首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We developed genetically encoded RNA probes for characterizing localization and dynamics of mitochondrial RNA (mtRNA) in single living cells. The probes consist of two RNA-binding domains of PUMILIO1, each connected with split fragments of a fluorescent protein capable of reconstituting upon binding to a target RNA. We designed the probes to specifically recognize a 16-base sequence of mtRNA encoding NADH dehydrogenase subunit 6 (ND6) and to be targeted into the mitochondrial matrix, which allowed real-time imaging of ND6 mtRNA localization in living cells. We showed that ND6 mtRNA is localized within mitochondria and concentrated particularly on mitochondrial DNA (mtDNA). Movement of the ND6 mtRNA is restricted but oxidative stress induces the mtRNA to disperse in the mitochondria and gradually decompose. These probes provide a means to study spatial and temporal mRNA dynamics in intracellular compartments in living mammalian cells.  相似文献   

3.
The ATP-dependent Lon protease belongs to a unique group of proteases that bind DNA. Eukaryotic Lon is a homo-oligomeric ring-shaped complex localized to the mitochondrial matrix. In vitro, human Lon binds specifically to a single-stranded GT-rich DNA sequence overlapping the light strand promoter of human mitochondrial DNA (mtDNA). We demonstrate that Lon binds GT-rich DNA sequences found throughout the heavy strand of mtDNA and that it also interacts specifically with GU-rich RNA. ATP inhibits the binding of Lon to DNA or RNA, whereas the presence of protein substrate increases the DNA binding affinity of Lon 3.5-fold. We show that nucleotide inhibition and protein substrate stimulation coordinately regulate DNA binding. In contrast to the wild type enzyme, a Lon mutant lacking both ATPase and protease activity binds nucleic acid; however, protein substrate fails to stimulate binding. These results suggest that conformational changes in the Lon holoenzyme induced by nucleotide and protein substrate modulate the binding affinity for single-stranded mtDNA and RNA in vivo. Co-immunoprecipitation experiments show that Lon interacts with mtDNA polymerase gamma and the Twinkle helicase, which are components of mitochondrial nucleoids. Taken together, these results suggest that Lon participates directly in the metabolism of mtDNA.  相似文献   

4.
5.
The replication of human mitochondrial DNA (mtDNA) is initiated from a pair of displaced origins, one priming continuous synthesis of daughter-strand DNA from the heavy strand (OH) and the other priming continuous synthesis from the light strand (OL). In patients with sporadic large-scale rearrangements of mitochondrial DNA (i.e., partially-deleted [Delta-mtDNA] and partially-duplicated [dup-mtDNA] molecules), the dup-mtDNAs typically contain extra origins of replication, but it is unknown at present whether they are competent for initiation of replication. Using cybrids harboring each of two types of dup-mtDNAs-one containing two OHs and two OLs, and one containing two OHs and one OL-we used ligation-mediated polymerase chain reaction (LMPCR) to measure the presence and relative amounts of nascent heavy strands originating from each OH. We found that the nascent heavy strands originated almost equally from the two OHs in each cell line, indicating that the extra OH present on a partially duplicated mtDNA is competent for heavy strand synthesis. This extra OH could potentially confer a replicative advantage to dup-mtDNAs, as these molecules may have twice as many opportunities to initiate replication compared to wild-type (or partially deleted) molecules.  相似文献   

6.
Heterogeneous mitochondrial DNA D-loop sequences in bovine tissue   总被引:23,自引:0,他引:23  
  相似文献   

7.
8.
Summary The gene organization of starfish mitochondrial DNA is identical with that of the sea urchin counterpart except for a reported inversion of an approximately 4.6-kb segment containing two structural genes for NADH dehydrogenase subunits 1 and 2 (ND 1 and ND 2). When the codon usage of each structural gene in starfish, sea urchin, and vertebrate mitochondrial DNAs is examined, it is striking that codons ending in T and G are preferentially used more for heavy strand-encoded genes, including starfish ND 1 and ND 2, than for light strand-encoded genes, including sea urchin ND 1 and ND 2. On the contrary, codons ending in A and Care preferentially used for the light strand-encoded genes rather than for the heavy strand-encoded ones. Moreover, G-U base pairs are more frequently found in the possible secondary structures of heavy strandencoded tRNAs than in those of light strand-encoded tRNAs. These observations suggest the existence of a certain constraint operating on mitochondrial genomes from various animal phyla, which results in the accumulation of G and T on one strand, and A and C on the other.  相似文献   

