首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Under current global warming, high‐elevation regions are expected to experience faster warming than low‐elevation regions. However, due to the lack of studies based on long‐term large‐scale data, the relationship between tree spring phenology and the elevation‐dependent warming is unclear. Using 652k records of leaf unfolding of five temperate tree species monitored during 1951–2013 in situ in Europe, we discovered a nonlinear trend in the altitudinal sensitivity (SA, shifted days per 100 m in altitude) in spring phenology. A delayed leaf unfolding (2.7 ± 0.6 days per decade) was observed at high elevations possibly due to decreased spring forcing between 1951 and 1980. The delayed leaf unfolding at high‐elevation regions was companied by a simultaneous advancing of leaf unfolding at low elevations. These divergent trends contributed to a significant increase in the SA (0.36 ± 0.07 days 100/m per decade) during 1951–1980. Since 1980, the SA started to decline with a rate of ?0.32 ± 0.07 days 100/m per decade, possibly due to reduced chilling at low elevations and improved efficiency of spring forcing in advancing the leaf unfolding at high elevations, the latter being caused by increased chilling. Our results suggest that due to both different temperature changes at the different altitudes, and the different tree responses to these changes, the tree phenology has shifted at different rates leading to a more uniform phenology at different altitudes during recent decades.  相似文献   

3.
全球变化下植物物候研究的关键问题   总被引:3,自引:1,他引:3  
总结了全球变化下植物物候研究的主要进展,针对该领域国内外的几个热点问题进行了讨论。植物物候研究的重心从以前的野外观测和初步统计分析逐步过渡到以揭示物候周期的调控机制和环境效应为主,研究手段从植物物候对环境变化做出反应的表象描述转移到多尺度、多要素耦合关系的综合分析。随着学科交叉研究的不断深入,植物物候研究从植物个体及居群适应性研究转向植物物候变化对生态系统、气候演变、农业生产乃至人类健康等方面影响的系统评估。并且在该转变过程中出现了几个关键性问题,如不同温度带大气温度与光周期对植物物候期贡献力问题、植物物候变化对气候变暖的非线性响应特征、群落水平上植物物候研究的复杂性、以及农业生态系统中作物物候研究的重要性等。对我国植物物候研究现状和管理体系中亟待解决的问题提出了建议。  相似文献   

4.
Elevated CO2 and warming may alter terrestrial ecosystems by promoting invasive plants with strong community and ecosystem impacts. Invasive plant responses to elevated CO2 and warming are difficult to predict, however, because of the many mechanisms involved, including modification of phenology, physiology, and cycling of nitrogen and water. Understanding the relative and interactive importance of these processes requires multifactor experiments under realistic field conditions. Here, we test how free‐air CO2 enrichment (to 600 ppmv) and infrared warming (+1.5 °C day/3 °C night) influence a functionally and phenologically distinct invasive plant in semi‐arid mixed‐grass prairie. Bromus tectorum (cheatgrass), a fast‐growing Eurasian winter annual grass, increases fire frequency and reduces biological diversity across millions of hectares in western North America. Across 2 years, we found that warming more than tripled B. tectorum biomass and seed production, due to a combination of increased recruitment and increased growth. These results were observed with and without competition from native species, under wet and dry conditions (corresponding with tenfold differences in B. tectorum biomass), and despite the fact that warming reduced soil water. In contrast, elevated CO2 had little effect on B. tectorum invasion or soil water, while reducing soil and plant nitrogen (N). We conclude that (1) warming may expand B. tectorum's phenological niche, allowing it to more successfully colonize the extensive, invasion‐resistant northern mixed‐grass prairie, and (2) in ecosystems where elevated CO2 decreases N availability, CO2 may have limited effects on B. tectorum and other nitrophilic invasive species.  相似文献   

