首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have revealed an important role for tight junction protein complexes in epithelial cell polarity. One of these complexes contains the apical transmembrane protein, Crumbs, and two PSD95/discs large/zonula occludens domain proteins, protein associated with Lin seven 1 (PALS1)/Stardust and PALS1-associated tight junction protein (PATJ). Although Crumbs and PALS1/Stardust are known to be important for cell polarization, recent studies have suggested that Drosophila PATJ is not essential and its function is unclear. Here, we find that PATJ is targeted to the apical region and tight junctions once cell polarization is initiated. We show using RNAi techniques that reduction in PATJ expression leads to delayed tight junction formation as well as defects in cell polarization. These effects are reversed by reintroduction of PATJ into these RNAi cells. This study provides new functional information on PATJ as a polarity protein and increases our understanding of the Crumbs-PALS1-PATJ complex function in epithelial polarity.  相似文献   

2.
Tight junctions help establish polarity in mammalian epithelia by forming a physical barrier that separates apical and basolateral membranes. Two evolutionarily conserved multi-protein complexes, Crumbs (Crb)-PALS1 (Stardust)-PATJ (DiscsLost) and Cdc42-Par6-Par3-atypical protein kinase C (aPKC), have been implicated in the assembly of tight junctions and in polarization of Drosophila melanogaster epithelia. Here we identify a biochemical and functional link between these two complexes that is mediated by Par6 and PALS1 (proteins associated with Lin7). The interaction between Par6 and PALS1 is direct, requires the amino terminus of PALS1 and the PDZ domain of Par6, and is regulated by Cdc42-GTP. The transmembrane protein Crb can recruit wild-type Par6, but not Par6 with a mutated PDZ domain, to the cell surface. Expression of dominant-negative PALS1-associated tight junction protein (PATJ) in MDCK cells results in mis-localization of PALS1, members of the Par3-Par6-aPKC complex and the tight junction marker, ZO-1. Similarly, overexpression of Par6 in MDCK cells inhibits localization of PALS1 to the tight junction. Our data highlight a previously unrecognized link between protein complexes that are essential for epithelial polarity and formation of tight junctions.  相似文献   

3.
Par-3 controls tight junction assembly through the Rac exchange factor Tiam1   总被引:14,自引:0,他引:14  
The par (partitioning-defective) genes express a set of conserved proteins that function in polarization and asymmetric cell division. Par-3 has multiple protein-interaction domains, and associates with Par-6 and atypical protein kinase C (aPKC). In Drosophila, Par-3 is essential for epithelial cell polarization. However, its function in mammals is unclear. Here we show that depletion of Par-3 in mammalian epithelial cells profoundly disrupts tight junction assembly. Expression of a carboxy-terminal fragment plus the third PDZ domain of Par-3 partially rescues junction assembly, but neither Par-6 nor aPKC binding is required. Unexpectedly, Rac is constitutively activated in cells lacking Par-3, and the assembly of tight junctions is efficiently restored by a dominant-negative Rac mutant. The Rac exchange factor Tiam1 (ref. 7) binds directly to the carboxy-terminal region of Par-3, and knockdown of Tiam1 enhances tight junction formation in cells lacking Par-3. These results define a critical function for Par-3 in tight junction assembly, and reveal a novel mechanism through which Par-3 engages in the spatial regulation of Rac activity and establishment of epithelial polarity.  相似文献   

4.
Mammalian Lin-7 forms a complex with several proteins, including PALS1, that have a role in polarity determination in epithelial cells. In this study we have found that loss of Lin-7 protein from the polarized epithelial cell line Madin-Darby canine kidney II by small hairpin RNA results in defects in tight junction formation as indicated by lowered transepithelial electrical resistance and mislocalization of the tight junction protein ZO-1 after calcium switch. The knock down of Lin-7 also resulted in the loss of expression of several Lin-7 binding partners, including PALS1 and the polarity protein PATJ. The effects of Lin-7 knock down were rescued by the exogenous expression of murine Lin-7 constructs that contained the L27 domain, but not the PDZ domain alone. Furthermore, exogenously expressed PALS1, but not other Lin-7 binding partners, also rescued the effects of Lin-7 knock down, including the restoration of PATJ protein in rescued cell lines. Finally, the effects of Lin-7 knock down appeared to be due to instability of PALS1 protein in the absence of Lin-7, as indicated by an increased rate of PALS1 protein degradation. Taken together, these results indicate that Lin-7 functions in tight junction formation by stabilizing its membrane-associated guanylate kinase binding partner PALS1.  相似文献   