9.
麦穗鱼线粒体基因组序列测定及分析   总被引:1,自引:0,他引:1  
利用麦穗鱼Pseudorasbora parva和相关鱼类的部分线粒体基因序列,设计出2对长批引物和30对短批引物,采用基于长PCR的2次PCR扩增法测定并注释麦穗鱼线粒体基因组全序列。结果表明,麦穗鱼线粒体基因组长16600bp,A+T含量为58.9%,37个基因位置及组成与其它硬骨鱼一致,均由13个蛋白编码基因、22个tRNA、2个rRNA基因和1个控制区(D-loop)组成。其中L链仅含8个tRNA(Pro、T yr、Ser、Ala、Asn、Cys、Glu、Gln)及ND6基因,其余基因皆由H链编码。基因排列紧密,间隔序列共计13处64bp,长度从1~32bp不等;基因重叠区7处23bp,重叠碱基数在1~7bp之间。13个蛋白编码基因中,除COI起始密码子为GTG外,其余均以ATG为起始密码子;有8个基因(ND1、ND2、COI、ATP6、ATP8、ND4L、ND5、ND6)3’端有完全的TAA或TAG终止密码子,其它5个基因终止密码子为不完整的TA(ND3和ND4)或T(COⅡ,COⅢ,Cyt b)。除tRNASer(AGY)外,其余21个tRNA基因的二级结构均为典型的三叶草结构。预测的lrRNA二级结构共有6个结构域,53个茎环结构,srRNA二级结构包含43个茎环结构。控制区(D-loop)存在3个结构区:终止序列区(TAS)、中央保守区(CSB-F、CSB-D)和保守序列区(CSB-1、CSB-2、CSB-3),其中TAS与DNA复制终止相关,出现茎环结构。  相似文献   

10.
Human mitochondrial DNA contains two physically separate and distinct origins of DNA replication. The initiation of each strand (heavy and light) occurs at a unique site and elongation proceeds unidirectionally. Animal mitochondrial DNA is novel in that short nascent strands are maintained at one origin (D-loop) in a significant percentage of the molecules. In the case of human mitochondrial DNA, there are three distinct D-loop heavy strands differing in length at the 5' end. We report here the localization of the 5' ends of nascent daughter heavy strands originating from the D-loop region. Analyses of the map positions of 5' ends relative to known restriction endonuclease cleavage sites and 5' end nucleotides indicate that the points of initiation of D-loop synthesis and actual daughter strands are the same. In contrast, the second origin is located two-thirds of the way around the genome where light strand synthesis is presumably initiated on a single-stranded template. Mapping of 5' ends of daughter light strands at this origin relative to known restriction endonuclease cleavage sites reveals two distinct points of initiation separated by 37 nucleotides. This origin is in the same relative genomic position and shows a high degree of DNA sequence homology to that of mouse mitochondrial DNA. In both cases, the DNA region within and immediately flanking the origin of DNA replication contains five tightly clustered tRNA genes. A major portion of the pronounced DNA template secondary structure at this origin includes the known tDNA sequences.  相似文献   

