首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Community assembly is an integral process in all ecosystems, producing patterns of species distributions, biodiversity, and ecosystem functioning. Environmental filters and colonization history govern the assembly process, but their relative importance varies depending on the study system. Dead wood decomposition is a slow process, allowing decomposer communities to develop within a slowly changing substrate for decades. Despite this, there are few long‐term studies of priority effects from colonization history in this ecosystem. In this study, we investigate the importance of insects in early succession of dead wood on the fungal community present one decade later. Sixty aspen trees were killed in two study landscapes, each tree producing one aspen high stump and log. Insects were sampled with flight interception traps during the first 4 years after tree death, and fungal fruiting bodies were registered in year twelve. We found positive priority effects of two fungivorous beetles, the sap beetle Glischrochilus quadripunctatus and the round fungus beetle Agathidium nigripenne, on the Artist''s bracket (Ganoderma applanatum) and a positive priority effect of wood‐boring beetles on the ascomycete Yellow fairy cup (Bisporella citrina). The Aspen bracket (Phellinus tremulae) did not respond to insects in early succession of the dead wood. Our results suggest that early successional insects can have significant, long‐lasting effects on the late successional fungal community in dead wood. Also, the effect can be specific, with one fungus species depending on one or a few fungivorous beetle species. This has implications for decomposition and biodiversity in dead wood, as loss of early colonizing beetles may also affect the successional pathways they seem to initiate.  相似文献   

2.
Abstract:  Tomicus piniperda and Hylurgops palliatus colonize susceptible host trees by responding to host-specific odour signals as well as by avoiding volatiles emanating from non-host conifers. In the field, the pine shoot beetle, T. piniperda , responded in high numbers to natural odour sources provided by their host tree, Pinus sylvestris , while the non-host conifers Larix decidua , Picea abies , or Pseudotsuga menziesii were significantly less attractive. In contrast, the spruce bark beetle, Hylurgops palliatus , preferentially responded to its main host, P. abies . Furthermore, T. piniperda attacks on P. sylvestris bolts decreased in presence of bark and wood particles from the non-host P. abies , whereas particles from P. menziesii appeared not to affect T. piniperda attacks. Apparently, tree-specific volatiles act at close range as specific signals that lead to the successful discrimination and colonization of the respective host tree species.  相似文献   

3.
In forest ecosystems, fungi are the key actors in wood decay. They have the capability to degrade lignified substrates and the woody biomass of coniferous forests, with brown rot fungi being common colonizers. Brown rots are typically involved in the earliest phase of lignocellulose breakdown, which therefore influences colonization by other microorganisms. However, few studies have focused on the impact of introducing decayed wood into forest environments to gauge successional colonization by natural bacterial and fungal communities following partial decay. This study aimed to address this issue by investigating the bacterial and fungal colonization of Norway spruce (Picea abies) wood, after intermediate and advanced laboratory-based, pre-decay, by the brown rot fungus Gloeophyllum trabeum. Using Illumina metabarcoding, the in situ colonization of the wood blocks was monitored 70 days after the blocks were placed on the forest floor and covered with litter. We observed significant changes in the bacterial and fungal communities associated with the pre-decayed stage. Further, the wood substrate condition acted as a gatekeeper by reducing richness for both microbial communities and diversity of fungal communities. Our data also suggest that the growth of some fungal and bacterial species was driven by similar environmental conditions.  相似文献   

4.
A prevailing paradigm in forest ecology is that wood‐boring beetles facilitate wood decay and carbon cycling, but empirical tests have yielded mixed results. We experimentally determined the effects of wood borers on fungal community assembly and wood decay within pine trunks in the southeastern United States. Pine trunks were made either beetle‐accessible or inaccessible. Fungal communities were compared using culturing and high‐throughput amplicon sequencing (HTAS) of DNA and RNA. Prior to beetle infestation, living pines had diverse fungal endophyte communities. Endophytes were displaced by beetle‐associated fungi in beetle‐accessible trees, whereas some endophytes persisted as saprotrophs in beetle‐excluded trees. Beetles increased fungal diversity several fold. Over forty taxa of Ascomycota were significantly associated with beetles, but beetles were not consistently associated with any known wood‐decaying fungi. Instead, increasing ambrosia beetle infestations caused reduced decay, consistent with previous in vitro experiments that showed beetle‐associated fungi reduce decay rates by competing with decay fungi. No effect of bark‐inhabiting beetles on decay was detected. Platypodines carried significantly more fungal taxa than scolytines. Molecular results were validated by synthetic and biological mock communities and were consistent across methodologies. RNA sequencing confirmed that beetle‐associated fungi were biologically active in the wood. Metabarcode sequencing of the LSU/28S marker recovered important fungal symbionts that were missed by ITS2, though community‐level effects were similar between markers. In contrast to the current paradigm, our results indicate ambrosia beetles introduce diverse fungal communities that do not extensively decay wood, but instead reduce decay rates by competing with wood decay fungi.  相似文献   

5.
1.?We tested the hypotheses that feeding guild structure of beetle assemblages changed with different arboreal microhabitats and that these differences were consistent across rainforest tree species. 2.?Hand collection and beating techniques were used from the gondola of the Australian Canopy Crane to collect beetles from five microhabitats (mature leaves, flush leaves, flowers, fruit and suspended dead wood) within the rainforest canopy. A simple randomization procedure was implemented to test whether the abundances of each feeding guild on each microhabitat were different from that expected based on a null hypothesis of random distribution of individuals across microhabitats. 3.?Beetles from different feeding guilds were not randomly distributed, but congregated on those microhabitats that are likely to provide the highest concentrations of their preferred food sources. Herbivorous beetles, in particular, were over-represented on flowers and flush foliage and under-represented on mature leaves and dead wood. Proportional numbers of species within each feeding guild were remarkably uniform across tree species for each microhabitat, but proportional abundances of feeding guilds were all significantly non-uniformly distributed between host tree species, regardless of microhabitat, confirming patterns previously found for arthropods in trees in temperate and tropical forests. 4.?These results show that the canopy beetle community is partitioned into discrete assemblages between microhabitats and that this partitioning arises because of differences in feeding guild structure as a function of the diversity and the temporal and spatial availability of resources found on each microhabitat.  相似文献   

