首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The murine frontal bone derives entirely from the cranial neural crest (CNC) and consists of the calvarial (lateral) aspect that covers the frontal lobe of brain and the orbital aspect that forms the roof of bony orbit. TGFbeta and FGF signaling have important regulatory roles in postnatal calvarial development. Our previous study has demonstrated that conditional inactivation of Tgfbr2 in the neural crest results in severe defects in calvarial development, although the cellular and molecular mechanisms by which TGFbeta signaling regulates the fate of CNC cells during frontal bone development remain unknown. Here, we show that TGFbeta IIR is required for proliferation of osteoprogenitor cells in the CNC-derived frontal bone anlagen. FGF acts downstream of TGFbeta signaling in regulating CNC cell proliferation, and exogenous FGF2 rescues the cell proliferation defect in the frontal primordium of Tgfbr2 mutant. Furthermore, the CNC-derived frontal primordium requires TGFbeta IIR to undergo terminal differentiation. However, this requirement is restricted to the developing calvarial aspect of the frontal bone, whereas the orbital aspect forms despite the ablation of Tgfbr2 gene, implying a differential requirement for TGFbeta signaling during the development of various regions of the frontal bone. This study demonstrates the biological significance of TGFbeta-mediated FGF signaling cascade in regulating frontal bone development, suggests that TGFbeta functions as a morphogen in regulating the fate of the CNC-derived osteoblast and provides a model for investigating abnormal craniofacial development.  相似文献   

2.
3.
We examined the role of Delta signaling in specification of two derivatives in zebrafish neural plate: Rohon-Beard spinal sensory neurons and neural crest. deltaA-expressing Rohon-Beard neurons are intermingled with premigratory neural crest cells in the trunk lateral neural plate. Embryos homozygous for a point mutation in deltaA, or with experimentally reduced delta signalling, have supernumerary Rohon-Beard neurons, reduced trunk-level expression of neural crest markers and lack trunk neural crest derivatives. Fin mesenchyme, a putative trunk neural crest derivative, is present in deltaA mutants, suggesting it segregates from other neural crest derivatives as early as the neural plate stage. Cranial neural crest derivatives are also present in deltaA mutants, revealing a genetic difference in regulation of trunk and cranial neural crest development.  相似文献   

4.
5.
Mandibular osteoblasts originate from the neural crest and deposit bone intramembranously, mesoderm derived tibial osteoblasts by endochondral mechanisms. Bone synthesized by both cell types is identical in structure, yet functional differences between the two cell types may exist. Thus, both matched juvenile and adult mandibular and tibial osteoblasts were studied regarding their proliferative capacity, their osteogenic potential and the expression of osteogenic and origin related marker genes. Juvenile tibial cells proliferated at the highest rate while juvenile mandibular cells exhibited higher ALP activity depositing more mineralized matrix. Expression of Hoxa4 in tibial cells verified their mesodermal origin, whereas very low levels in mandibular cells confirmed their ectodermal descent. Distinct differences in the expression pattern of bone development related genes (collagen type I, osteonectin, osteocalcin, Runx2, MSX1/2, TGF-β1, BAMBI, TWIST1, β-catenin) were found between the different cell types. The distinct dissimilarities in proliferation, alkaline phosphatase activity, the expression of characteristic genes, and mineralization may aid to explain the differences in bone healing time observed in mandibular bone when compared to long bones of the extremities.  相似文献   

6.
The microenvironment created by grafting rostral somitic halves in place of normal somites leads to the formation of nonsegmented peripheral ganglia (Kalcheim and Teillet, 1989; Goldstein and Kalcheim, 1991) and is mitogenic for neural crest (NC) cells that become dorsal root ganglia (DRG) (Goldstein et al., 1990). We have now extended these studies by using three surgical manipulations to determine how additional mesodermal tissues affected DRG growth in chick embryos. The following experimental manipulations were performed: (1) unilateral deletion of epithelial somites, similar deletions followed by replacing the somites with (2) a three-dimensional collagen matrix, or (3) fragments of quail lateral plate mesoderm. When somites were absent or replaced by collagen matrix, ganglia were unsegmented, and their volumes were decreased by 21% and 12%, respectively, compared to contralateral intact DRG. In contrast, when lateral plate mesoderm was transplanted in place of somitic mesoderm, NC cells migrated into the grafted mesoderm and formed unsegmented DRG whose volumes were increased by 62.6% compared to the contralateral ganglia. These results suggest that although DRG precursors do not require sclerotome to begin migration and condensation processes, DRG size is modulated by the properties of the mesoderm. Permissiveness to migration is positively correlated with an increase in DRG volume. This volume increase observed in grafts of lateral plate mesoderm is likely to result from enhanced proliferation of neural crest progenitors, previously demonstrated for DRG cells in rostral somitic grafts.  相似文献   