11.
12.
Mitochondrial topoisomerase I (Top1mt) is a type IB topoisomerase present in vertebrates and exclusively targeted to mitochondria. Top1mt relaxes mitochondrial DNA (mtDNA) supercoiling by introducing transient cleavage complexes wherein the broken DNA strand swivels around the intact strand. Top1mt cleavage complexes (Top1mtcc) can be stabilized in vitro by camptothecin (CPT). However, CPT does not trap Top1mtcc efficiently in cells and is highly cytotoxic due to nuclear Top1 targeting. To map Top1mtcc on mtDNA in vivo and to overcome the limitations of CPT, we designed two substitutions (T546A and N550H) in Top1mt to stabilize Top1mtcc. We refer to the double-mutant enzyme as Top1mt*. Using retroviral transduction and ChIP-on-chip assays with Top1mt* in Top1mt knock-out murine embryonic fibroblasts, we demonstrate that Top1mt* forms high levels of cleavage complexes preferentially in the noncoding regulatory region of mtDNA, accumulating especially at the heavy strand replication origin OH, in the ribosomal genes (12S and 16S) and at the light strand replication origin OL. Expression of Top1mt* also caused rapid mtDNA depletion without affecting mitochondria mass, suggesting the existence of specific mitochondrial pathways for the removal of damaged mtDNA.  相似文献   

13.
Mitochondrial DNA (mtDNA) encodes for proteins required for oxidative phosphorylation, and mutations affecting the genome have been linked to a number of diseases as well as the natural ageing process in mammals. Human mtDNA is replicated by a molecular machinery that is distinct from the nuclear replisome, but there is still no consensus on the exact mode of mtDNA replication. We here demonstrate that the mitochondrial single-stranded DNA binding protein (mtSSB) directs origin specific initiation of mtDNA replication. MtSSB covers the parental heavy strand, which is displaced during mtDNA replication. MtSSB blocks primer synthesis on the displaced strand and restricts initiation of light-strand mtDNA synthesis to the specific origin of light-strand DNA synthesis (OriL). The in vivo occupancy profile of mtSSB displays a distinct pattern, with the highest levels of mtSSB close to the mitochondrial control region and with a gradual decline towards OriL. The pattern correlates with the replication products expected for the strand displacement mode of mtDNA synthesis, lending strong in vivo support for this debated model for mitochondrial DNA replication.  相似文献   

14.
Where differences have been reported between tumor and normal mitochondrial DNA (mtDNA), they have generally involved limited modifications of the genome (Taira et al., Nucleic Acids Res. 11:1635, 1983; Shay and Werbin, Mutat. Res. 186:149, 1987). However, Corral et al. (Nucleic Acids Res. 16:10935, 1988; 17:5191, 1989) observed recombination between cytochrome oxidase subunit I (COI) and NADH dehydrogenase subunit 6 (ND6), two genes normally on opposite sides of the circular mitochondrial genome. In rat hepatoma mtDNA COI and ND6 were reported to be separated by only 230 base pairs (Corral et al., 1988, 1989). We have performed RFLP analysis on mtDNA from normal rat livers and rat hepatomas, using COI and ND6 probes. Additional experiments compared end-labeled DNA fragments produced by EcoRI and HindIII digestion of mtDNA. These studies failed to provide any evidence for genetic recombination in rat hepatoma mtDNA, even in the same cell line used by Corral et al. Rather, they support the conclusion that mtDNA from tumor and normal tissues exhibits a low degree of heterogeneity.  相似文献   

15.
16.
Deleted mitochondrial DNA in the skeletal muscle of aged individuals.   总被引:4,自引:0,他引:4  
Human mitochondrial DNA deletions occur mainly in the major region between the origins of replication of the heavy and light strands both in mitochondrial myopathy and in the ageing process. To determine whether deletions in the minor region also contribute to the ageing process, we analyzed a 3,610-basepair deletion (nucleotide position 1,837-5,447, from the 16S rRNA gene to the ND2 gene) in the skeletal muscle from individuals of various ages. The direct repeated sequence at each boundary of the deletion was identified as 5'-CCCC-3'. This minor-region deletion was detected in one of five individuals of the sixth decade, two of five in the seventh decade, and all of five in the eighth decade, but not in individuals below age 60. These results indicate that age-related accumulation of mtDNA deletions occurs not only in the major region but also in the minor region.  相似文献   

17.