5.
Tight junctions are the structures in mammalian epithelial cells that separate the apical and basolateral membranes and may also be important in the establishment of cell polarity. Two evolutionarily conserved multiprotein complexes, Crumbs-PALS1 (Stardust)-PATJ and Cdc42-Par6-Par3-atypical protein kinase C, have been implicated in the assembly of tight junctions and in polarization of Drosophila melanogaster epithelia. These two complexes have been linked physically and functionally by an interaction between PALS1 and Par6. Here we identify an evolutionarily conserved region in the amino terminus of PALS1 as the Par6 binding site and identify valine and aspartic acid residues in this region as essential for interacting with the PDZ domain of Par6. We have also characterized, in more detail, the amino terminus of Drosophila Stardust and demonstrate that the interaction mechanism between Stardust and Drosophila Par6 is evolutionarily conserved. Par6 interferes with PATJ in binding PALS1, and these two interactions do not appear to function synergistically. Taken together, these results define the molecular mechanisms linking two conserved polarity complexes.  相似文献   

6.
The establishment of tight junctions and cell polarity is an essential process in all epithelia. Endotubin is an integral membrane protein found in apical endosomes of developing epithelia when tight junctions and epithelial polarity first arise. We found that the disruption of endotubin function in cells in culture by siRNA or overexpression of the C‐terminal cytoplasmic domain of endotubin causes defects in organization and function of tight junctions. We observe defects in localization of tight junction proteins, reduced transepithelial resistance, increased lanthanum penetration between cells and reduced ability of cells to form cysts in three‐dimensional culture. In addition, in cells overexpressing the C‐terminal domain of endotubin, we observe a delay in re‐establishing the normal distribution of endosomes after calcium switch. These results suggest that endotubin regulates trafficking of polarity proteins and tight junction components out of the endosomal compartment, thereby providing a critical link between a resident protein of apical endosomes and tight junctions.  相似文献   

7.
Crumbs proteins are evolutionarily conserved transmembrane proteins with essential roles in promoting the formation of the apical domain in epithelial cells. The short intracellular tail of Crumbs proteins are known to interact with several proteins, including the scaffolding protein PALS1 (protein associated with LIN7, Stardust in Drosophila). PALS1 in turn binds to a second scaffolding protein PATJ (PALS1-associated tight junction protein) to form the core Crumbs/PALS1/PATJ complex. While essential roles in epithelial organization have been shown for Crumbs proteins in Drosophila and mammalian systems, the three Caenorhabditis elegans crumbs genes are dispensable for epithelial polarization and development. Here, we investigated the presence and function of PALS1 and PATJ orthologs in C. elegans. We identified MAGU-2 as the C. elegans ortholog of PALS1 and show that MAGU-2 interacts with all three Crumbs proteins and localizes to the apical membrane domain of intestinal epithelial cells in a Crumbs-dependent fashion. Similar to crumbs mutants, magu-2 deletion showed no epithelial polarity defects. We also identified MPZ-1 as a candidate ortholog of PATJ based on the physical interaction with MAGU-2 and sequence similarity with PATJ proteins. However, MPZ-1 is not broadly expressed in epithelial tissues and, therefore, not likely a core component of the C. elegans Crumbs complex. Finally, we show overexpression of the Crumbs proteins EAT-20 or CRB-3 can lead to apical membrane expansion in the intestine. Our results shed light on the composition of the C. elegans Crumbs complex and indicate that the role of Crumbs proteins in promoting apical domain formation is conserved.  相似文献   

8.
Polarity complex proteins   总被引:2,自引:0,他引:2  
The formation of functional epithelial tissues involves the coordinated action of several protein complexes, which together produce a cell polarity axis and develop cell-cell junctions. During the last decade, the notion of polarity complexes emerged as the result of genetic studies in which a set of genes was discovered first in Caenorhabditis elegans and then in Drosophila melanogaster. In epithelial cells, these complexes are responsible for the development of the apico-basal axis and for the construction and maintenance of apical junctions. In this review, we focus on apical polarity complexes, namely the PAR3/PAR6/aPKC complex and the CRUMBS/PALS1/PATJ complex, which are conserved between species and along with a lateral complex, the SCRIBBLE/DLG/LGL complex, are crucial to the formation of apical junctions such as tight junctions in mammalian epithelial cells. The exact mechanisms underlying their tight junction construction and maintenance activities are poorly understood, and it is proposed to focus in this review on establishing how these apical polarity complexes might regulate epithelial cell morphogenesis and functions. In particular, we will present the latest findings on how these complexes regulate epithelial homeostasis.  相似文献   