5.
Climatic warming has lengthened the photosynthetically active season in recent decades, thus affecting the functioning and biogeochemistry of ecosystems, the global carbon cycle and climate. Temperature response of carbon uptake phenology varies spatially and temporally, even within species, and daily total intensity of radiation may play a role. We empirically modelled the thresholds of temperature and radiation under which daily carbon uptake is constrained in the temperate and cold regions of the Northern Hemisphere, which include temperate forests, boreal forests, alpine and tundra biomes. The two-dimensionality of the temperature-radiation constraint was reduced to one single variable, θ, which represents the angle in a polar coordinate system for the temperature-radiation observations during the start and end of the growing season. We found that radiation will constrain the trend towards longer growing seasons with future warming but differently during the start and end of season and depending on the biome type and region. We revealed that radiation is a major factor limiting photosynthetic activity that constrains the phenology response to temperature during the end-of-season. In contrast, the start of the carbon uptake is overall highly sensitive to temperature but not constrained by radiation at the hemispheric scale. This study thus revealed that while at the end-of-season the phenology response to warming is constrained at the hemispheric scale, at the start-of-season the advance of spring onset may continue, even if it is at a slower pace.  相似文献   

6.
民勤荒漠区植物物候对气候变暖的响应   总被引:8,自引:0,他引:8  
近几十年来,全球气候普遍变暖.那么,荒漠地区的气候是不是响应了全球气候的这种变化?在全球气候变化过程中,荒漠区植物物候又是如何响应这种气候变化的呢?显然,研究荒漠地区植物物候对气候变化的响应对于深入研究荒漠植物物候与气候因子的关系以及荒漠地区的植物保护都具有重要意义.运用位于中国西北典型荒漠地区的民勤沙生植物园1974~2007年42种中生、旱生植物的物候观测资料进行分析.结果表明:研究区1974年以来气温抬升幅度大于其他文献的研究报道,春季物候期提前幅度明显大于其他国家文献报道;在气温变暖的过程中,不同月份的气温变化与年平均气温的变化趋势并不完全对应,物候期发生当月的平均气温对该物候期的影响>物候期发生上月平均气温>年平均气温;研究区位于中国典型荒漠化地区,属于干旱荒漠气候,春季气温升高较其他地区更加明显,这就是当地春季物候期提前幅度相对较大的原因所在,也是当地以及中国西北沙区近几十年来沙尘暴天气增多和沙尘暴发生日期提前的原因.植物物候变化既是植物对气候变化的综合反应过程,又是植物适应气候变化的过程,尤其是荒漠植物.因此,物候研究将会成为今后气候学和植物生态学研究的一个重要内容.  相似文献   

7.
Climate change affects peatlands directly through increased air temperatures and indirectly through changes in water‐table level (WL). The interactions of these two still remain poorly known. We determined experimentally the separate and interactive effects of temperature and WL regime on factors of relevance for the inputs to the carbon cycle: plant community composition, phenology, biomass production, and shoot:root allocation in two wet boreal sedge‐dominated fens, “southern” at 62°N and “northern” at 68°Ν. Warming (1.5°C higher average daily air temperature) was induced with open‐top chambers and WL drawdown (WLD; 3–7 cm on average) by shallow ditches. Total biomass production varied from 250 to 520 g/m2, with belowground production comprising 25%–63%. Warming was associated with minor effects on phenology and negligible effects on community composition, biomass production, and allocation. WLD clearly affected the contribution of different plant functional types (PFTs) in the community and the biomass they produced: shrubs benefited while forbs and mosses suffered. These responses did not depend on the warming treatment. Following WLD, aboveground biomass production decreased mainly due to reduced growth of mosses in the southern fen. Aboveground vascular plant biomass production remained unchanged but the contribution of different PFTs changed. The observed changes were also reflected in plant phenology, with different PFTs showing different responses. Belowground production increased following WLD in the northern fen only, but an increase in the contributions of shrubs and forbs was observed in both sites, while sedge contribution decreased. Moderate warming alone seems not able to drive significant changes in plant productivity or community composition in these wet ecosystems. However, if warming is accompanied by even modest WL drawdown, changes should be expected in the relative contribution of PFTs, which could lead to profound changes in the function of fens. Consequently, hydrological scenarios are of utmost importance when estimating their future function.  相似文献   