7.
Bone repair is a major concern in reconstructive surgery. Transplants containing osteogenically committed mesenchymal stem cells (MSCs) provide an alternative source to the currently used autologous bone transplants which have limited supply and require additional surgery to the patient. A major drawback, however is the lack of a critical mass of cells needed for successful transplantation. The purpose of the present study was to test the effects of FGF2 and FGF9 on expansion and differentiation of MSCs in order to establish an optimal culture protocol resulting in sufficient committed osteogenic cells required for successful in vivo transplantation. Bone marrow-derived MSCs cultured in αMEM medium supplemented with osteogenic supplements for up to three passages (control medium), were additionally treated with FGF2 and FGF9 in various combinations. Cultures were evaluated for viability, calcium deposition and in vivo osteogenic capacity by testing subcutaneous transplants in nude mice. FGF2 had a positive effect on the proliferative capacity of cultured MSCs compared to FGF9 and control medium treated cultures. Cultures treated with FGF2 followed by FGF9 showed an increased amount of extracted Alizarin red indicating greater osteogenic differentiation. Moreover, the osteogenic capacity of cultured cells transplanted in immunodeficient mice revealed that cells that were subjected to treatment with FGF2 in the first two passages and subsequently to FGF9 in the last passage only, were more successful in forming new bone. It is concluded that the protocol using FGF2 prior to FGF9 is beneficial to cell expansion and commitment, resulting in higher in vivo bone formation for successful bone tissue engineering.  相似文献   

8.
9.
10.
Heparan sulfate (HS) has been implicated in regulating cell fate decisions during differentiation of embryonic stem cells (ESCs) into advanced cell types. However, the necessity and the underlying molecular mechanisms of HS in early cell lineage differentiation are still largely unknown. In this study, we examined the potential of EXT1(-/-) mouse ESCs (mESCs), that are deficient in HS, to differentiate into primary germ layer cells. We observed that EXT1(-/-) mESCs lost their differentiation competence and failed to differentiate into Pax6(+)-neural precursor cells and mesodermal cells. More detailed analyses highlighted the importance of HS for the induction of Brachyury(+) pan-mesoderm as well as normal gene expression associated with the dorso-ventral patterning of mesoderm. Examination of developmental cell signaling revealed that EXT1 ablation diminished FGF and BMP but not Wnt signaling. Furthermore, restoration of FGF and BMP signaling each partially rescued mesoderm differentiation defects. We further show that BMP4 is more prone to degradation in EXT1(-/-) mESCs culture medium compared with that of wild type cells. Therefore, our data reveal that HS stabilizes BMP ligand and thereby maintains the BMP signaling output required for normal mesoderm differentiation. In summary, our study demonstrates that HS is required for ESC pluripotency, in particular lineage specification into mesoderm through facilitation of FGF and BMP signaling.  相似文献   

11.
The neural crest is a transient population of multipotent progenitors arising at the lateral edge of the neural plate in vertebrate embryos. After delamination and migration from the neuroepithelium, these cells contribute to a diverse array of tissues including neurons, smooth muscle, craniofacial cartilage, bone cells, endocrine cells and pigment cells. Considerable progress in recent years has furthered our understanding at a molecular level of how this important group of cells is generated and how they are assigned to specific lineages. Here we review a number of recent studies supporting a role for Wnt signaling in neural crest induction, differentiation, and apoptosis. We also summarize the timing of expression of a number of Wnt ligands and receptors with respect to neural crest induction.  相似文献   