9.
Cell polarity is induced and maintained by separation of the apical and basolateral domains through specialized cell-cell junctions. The Crumbs protein and its binding partners are involved in formation and stabilization of adherens junctions. In this study, we describe a novel component of the mammalian Crumbs complex, the FERM domain protein EPB41L5, which associates with the intracellular domains of all three Crumbs homologs through its FERM domain. Surprisingly, the same FERM domain is involved in binding to the HOOK domain of MPP5/PALS1, a previously identified interactor of Crumbs. Co-expression and co-localization studies suggested that in several epithelial derived tissues Epb4.1l5 interacts with at least one Crumbs homolog, and with Mpp5. Although at early embryonic stages Epb4.1l5 is found at the basolateral membrane compartment, in adult tissues it co-localizes at the apical domain with Crumbs proteins and Mpp5. Overexpression of Epb4.1l5 in polarized MDCK cells affects tightness of cell junctions and results in disorganization of the tight junction markers ZO-1 and PATJ. Our results emphasize the importance of a conserved Crumbs-MPP5-EPB41L5 polarity complex in mammals.  相似文献   

10.
The formation of functional epithelial tissues involves the coordinated action of several protein complexes, which together produce a cell polarity axis and develop cell-cell junctions. During the last decade, the notion of polarity complexes emerged as the result of genetic studies in which a set of genes was discovered first in Caenorhabditis elegans and then in Drosophila melanogaster. In epithelial cells, these complexes are responsible for the development of the apico-basal axis and for the construction and maintenance of apical junctions. In this review, we focus on apical polarity complexes, namely the PAR3/PAR6/aPKC complex and the CRUMBS/PALS1/PATJ complex, which are conserved between species and along with a lateral complex, the SCRIBBLE/DLG/LGL complex, are crucial to the formation of apical junctions such as tight junctions in mammalian epithelial cells. The exact mechanisms underlying their tight junction construction and maintenance activities are poorly understood, and it is proposed to focus in this review on establishing how these apical polarity complexes might regulate epithelial cell morphogenesis and functions. In particular, we will present the latest findings on how these complexes regulate epithelial homeostasis.  相似文献   

11.
The Envelope (E) protein of SARS-CoV-2 is the most enigmatic protein among the four structural ones. Most of its current knowledge is based on the direct comparison to the SARS E protein, initially mistakenly undervalued and subsequently proved to be a key factor in the ER-Golgi localization and in tight junction disruption.We compared the genomic sequences of E protein of SARS-CoV-2, SARS-CoV and the closely related genomes of bats and pangolins obtained from the GISAID and GenBank databases. When compared to the known SARS E protein, we observed a significant difference in amino acid sequence in the C-terminal end of SARS-CoV-2 E protein.Subsequently, in silico modelling analyses of E proteins conformation and docking provide evidences of a strengthened binding of SARS-CoV-2 E protein with the tight junction-associated PALS1 protein. Based on our computational evidences and on data related to SARS-CoV, we believe that SARS-CoV-2 E protein interferes more stably with PALS1 leading to an enhanced epithelial barrier disruption, amplifying the inflammatory processes, and promoting tissue remodelling. These findings raise a warning on the underestimated role of the E protein in the pathogenic mechanism and open the route to detailed experimental investigations.  相似文献   

12.
Assembly and sealing of the tight junction barrier are critically dependent on the perijunctional actin cytoskeleton, yet little is known about physical and functional links between barrier-forming proteins and actin. Here we identify a novel functional complex of the junction scaffolding protein ZO-1 and the F-BAR–domain protein TOCA-1. Using MDCK epithelial cells, we show that an alternative splice of TOCA-1 adds a PDZ-binding motif, which binds ZO-1, targeting TOCA-1 to barrier contacts. This isoform of TOCA-1 recruits the actin nucleation–promoting factor N-WASP to tight junctions. CRISPR-Cas9–mediated knockout of TOCA-1 results in increased paracellular flux and delayed recovery in a calcium switch assay. Knockout of TOCA-1 does not alter FRAP kinetics of GFP ZO-1 or occludin, but longer term (12 h) time-lapse microscopy reveals strikingly decreased tight junction membrane contact dynamics in knockout cells compared with controls. Reexpression of TOCA-1 with, but not without, the PDZ-binding motif rescues both altered flux and membrane contact dynamics. Ultrastructural analysis shows actin accumulation at the adherens junction in TOCA-1–knockout cells but unaltered freeze-fracture fibril morphology. Identification of the ZO-1/TOCA-1 complex provides novel insights into the underappreciated dependence of the barrier on the dynamic nature of cell-to-cell contacts and perijunctional actin.  相似文献   