Background  

The Affymetrix MitoChip v2.0 is an oligonucleotide tiling array for the resequencing of the human mitochondrial (mt) genome. For each of 16,569 nucleotide positions of the mt genome it holds two sets of four 25-mer probes each that match the heavy and the light strand of a reference mt genome and vary only at their central position to interrogate all four possible alleles. In addition, the MitoChip v2.0 carries alternative local context probes to account for known mtDNA variants. These probes have been neglected in most studies due to the lack of software for their automated analysis.  相似文献   

18.
The 4S RNA genes in HeLa mitochondrial DNA (mtDNA) have been mapped by electron microscopy using the electron-opaque label ferritin. This method is based on the high affinity interaction between the protein, avidin, and biotin. 4S RNA, covalently coupled to biotin, was hybridized to single-stranded mtDNA. The hybrids were then labeled with ferritin-avidin conjugates. The positions of ferritin-labeled 4S RNA genes were determined relative to the rRNA genes on both heavy (H) and light (L) strands of mtDNA. This region was recognized as a duplex segment after hybridization either with rRNA in the case of H strands or with DNA complementary to rRNA in the case of L strands.Our studies suggest that at least nineteen 4S RNA genes are present in the HeLa mitochondrial genome. On the H strand, we have confirmed the nine map positions found in a previous electron microscope mapping study (Wu et al., 1972) and obtained evidence for three additional 4S RNA genes. On the L strand, seven 4S RNA genes have been mapped. The nineteen genes are distributed more or less uniformly around the genome. There is a pair of closely spaced genes, approximately 150 nucleotides apart, on the H strand, and another closely spaced pair on the L strand.  相似文献   

19.
Recent studies of mitochondrial DNA (mtDNA) variation in mammals and Drosophila have shown an excess of amino acid variation within species (replacement polymorphism) relative to the number of silent and replacement differences fixed between species. To examine further this pattern of nonneutral mtDNA evolution, we present sequence data for the ND3 and ND5 genes from 59 lines of Drosophila melanogaster and 29 lines of D. simulans. Of interest are the frequency spectra of silent and replacement polymorphisms, and potential variation among genes and taxa in the departures from neutral expectations. The Drosophila ND3 and ND5 data show no significant excess of replacement polymorphism using the McDonald-Kreitman test. These data are in contrast to significant departures from neutrality for the ND3 gene in mammals and other genes in Drosophila mtDNA (cytochrome b and ATPase 6). Pooled across genes, however, both Drosophila and human mtDNA show very significant excesses of amino acid polymorphism. Silent polymorphisms at ND5 show a significantly higher variance in frequency than replacement polymorphisms, and the latter show a significant skew toward low frequencies (Tajima's D = -1.954). These patterns are interpreted in light of the nearly neutral theory where mildly deleterious amino acid haplotypes are observed as ephemeral variants within species but do not contribute to divergence. The patterns of polymorphism and divergence at charge-altering amino acid sites are presented for the Drosophila ND5 gene to examine the evolution of functionally distinct mutations. Excess charge-altering polymorphism is observed at the carboxyl terminal and excess charge-altering divergence is detected at the amino terminal. While the mildly deleterious model fits as a net effect in the evolution of nonrecombining mitochondrial genomes, these data suggest that opposing evolutionary pressures may act on different regions of mitochondrial genes and genomes.   相似文献   

20.
本文采用PCR和质粒克隆测序方法,获得了华南虎线粒体D-loop区的480bp序列和东北虎、孟加拉虎线粒体D-loop区的503bp序列;同时还获得了这三个虎亚种和金钱豹线粒体ND5基因5’端309bp的部分序列。根据D-loop序列分析,华南虎与孟加拉虎、东北虎的平均距离(p-distance)分别为0.11088和O.11087,而东北虎与孟加拉虎间的平均距离为0.00994;根据ND5序列分析,华南虎与孟加拉虎、东北虎的平均距离分别为0.11434和0.11758,而东北虎与孟加拉虎间的平均距离为0.00324。三个虎亚种的mtDNA D-loop和ND5序列比较表明,华南虎是这三个虎亚种中最为古老的亚种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号