8.
The timing of the end of the vegetation growing season (EOS) plays a key role in terrestrial ecosystem carbon and nutrient cycles. Autumn phenology is, however, still poorly understood, and previous studies generally focused on few species or were very limited in scale. In this study, we applied four methods to extract EOS dates from NDVI records between 1982 and 2011 for the Northern Hemisphere, and determined the temporal correlations between EOS and environmental factors (i.e., temperature, precipitation and insolation), as well as the correlation between spring and autumn phenology, using partial correlation analyses. Overall, we observed a trend toward later EOS in ~70% of the pixels in Northern Hemisphere, with a mean rate of 0.18 ± 0.38 days yr?1. Warming preseason temperature was positively associated with the rate of EOS in most of our study area, except for arid/semi‐arid regions, where the precipitation sum played a dominant positive role. Interestingly, increased preseason insolation sum might also lead to a later date of EOS. In addition to the climatic effects on EOS, we found an influence of spring vegetation green‐up dates on EOS, albeit biome dependent. Our study, therefore, suggests that both environmental factors and spring phenology should be included in the modeling of EOS to improve the predictions of autumn phenology as well as our understanding of the global carbon and nutrient balances.  相似文献   

9.
Mountains, especially in the tropics, harbour a unique and large portion of the world''s biodiversity. Their geographical isolation, limited range size and unique environmental adaptations make montane species potentially the most threatened under impeding climate change. Here, we provide a global baseline assessment of geographical range contractions and extinction risk of high-elevation specialists in a future warmer world. We consider three dispersal scenarios for simulated species and for the world''s 1009 montane bird species. Under constrained vertical dispersal (VD), species with narrow vertical distributions are strongly impacted; at least a third of montane bird diversity is severely threatened. In a scenario of unconstrained VD, the location and structure of mountain systems emerge as a strong driver of extinction risk. Even unconstrained lateral movements offer little improvement to the fate of montane species in the Afrotropics, Australasia and Nearctic. Our results demonstrate the particular roles that the geography of species richness, the spatial structure of lateral and particularly vertical range extents and the specific geography of mountain systems have in determining the vulnerability of montane biodiversity to climate change. Our findings confirm the outstanding levels of biotic perturbation and extinction risk that mountain systems are likely to experience under global warming and highlight the need for additional knowledge on species'' vertical distributions, dispersal and adaptive capacities.  相似文献   

10.
Temporal advancement of resource availability by warming in seasonal environments can reduce reproductive success of vertebrates if their own reproductive phenology does not also advance with warming. Indirect evidence from large-scale analyses suggests, however, that migratory vertebrates might compensate for this by tracking phenological variation across landscapes. Results from our two-year warming experiment combined with seven years of observations of plant phenology and offspring production by caribou (Rangifer tarandus) in Greenland, however, contradict evidence from large-scale analyses. At spatial scales relevant to the foraging horizon of individual herbivores, spatial variability in plant phenology was reduced--not increased--by both experimental and observed warming. Concurrently, offspring production by female caribou declined with reductions in spatial variability in plant phenology. By highlighting the spatial dimension of trophic mismatch, these results reveal heretofore unexpected adverse consequences of climatic warming for herbivore population ecology.  相似文献   

11.
植物物候与气候研究进展   总被引:34,自引:1,他引:34  
植物物候及其变化是多个环境因子综合影响的结果,其中气候是最重要、最活跃的环境因子。主要从气候环境角度分析了植物物候与气候以及气候变化间的相互关系,概述了国内外有关植物物候及物候模拟等方面的研究进展。表明,温度是影响物候变化最重要的因子;同时,水分成为胁迫因子时对物候的影响也十分重要。近50a左右,世界范围内的植物物候呈现出了春季物候提前,秋季物候推迟或略有推迟的特征,从而导致了多数植物生长季节的延长,并成为全球物候变化的趋势。全球气候变暖改变了植物开始和结束生长的日期,其中冬季、春季气温的升高使植物的春季物候提前是植物生长季延长的主要原因。目前对物候学的研究方向主要集中在探讨物候与气候变化之间的关系,而模型模拟是定量研究气候变化与植物物候之间关系的重要方式,国内外已经开发出多种物候模型来分析气候驱动与物候响应之间的因果关系。另外遥感资料的应用也为物候模型研究提供了新的方向。物候机理研究、物候与气候关系以及物候模型研究将是研究的重点。  相似文献   