12.
NOTCH signaling plays a key role in cell fate determination in both vertebrates and invertebrates. It is well known that Su(H)/RBP-J is a major mediator of NOTCH signaling. In a previous study, it was shown that NOTCH signaling was involved in cranial neural crest formation in avian embryos. However, Su(H)/RBP-J activity did not appear to be required in this process. In this study, the Deltex/Dtx gene was focussed on as a potential mediator of NOTCH signaling in neural crest formation. At the time of neural crest formation, quail Deltex2 was expressed throughout the ectoderm. Misexpression of a dominant-negative form of Deltex in the ectoderm caused reduced expression of Slug, a neural crest marker. Dominant-negative Deltex expression reduced the expression of Bmp4, a neural crest inducer, whereas co-transfection of Bmp4 with dominant-negative Deltex rescued Slug expression. In parallel, Hairy2 expression in the epidermis was regulated by a Su(H)-dependent pathway. These results indicate that NOTCH signaling has dual functions mediated by either Su(H) or Deltex in the avian embryonic ectoderm.  相似文献   

13.
Understanding the molecular events that govern neural progenitor lineage commitment, mitotic arrest, and differentiation into functional progeny are germane to our understanding of neocortical development. Members of the family of bone morphogenetic proteins (BMPs) play pivotal roles in regulating neural differentiation and apoptosis during neurogenesis through combined actions involving Smad and TAK1 activation. We demonstrate that BMP signaling is required for the induction of apoptosis of neural progenitors and that NRAGE is a mandatory component of the signaling cascade. NRAGE possesses the ability to bind and function with the TAK1-TAB1-XIAP complex facilitating the activation of p38. Disruption of NRAGE or any other member of the noncanonical signaling cascaded is sufficient to block p38 activation and thus the proapoptotic signals generated through BMP exposure. The function of NRAGE is independent of Smad signaling, but the introduction of a dominant-negative Smad5 also rescues neural progenitor apoptosis, suggesting that both canonical and noncanonical pathways can converge and regulate BMP-mediated apoptosis. Collectively, these results establish NRAGE as an integral component in BMP signaling and clarify its role during neural progenitor development.  相似文献   

14.
The mechanisms underlying the inverse relationship between osteogenic and adipogenic differentiation of bone marrow stromal cells (MSC) are not known in detail. We have previously established two cell lines from mouse bone marrow that are committed to either osteogenic (osteoblasts and chondrocytes) (mMSCBone) or adipogenic (mMSCAdipo) lineage. To identify the molecular mechanism determining the lineage commitment, we compared the basal gene expression profile of mMSCBone versus mMSCAdipo using Affymetrix GeneChip® MG430A 2.0 Array. Gene annotation analysis based on biological function revealed an over-representation of skeletal development genes in mMSCBone while genes related to lipid metabolism and immune response were highly expressed in mMSCAdipo. In addition, there was a significant up-regulation of canonical Wnt signalling genes in mMSCBone compared to mMSCAdipo (p < 0.006). Dual-luciferase assay and expression analysis of genes related to Wnt signalling demonstrated significant activation of Wnt signalling pathway in mMSCBone compared to mMSCAdipo. Reduced Wnt activity in mMSCAdipo was associated with increased expression of the Wnt inhibitor, secreted frizzled-related protein 1 (sFRP-1) at both mRNA and protein levels in mMSCAdipo. Interestingly, conditioned medium (CM) collected from mMSCAdipo (mMSC-CMAdipo) inhibited osteoblast differentiation of mMSC, while depletion of sFRP-1 protein from mMSC-CMAdipo abolished its inhibitory effect on osteoblast differentiation. Furthermore, treatment of mMSC with recombinant sFRP-1 resulted in a dose-dependent inhibition of osteoblast and stimulation of adipocyte differentiation. In conclusion, cross-talk exists between different populations of MSC in the bone marrow, and Wnt signalling functions as a molecular switch that determines the balance between osteoblastogenesis and adipogenesis.  相似文献   

