p40 and may be involved in inhibiting MV-induced host translation.  相似文献   

13.
Translation initiation in eukaryotes is facilitated by the cap structure, m7GpppN (where N is any nucleotide). Eukaryotic translation initiation factor 4F (eIF4F) is a cap binding protein complex that consists of three subunits: eIF4A, eIF4E and eIF4G. eIF4G interacts directly with eIF4E and eIF4A. The binding site of eIF4E resides in the N-terminal third of eIF4G, while eIF4A and eIF3 binding sites are present in the C-terminal two-thirds. Here, we describe a new eukaryotic translational regulator (hereafter called p97) which exhibits 28% identity to the C-terminal two-thirds of eIF4G. p97 mRNA has no initiator AUG and translation starts exclusively at a GUG codon. The GUG-initiated open reading frame (907 amino acids) has no canonical eIF4E binding site. p97 binds to eIF4A and eIF3, but not to eIF4E. Transient transfection experiments show that p97 suppresses both cap-dependent and independent translation, while eIF4G supports both translation pathways. Furthermore, inducible expression of p97 reduces overall protein synthesis. These results suggest that p97 functions as a general repressor of translation by forming translationally inactive complexes that include eIF4A and eIF3, but exclude eIF4E.  相似文献   

14.
The eukaryotic translation initiation factor 2B (eIF2B) provides a fundamental controlled point in the pathway of protein synthesis. eIF2B is the heteropentameric guanine nucleotide exchange factor that converts eIF2, from an inactive guanosine diphosphate–bound complex to eIF2-guanosine triphosphate. This reaction is controlled in response to a variety of cellular stresses to allow the rapid reprogramming of cellular gene expression. Here we demonstrate that in contrast to other translation initiation factors, eIF2B and eIF2 colocalize to a specific cytoplasmic locus. The dynamic nature of this locus is revealed through fluorescence recovery after photobleaching analysis. Indeed eIF2 shuttles into these foci whereas eIF2B remains largely resident. Three different strategies to decrease the guanine nucleotide exchange function of eIF2B all inhibit eIF2 shuttling into the foci. These results implicate a defined cytoplasmic center of eIF2B in the exchange of guanine nucleotides on the eIF2 translation initiation factor. A focused core of eIF2B guanine nucleotide exchange might allow either greater activity or control of this elementary conserved step in the translation pathway.  相似文献   

15.
Role of eIF3a in regulating cell cycle progression   总被引:1,自引:0,他引:1  
Translational control is an essential process in regulation of gene expression, which occurs at the initiation step performed by a number of translation initiation factor complexes. eIF3a (eIF3 p170) is the largest subunit of the eIF3 complex. eIF3a has been suggested to play roles in regulating translation of a subset of mRNAs and in regulating cell cycle progression and cell proliferation. In this study, we examined the expression profile of eIF3a in cell cycle and its role in cell cycle progression. We found that eIF3a expression oscillated with cell cycle and peaked in S phase. Reducing eIF3a expression also reduced cell proliferation rate by elongating cell cycle but did not change the cell cycle distribution. However, eIF3a appears to play an important role in cellular responses to external cell cycle modulators likely by affecting synthesis of target proteins of these modulators.  相似文献   

16.
Previous studies have shown that subunits E (eIF3e), F (eIF3f) and H (elF3h) of eukaryotic translation initiation factor 3 play important roles in cell development in humans and yeast. eIF3e and eIF3h have also been reported to be important for normal cell growth in Arabidopsis. However, the functions of subunit eIF3f remain largely unknown in plant species. Here we report characterization of mutants for the Arabidopsis eIF3f (AteIF3f) gene. AteIF3f encodes a protein that is highly expressed in pollen grains, developing embryos and root tips, and interacts with Arabidopsis eIF3e and eIF3h proteins. A Ds insertional mutation in AteIF3f disrupted pollen germination and embryo development. Expression of some of the genes that are essential for pollen tube growth and embryogenesis is down‐regulated in ateif3f‐1 homozygous seedlings obtained by pollen rescue. These results suggested that AteIF3f might play important roles in Arabidopsis cell growth and differentiation in combination with eIF3e and eIF3h.  相似文献   