12.
New analyses are presented addressing the global impacts of recent climate change on phenology of plant and animal species. A meta‐analysis spanning 203 species was conducted on published datasets from the northern hemisphere. Phenological response was examined with respect to two factors: distribution of species across latitudes and taxonomic affiliation or functional grouping of target species. Amphibians had a significantly stronger shift toward earlier breeding than all other taxonomic/functional groups, advancing more than twice as fast as trees, birds and butterflies. In turn, butterfly emergence or migratory arrival showed three times stronger advancement than the first flowering of herbs, perhaps portending increasing asynchrony in insect–plant interactions. Response was significantly stronger at higher latitudes where warming has been stronger, but latitude explained < 4% of the variation. Despite expectation, latitude was not yet an important predictor of climate change impacts on phenology. The only two previously published estimates of the magnitude of global response are quite different: 2.3 and 5.1 days decade−1 advancement. The scientific community has assumed this difference to be real and has attempted to explain it in terms of biologically relevant phenomena: specifically, differences in distribution of data across latitudes, taxa or time periods. Here, these and other possibilities are explored. All analyses indicate that the difference in estimated response is primarily due to differences between the studies in criteria for incorporating data. It is a clear and automatic consequence of the exclusion by one study of data on ‘stable’ (nonresponsive) species. Once this is accounted for, the two studies support each other, generating similar conclusions despite analyzing substantially nonoverlapping datasets. Analyses here on a new expanded dataset estimate an overall spring advancement across the northern hemisphere of 2.8 days decade−1. This is the first quantitative analysis showing that data‐sampling methodologies significantly impact global (synthetic) estimates of magnitude of global warming response.  相似文献   

13.
Anthropogenic climate change has altered temperate forest phenology, but how these trends will play out in the future is controversial. We measured the effect of experimental warming of 0.6–5.0 °C on the phenology of a diverse suite of 11 plant species in the deciduous forest understory (Duke Forest, North Carolina, USA) in a relatively warm year (2011) and a colder year (2013). Our primary goal was to dissect how temperature affects timing of spring budburst, flowering, and autumn leaf coloring for functional groups with different growth habits, phenological niches, and xylem anatomy. Warming advanced budburst of six deciduous woody species by 5–15 days and delayed leaf coloring by 18–21 days, resulting in an extension of the growing season by as much as 20–29 days. Spring temperature accumulation was strongly correlated with budburst date, but temperature alone cannot explain the diverse budburst responses observed among plant functional types. Ring‐porous trees showed a consistent temperature response pattern across years, suggesting these species are sensitive to photoperiod. Conversely, diffuse‐porous species responded differently between years, suggesting winter chilling may be more important in regulating budburst. Budburst of the ring‐porous Quercus alba responded nonlinearly to warming, suggesting evolutionary constraints may limit changes in phenology, and therefore productivity, in the future. Warming caused a divergence in flowering times among species in the forest community, resulting in a longer flowering season by 10‐16 days. Temperature was a good predictor of flowering for only four of the seven species studied here. Observations of interannual temperature variability overpredicted flowering responses in spring‐blooming species, relative to our warming experiment, and did not consistently predict even the direction of flowering shifts. Experiments that push temperatures beyond historic variation are indispensable for improving predictions of future changes in phenology.  相似文献   

14.
Phenological responses to climate change have been widely observed and have profound and lasting effects on ecosystems and biodiversity. However, compared to terrestrial ecosystems, the long‐term effects of climate change on species’ phenology are poorly understood in aquatic ecosystems. Understanding the long‐term changes in fish reproductive phenology is essential for predicting population dynamics and for informing management strategies, but is currently hampered by the requirement for intensive field observations and larval identification. In this study, a very low‐frequency sampling of juveniles and adults combined with otolith measurements (long axis length of the first annulus; LAFA) of an endemic Tibetan Plateau fish (Gymnocypris selincuoensis) was used to examine changes in reproductive phenology associated with climate changes from the 1970s to 2000s. Assigning individual fish to their appropriate calendar year class was assisted by dendrochronological methods (crossdating). The results demonstrated that LAFA was significantly and positively associated with temperature and growing season length. To separate the effects of temperature and the growing season length on LAFA growth, measurements of larval otoliths from different sites were conducted and revealed that daily increment additions were the main contributor (46.3%), while temperature contributed less (12.0%). Using constructed water‐air temperature relationships and historical air temperature records, we found that the reproductive phenology of G. selincuoensis was strongly advanced in the spring during the 1970s and 1990s, while the increased growing season length in the 2000s was mainly due to a delayed onset of winter. The reproductive phenology of G. selincuoensis advanced 2.9 days per decade on average from the 1970s to 2000s, and may have effects on recruitment success and population dynamics of this species and other biota in the ecosystem via the food web. The methods used in this study are applicable for studying reproductive phenological changes across a wide range of species and ecosystems.  相似文献   