15.
Transforming growth factor-beta (TGF-beta) is known to regulate chondrocyte proliferation and hypertrophic differentiation in embryonic bone cultures by a perichondrium dependent mechanism. To begin to determine which factors in the perichondrium mediate the effects of TGF-beta, we studied the effect of Insulin-like Growth Factor-1 (IGF-I) and Fibroblast Growth Factors-2 and -18 (FGF2, FGF18) on metatarsal organ cultures. An increase in chondrocyte proliferation and hypertrophic differentiation was observed after treatment with IGF-I. A similar effect was seen after the perichondrium was stripped from the metatarsals suggesting IGF-I acts directly on the chondrocytes. Treatment with FGF-2 or FGF-18 resulted in a decrease in bone elongation as well as hypertrophic differentiation. Treatment also resulted in a decrease in BrdU incorporation into chondrocytes and an increase in BrdU incorporation in perichondrial cells, similar to what is seen after treatment with TGF-beta1. A similar effect was seen with FGF2 after the perichondrium was stripped suggesting that, unlike TGF-beta, FGF2 acts directly on chondrocytes to regulate proliferation and hypertrophic differentiation. To test the hypothesis that TGF-beta regulates IGF or FGF signaling, activation of the receptors was characterized after treatment with TGF-beta. Activation was measured as the level of tyrosine phosphorylation on the receptor. Treatment with TGF-beta for 24h did not alter the level of IGFR-I tyrosine phosphorylation. In contrast, treatment with TGF-beta resulted in and increase in tyrosine phosphorylation on FGFR3 without alterations in total FGFR3 levels. TGF-beta also stimulated expression of FGF18 mRNA in the cultures and the effects of TGF-beta on metatarsal development were blocked or partially blocked by pretreatment with FGF signaling inhibitors. The results suggest a model in which FGF through FGFR3 mediates some of the effects of TGF-beta on embryonic bone formation.  相似文献   

16.
17.
18.
In higher vertebrates, branchial arch mesenchyme (ectomesenchyme) is derived from the cephalic neural crest. The ectomesenchyme of the mandibular arch yields the Meckel's cartilage and several membrane bones. We previously reported the isolation of a quail homeobox gene, Quox 7. In common with its mouse counterpart Hox 7, Quox 7 is highly expressed in the medioventral part of the mandibular arch and later in the precursor cells of the membrane bones. Since bone differentiation from ectomesenchyme is strictly dependent upon a signal provided by the mandibular epithelium, we decided to see whether the regulation of Quox 7 gene activity might be correlated with epithelio--mesenchymal interactions. Quox 7 expression was studied in E3 mandibular ectomesenchyme cultured in vitro or grafted on the chick chorioallantoic membrane either alone or recombined with the homotopic and heterotopic epithelia. We found that Quox 7 mRNA was undetectable after 48 h in cultures of mesenchyme alone while it remained abundant in non-cartilaginous tissue of the mandibular arch ectomesenchyme recombined with its own epithelium. The signal provided by the mandibular epithelium for Quox 7 expression can also arise from various heterotopic epithelia, e.g. of dorsal or ventral body wall and of limb bud. Thus the effect of the epithelium on Quox 7 expression in mesenchymal cells strictly parallels that on bone formation. These results strongly suggest that the epithelio-mesenchymal interactions have an essential role on the regulation of Quox 7 gene, the product of which seems to be, in turn, necessary for the execution of the skeletal developmental program in the facial area.  相似文献   

19.
Coordination between functionally related adjacent tissues is essential during development. For example, formation of trunk neural crest cells (NCCs) is highly influenced by the adjacent mesoderm, but the molecular mechanism involved is not well understood. As part of this mechanism, fibroblast growth factor (FGF) and retinoic acid (RA) mesodermal gradients control the onset of neurogenesis in the extending neural tube. In this paper, using gain- and loss-of-function experiments, we show that caudal FGF signaling prevents premature specification of NCCs and, consequently, premature epithelial-mesenchymal transition (EMT) to allow cell emigration. In contrast, rostrally generated RA promotes EMT of NCCs at somitic levels. Furthermore, we show that FGF and RA signaling control EMT in part through the modulation of elements of the bone morphogenetic protein and Wnt signaling pathways. These data establish a clear role for opposition of FGF and RA signaling in control of the timing of NCC EMT and emigration and, consequently, coordination of the development of the central and peripheral nervous system during vertebrate trunk elongation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号