13.
Symplekin is multifunctional protein localized to both the tight junction and the nucleus with known roles in mRNA polyadenylation, proliferation, differentiation and tumorigenesis. Functions of symplekin at tight junctions have not been systematically investigated. In this study, increased expression of symplekin was observed during the formation of tight junctions in cultured HT-29 and HepG2 epithelial cells. Repression of symplekin by RNAi increased the permeability of epithelial monolayers, disrupted cellular polarity, and decreased the expression of the tight junction protein ZO-1. Moreover, symplekin was co-localized with ZO-1 at tight junctions and co-immunoprecipitated with ZO-1, indicating that ZO-1 and symplekin form complexes. In conclusion, symplekin expression regulates the assembly of tight junctions, thus helps to maintain the integrity of the epithelial monolayer and cellular polarity.  相似文献   

14.
Prior work in our laboratory established a connection between the PALS1/PATJ/CRB3 and Par6/Par3/aPKC protein complexes at the tight junction of mammalian epithelial cells. Utilizing a stable small interfering RNA expression system, we have markedly reduced expression of the tight junction-associated protein PALS1 in MDCKII cells. The loss of PALS1 resulted in a corresponding loss of expression of PATJ, a known binding partner of PALS1, but had no effect on the expression of CRB3. However, the absence of PALS1 and PATJ expression did result in the decreased association of CRB3 with members of the Par6/Par3/aPKC protein complex. The consequences of the loss of PALS1 and PATJ were exhibited by a delay in the polarization of MDCKII monolayers after calcium switch, a decrease in the transepithelial electrical resistance, and by the inability of these cells to form lumenal cysts when grown in a collagen gel matrix. These defects in polarity determination may be the result of the lack of recruitment of aPKC to the tight junction in PALS1-deficient cells, as observed by confocal microscopy, and subsequent alterations in downstream signaling events.  相似文献   

15.
Using functional and proteomic screens of proteins that regulate the Cdc42 GTPase, we have identified a network of protein interactions that center around the Cdc42 RhoGAP Rich1 and organize apical polarity in MDCK epithelial cells. Rich1 binds the scaffolding protein angiomotin (Amot) and is thereby targeted to a protein complex at tight junctions (TJs) containing the PDZ-domain proteins Pals1, Patj, and Par-3. Regulation of Cdc42 by Rich1 is necessary for maintenance of TJs, and Rich1 is therefore an important mediator of this polarity complex. Furthermore, the coiled-coil domain of Amot, with which it binds Rich1, is necessary for localization to apical membranes and is required for Amot to relocalize Pals1 and Par-3 to internal puncta. We propose that Rich1 and Amot maintain TJ integrity by the coordinate regulation of Cdc42 and by linking specific components of the TJ to intracellular protein trafficking.  相似文献   

16.
Junctional adhesion molecule (JAM)-A is an integral membrane protein at tight junctions of epithelial cells which associates with the cell polarity protein PAR-3. Here, we demonstrate that downregulation of JAM-A impairs the ability of MDCK II cells to form cysts in a three-dimensional matrix indicating the requirement of JAM-A for the development of apico-basal polarity. To define the regions of JAM-A important for this function, we have generated MDCK II cell lines stably expressing inducible JAM-A mutants. Mutants of JAM-A which were designed to mislocalize strongly impaired the development of cysts and the formation of functional tight junctions. Surprisingly, similar mutants that lacked the PDZ domain-binding motif at the C-terminus were still impaired in apico-basal polarity formation suggesting that additional regions within the cytoplasmic tail of JAM-A are important for the function of JAM-A. A JAM-A mutant lacking the first Ig-like domain necessary for homophilic binding localized to cell-cell contacts similar to wild-type JAM-A. However, despite this same localization, this mutant interfered with cell polarity and tight junction formation. Together our findings suggest an important role for JAM-A in the development of apico-basal polarity in epithelial cells and identify regions in JAM-A which are critical for this role.  相似文献   