15.
植物物候对气候变化的响应   总被引:44,自引:6,他引:44  
陆佩玲  于强  贺庆棠 《生态学报》2006,26(3):929-929
植物物候的变化可以直观地反映某些气候变化,尤其是气候变暖.植物生长节律的变化引起植物与环境关系的改变.生态系统的物质循环(如水和碳的循环)等过程将随物候而改变.不同种类植物物候对气候变化的响应的差异,会使植物间和动植物间的竞争与依赖关系也发生深刻的变化.目前欧洲、美洲、亚洲等许多地区均有关于春季植物物候提前,秋季物候推迟,使植物的生长季延长,从而提示气候变暖的趋势.植物物候的模拟模型构成生态系统生产力模型的重要部分.  相似文献   

16.
In highly seasonal environments, offspring production by vertebrates is timed to coincide with the annual peak of resource availability. For herbivores, this resource peak is represented by the annual onset and progression of the plant growth season. As plant phenology advances in response to climatic warming, there is potential for development of a mismatch between the peak of resource demands by reproducing herbivores and the peak of resource availability. For migratory herbivores, such as caribou, development of a trophic mismatch is particularly likely because the timing of their seasonal migration to summer ranges, where calves are born, is cued by changes in day length, while onset of the plant-growing season on the same ranges is cued by local temperatures. Using data collected since 1993 on timing of calving by caribou and timing of plant growth in West Greenland, we document the consequences for reproductive success of a developing trophic mismatch between caribou and their forage plants. As mean spring temperatures at our study site have risen by more than 4 degrees C, caribou have not kept pace with advancement of the plant-growing season on their calving range. As a consequence, offspring mortality has risen and offspring production has dropped fourfold.  相似文献   

17.
Onset of spring starting earlier across the Northern Hemisphere   总被引:16,自引:0,他引:16  
Recent warming of Northern Hemisphere (NH) land is well documented and typically greater in winter/spring than other seasons. Physical environment responses to warming have been reported, but not details of large‐area temperate growing season impacts, or consequences for ecosystems and agriculture. To date, hemispheric‐scale measurements of biospheric changes have been confined to remote sensing. However, these studies did not provide detailed data needed for many investigations. Here, we show that a suite of modeled and derived measures (produced from daily maximum–minimum temperatures) linking plant development (phenology) with its basic climatic drivers provide a reliable and spatially extensive method for monitoring general impacts of global warming on the start of the growing season. Results are consistent with prior smaller area studies, confirming a nearly universal quicker onset of early spring warmth (spring indices (SI) first leaf date, ?1.2 days decade?1), late spring warmth (SI first bloom date, ?1.0 days decade?1; last spring day below 5°C, ?1.4 days decade?1), and last spring freeze date (?1.5 days decade?1) across most temperate NH land regions over the 1955–2002 period. However, dynamics differ among major continental areas with North American first leaf and last freeze date changes displaying a complex spatial relationship. Europe presents a spatial pattern of change, with western continental areas showing last freeze dates getting earlier faster, some central areas having last freeze and first leaf dates progressing at about the same pace, while in portions of Northern and Eastern Europe first leaf dates are getting earlier faster than last freeze dates. Across East Asia last freeze dates are getting earlier faster than first leaf dates.  相似文献   