17.
Translation of the small G protein RhoA in neurons is regulated by the eukaryotic translation initiation factor eIF4E. Here we show that this translation factor also regulates RhoA expression and activity in breast cancer cells. The introduction of eIF4E into breast tumor cells increased RhoA protein levels, while expression of an eIF4E siRNA reduced RhoA expression. Previous studies indicate that the axon repulsion factor Semaphorin3A (Sema3A) stimulates the eIF4E-dependent translation of RhoA in neurons, and breast tumor cells support autocrine Sema3A signaling. Accordingly, we next examined if autocrine Sema3A signaling drives eIF4E-dependent RhoA translation in breast cancer cells. The incubation of breast tumor cells with recombinant Sema3A rapidly increased eIF4E activity, RhoA protein levels, and RhoA activity. This Sema3A activity was blocked in tumor cells expressing an shRNA-specific for the Sema3A receptor, Neuropilin-1 (NP-1), as well as in cells incubated with an eIF4E inhibitor. Importantly, RhoA protein levels were reduced in Sema3A shRNA-expressing compared to control shRNA-expressing breast tumor cells, demonstrating that autocrine Sema3A increases RhoA expression in breast cancer. Considering that Sema3A suppresses axon extension by stimulating RhoA translation, we next examined if the Sema3A/RhoA axis impacts breast tumor cell migration. The incubation of control breast tumor cells, but not RhoA shRNA-expressing cells, with rSema3A significantly reduced their migration. Collectively, these studies indicate that Sema3A impedes breast tumor cell migration in part by stimulating RhoA. These findings identify common signaling pathways that regulate the navigation of neurons and breast cancer cells, thus suggesting novel targets for suppressing breast tumor cell migration.  相似文献   

18.
Eukaryotic translation initiation factor 3 is composed of 13 subunits (eIF3a through eIF3m) and plays an essential role in translation. During apoptosis, several caspases rapidly down-regulate protein synthesis by cleaving eIF4G, -4B, -3j, and -2α. In this study, we found that the activation of caspases by cisplatin in T24 cells induces the cleavage of subunit G of the eIF3 complex (eIF3g). The cleavage site (SLRD220G) was identified, and we found that the cleaved N-terminus was translocated to the nucleus, activating caspase-3, and that it also showed a strong DNase activity. These data demonstrate the important roles of eIF3g in the translation initiation machinery and in DNA degradation during apoptosis.  相似文献   

19.
The murine int-6 locus, identified as a frequent integration site of mouse mammary tumor viruses, encodes the 48-kDa eIF3e subunit of translation initiation factor eIF3. Previous studies indicated that the catalytically active core of budding yeast eIF3 consists of five subunits, all conserved in eukaryotes, but does not contain a protein closely related to eIF3e/Int-6. Whereas the budding yeast genome does not encode a protein closely related to murine Int-6, fission yeast does encode an Int-6 ortholog, designated here Int6. We found that fission yeast Int6/eIF3e is a cytoplasmic protein associated with 40 S ribosomes. FLAG epitope-tagged Tif35, a putative core eIF3g subunit, copurified with Int6 and all five orthologs of core eIF3 subunits. An int6 deletion (int6Delta) mutant was viable but grew slowly in minimal medium. This slow growth phenotype was accompanied by a reduction in the amount of polyribosomes engaged in translation and was complemented by expression of human Int-6 protein. These findings support the idea that human and Schizosaccharomyces pombe Int-6 homologs are involved in translation. Interestingly, haploid int6Delta cells showed unequal nuclear partitioning, possibly because of a defect in tubulin function, and diploid int6Delta cells formed abnormal spores. We propose that Int6 is not an essential subunit of eIF3 but might be involved in regulating the activity of eIF3 for translation of specific mRNAs in S. pombe.  相似文献   

20.
Acute pancreatitis (AP) has been shown in some studies to inhibit total protein synthesis in the pancreas, whereas in other studies, protein synthesis was not affected. Previous in vitro work has shown that high concentrations of cholecystokinin both inhibit protein synthesis and inhibit the activity of the guanine nucleotide exchange factor eukaryotic initiation factor (eIF)2B by increasing the phosphorylation of eIF2alpha. We therefore evaluated in C57BL/6 mice the effects of caerulein-induced AP on pancreatic protein synthesis, eIF2B activity and other protein translation regulatory mechanisms. Repetitive hourly injections of caerulein were administered at 50 microg/kg ip. Pancreatic protein synthesis was reduced 10 min after the initial caerulein administration and was further inhibited after three and five hourly injections. Caerulein inhibited the two major regulatory points of translation initiation: the activity of the guanine nucleotide exchange factor eIF2B (with an increase of eIF2alpha phosphorylation) and the formation of the eIF4F complex due, in part, to degradation of eIF4G. This inhibition was not accounted for by changes in the upstream stimulatory pathway, because caerulein activated Akt as well as phosphorylating the downstream effectors of mTOR, 4E-BP1, and ribosomal protein S6. Caerulein also decreased the phosphorylation of the eukaryotic elongation factor 2, implying that this translation factor was not inhibited in AP. Thus the inhibition of pancreatic protein synthesis in this model of AP most likely results from the inhibition of translation initiation as a result of increased eIF2alpha phosphorylation, reduction of eIF2B activity, and the inhibition of eIF4F complex formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号