17.
The claudin family is a set of integral membrane proteins found at cell-cell interactions in tight junctions. To identify proteins that interact with claudin-8, we used the yeast two-hybrid system to search for binding partners. Using the C-terminal 37 amino acids of claudin-8 as bait, we screened a human kidney cDNA library and identified multi-PDZ domain protein 1 (MUPP1) as a claudin-8 binding protein. MUPP1 contains 13 PDZ domains and binds to claudin-8 though its PDZ9 domain. When MDCK cells were transfected with epitope-tagged claudin-8 or MUPP1, both molecules were concentrated at cell-cell junctions. The interaction of claudin-8 and MUPP1 in vivo was confirmed by co-immunolocalization and co-immunoprecipitation in MDCK cells. Expression of claudin-8-myc increased transepithelial electrical resistance (TER) and reduced paracellular flux using FITC-dextran as a tracer. Over-expression of FLAG-MUPP1 in MDCK cells also reduced the epithelial paracelhular conductance. Our results indicate that claudin-8 and MUPP1 interact in tight junctions of epithelial cells and are involved in the tight junction barrier function.  相似文献   

18.
PAR-3 is a scaffold-like PDZ-containing protein that forms a complex with PAR-6 and atypical protein kinase C (PAR-3-atypical protein kinase C-PAR-6 complex) and contributes to the establishment of cell polarity in a wide variety of biological contexts. In mammalian epithelial cells, it localizes to tight junctions, the most apical end of epithelial cell-cell junctions, and contributes to the formation of functional tight junctions. However, the mechanism by which PAR-3 localizes to tight junctions and contributes to their formation remains to be clarified. Here we show that the N-terminal conserved region, CR1-(1-86), and the sequence 937-1,024 are required for its recruitment to the most apical side of the cell-cell contact region in epithelial Madin-Darby canine kidney cells. We also show that CR1 self-associates to form an oligomeric complex in vivo and in vitro. Further, overexpression of CR1 in Madin-Darby canine kidney cells disturbs the distribution of atypical protein kinase C and PAR-6 as well as PAR-3 and delays the formation of functional tight junctions. These results support the notion that the CR1-mediated self-association of the PAR-3-containing protein complex plays a role during the formation of functional tight junctions.  相似文献   

19.
The E6 protein from high-risk human papillomavirus types interacts with and degrades several PDZ domain-containing proteins that localize to adherens junctions or tight junctions in polarized epithelial cells. We have identified the tight junction-associated multi-PDZ protein PATJ (PALS1-associated TJ protein) as a novel binding partner and degradation target of high-risk types 16 and 18 E6. PATJ functions in the assembly of the evolutionarily conserved CRB-PALS1-PATJ and Par6-aPKC-Par3 complexes and is critical for the formation of tight junctions in polarized cells. The ability of type 18 E6 full-length to bind to, and the subsequent degradation of, PATJ is dependent on its C-terminal PDZ binding motif. We demonstrate that the spliced 18 E6* protein, which lacks a C-terminal PDZ binding motif, associates with and degrades PATJ independently of full-length 18 E6. Thus, PATJ is the first binding partner that is degraded in response to both isoforms of 18 E6. The ability of E6 to utilize a non-E6AP ubiquitin ligase for the degradation of several PDZ binding partners has been suggested. We also demonstrate that 18 E6-mediated degradation of PATJ is not inhibited in cells where E6AP is silenced by shRNA. This suggests that the E6-E6AP complex is not required for the degradation of this protein target.  相似文献   

20.
The ERM (ezrin/radixin/moesin) proteins provide a regulated linkage between membrane proteins and the cortical cytoskeleton and also participate in signal transduction pathways. Ezrin is localized to the apical membrane of parietal cells and couples the protein kinase A activation cascade to regulated HCl secretion in gastric parietal cells. Here, we show that the integrity of ezrin is essential for parietal cell activation and provide the first evidence that ezrin interacts with PALS1, an evolutionarily conserved PDZ and SH3 domain-containing protein. Our biochemical study verifies that ezrin binds to PALS1 via its N terminus and is co-localized with PALS1 to the apical membrane of gastric parietal cells. Furthermore, our study shows that PALS1 is essential for the apical localization of ezrin, as either suppression of PALS1 protein accumulation or deletion of the PALS1-binding domain of ezrin eliminated the apical localization of ezrin. Finally, our study demonstrates the essential role of ezrin-PALS1 interaction in the apical membrane remodeling associated with parietal cell secretion. Taken together, these results define a novel molecular mechanism linking ezrin to the conserved apical polarity complexes and their roles in polarized epithelial secretion of gastric parietal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号