18.
Wild fungi play a critical role in forest ecosystems, and its recollection is a relevant economic activity. Understanding fungal response to climate is necessary in order to predict future fungal production in Mediterranean forests under climate change scenarios. We used a 15‐year data set to model the relationship between climate and epigeous fungal abundance and productivity, for mycorrhizal and saprotrophic guilds in a Mediterranean pine forest. The obtained models were used to predict fungal productivity for the 2021–2080 period by means of regional climate change models. Simple models based on early spring temperature and summer–autumn rainfall could provide accurate estimates for fungal abundance and productivity. Models including rainfall and climatic water balance showed similar results and explanatory power for the analyzed 15‐year period. However, their predictions for the 2021–2080 period diverged. Rainfall‐based models predicted a maintenance of fungal yield, whereas water balance‐based models predicted a steady decrease of fungal productivity under a global warming scenario. Under Mediterranean conditions fungi responded to weather conditions in two distinct periods: early spring and late summer–autumn, suggesting a bimodal pattern of growth. Saprotrophic and mycorrhizal fungi showed differences in the climatic control. Increased atmospheric evaporative demand due to global warming might lead to a drop in fungal yields during the 21st century.  相似文献   

19.
The Hadley Centre coupled climate-carbon cycle model (HadCM3LC) predicts loss of the Amazon rainforest in response to future anthropogenic greenhouse gas emissions. In this study, the atmospheric component of HadCM3LC is used to assess the role of simulated changes in mid-twenty-first century sea surface temperature (SST) in Amazon Basin climate change. When the full HadCM3LC SST anomalies (SSTAs) are used, the atmosphere model reproduces the Amazon Basin climate change exhibited by HadCM3LC, including much of the reduction in Amazon Basin rainfall. This rainfall change is shown to be the combined effect of SSTAs in both the tropical Atlantic and the Pacific, with roughly equal contributions from each basin. The greatest rainfall reduction occurs from May to October, outside of the mature South American monsoon (SAM) season. This dry season response is the combined effect of a more rapid warming of the tropical North Atlantic relative to the south, and warm SSTAs in the tropical east Pacific. Conversely, a weak enhancement of mature SAM season rainfall in response to Atlantic SST change is suppressed by the atmospheric response to Pacific SST. This net wet season response is sufficient to prevent dry season soil moisture deficits from being recharged through the SAM season, leading to a perennial soil moisture reduction and an associated 30% reduction in annual Amazon Basin net primary productivity (NPP). A further 23% NPP reduction occurs in response to a 3.5 degrees C warmer air temperature associated with a global mean SST warming.  相似文献   

20.
1. Both the clearance rates (CR) and abundances of the freshwater sponge Ephydatia muelleri and the bryozoans Plumatella emarginata and Fredericella sultana were investigated from autumn to spring under different temperature regimes. The experiments were performed in bypass channels of the River Rhine (Cologne, Germany) in which temperature could be manipulated. 2. The impact of temperature increase on CRs depends upon the grazer: E. muelleri showed a clear increase in CRs with increasing temperature whereas P. emarginata was not significantly affected by experimental warming. 3. Distinct differences in food preference were found for the sponge (which is an efficient grazer of bacteria and small algae) and for the bryozoan P. emarginata (which feeds primarily on large algae, and with no significant grazing on bacteria). 4. In contrast to their temperature‐related patterns in CR, respiration of both P. emarginata and E. muelleri increased with temperature between 19 and 32 °C, suggesting that the risk of experiencing energy deficiency at high temperatures due to increased metabolic rates is particularly high for the bryozoan. 5. A temperature elevation of 3 °C above the natural Rhine temperature resulted in a delay in the disappearance of active tissue and formation of resting stages for E. muelleri in autumn. This delay ranged from 8 (beginning of gemmulation) to 22 days (termination of gemmulation). In contrast, there was no distinct effect of warming on the disappearance of active zooids of the two bryozoan species in autumn. However, warming can positively affect the maintenance of active zooids during winter in F. sultana. In spring, the appearance of active zooids of P. emarginata was clearly stimulated by temperature elevations, whereas the hatching of both F. sultana and E. muelleri was hardly affected by warming. 6. The study demonstrated different patterns in the thermal ecology of the two freshwater bryozoans and the sponge in comparison to other filter feeders, particularly mussels. Such patterns need to be considered when predicting the impact of temperature on pelagic‐benthic coupling in aquatic habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号