6.
Conifer-dominated forests in the northern hemisphere are prone to large-scale natural disturbances, yet our understanding of their effects beyond changes in species diversity is limited. Bark beetle disturbances provide dead wood for lignicolous fungal guilds and increase insolation but also desiccation. We investigated whether species richness of these guilds increases and functional diversity decreases after bark beetle disturbance, which would promote through habitat filtering the coexistence of species adapted to harsh conditions, i.e. light stress for lichens and substrate desiccation for wood-inhabiting fungi.We sampled epixylic and epiphytic lichens (primary producers) and wood-inhabiting fungi (mainly wood decomposers, some form ectomycorrhizas) in the Bohemian Forest (Long Term Ecological Research – LTER – Site Bavarian Forest National Park), an area in Central Europe most heavily affected by the bark beetle Ips typographus, on undisturbed plots and disturbed plots with spruce (Picea abies) dieback 8 years ago. We analysed species diversity, functional diversity (optimized by phylogeny), and functional compositions.Species richness of lichens but not that of wood-inhabiting fungi was higher on disturbed plots than on undisturbed plots. Community compositions of both guilds differed considerably on disturbed and undisturbed plots. On both types of plots, lichen communities were clustered according to functional diversity, which indicated habitat filtering, and fungal communities were overdispersed, which indicated competition. Disturbance increased the strength of these two patterns only slightly and was significant only for fungi. Single-trait analysis revealed changes in the functional composition; on disturbed plots, lichenous species with larger and more complex growth forms and fungi with large, perennial fruit bodies were favoured. Although the forest canopy changed tremendously because of the bark beetle disturbance, the most important driver of lichen and fungal diversity and mean trait assemblages seemed to be the enrichment of dead wood. The changes in insolation and moisture did not act as habitat filters for either guild. This indicated that the assembly patterns of lichen and fungal communities in coniferous forests are not affected by stand-replacing disturbances in contrast to the predictions for other disturbance regimes.  相似文献   

7.
Abstract

The fundamental ecological significance of deadwood decomposition in forests has been highlighted in several reviews, some conclusions regarding silviculture being drawn. Old‐growth forests are natural centres of biodiversity. Saproxylic fungi and beetles, which are vital components of these ecosystems, occupy a variety of spatial and trophic niches. Fungal and beetle diversity on coarse woody debris (CWD) was analysed in 36 forest sites in the Cilento and Vallo di Diano National Park, Italy. The data were analysed by DCA and Spearman’s rank correlation. The results provide empirical evidence of the existence of a pattern of joint colonization of the woody substrate by fungi and beetles, which includes an assemblage of reciprocal trophic roles within fungal/beetle communities. These organisms act together to form a dynamic taxonomical and functional ecosystem component within the complex set of processes involved in wood decay. The variables most predictive of correlations between management‐related structural attributes and fungal/beetle species richness and their trophic roles for old‐growth forest are: number of logs, number of decay classes and CWD total volume. Deadwood spatio‐temporal continuity should be the main objective of forest planning to stop the loss of saproxylic fungal and insect biodiversity.  相似文献   

8.
An ambrosia fungus is described from filamentous sporodochia adjacent to a wood–boring ambrosia beetle (Coleoptera: Curculionidae: Platypodinae) in mid-Cretaceous Burmese amber. Yeast-like propagules and hyphal fragments of Paleoambrosia entomophila gen. nov. et sp. nov. occur in glandular sac mycangia located inside the femur of the beetle. This is the first record of a fossil ambrosia fungus, showing that symbiotic associations between wood–boring insects and ectosymbiotic fungi date back some 100 million years ago. The present finding moves the origin of fungus-growing by insects from the Oligocene to the mid-Cretaceous and suggests a Gondwanan origin.  相似文献   

9.
Ambrosia beetles, dominant wood degraders in the tropics, create tunnels in dead trees and employ gardens of symbiotic fungi to extract nutrients from wood. Specificity of the beetle–fungus relationship has rarely been examined, and simple vertical transmission of a specific fungal cultivar by each beetle species is often assumed in literature. We report repeated evolution of fungal crop stealing, termed mycocleptism, among ambrosia beetles. The mycocleptic species seek brood galleries of other species, and exploit their established fungal gardens by tunneling through the ambient mycelium‐laden wood. Instead of carrying their own fungal sybmbionts, mycocleptae depend on adopting the fungal assemblages of their host species, as shown by an analysis of fungal DNA from beetle galleries. The evidence for widespread horizontal exchange of fungi between beetles challenges the traditional concept of ambrosia fungi as species‐specific symbionts. Fungus stealing appears to be an evolutionarily successful strategy. It evolved independently in several beetle clades, two of which have radiated, and at least one case was accompanied by a loss of the beetles’ fungus‐transporting organs. We demonstrate this using the first robust phylogeny of one of the world's largest group of ambrosia beetles, Xyleborini.  相似文献   

10.
When lodgepole pines (Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson) that are killed by the mountain pine beetle (Dendroctonus ponderosae) and its fungal associates are not harvested, fungal decay can affect wood and fibre properties. Ophiostomatoids stain sapwood but do not affect the structural properties of wood. In contrast, white or brown decay basidiomycetes degrade wood. We isolated both staining and decay fungi from 300 lodgepole pine trees killed by mountain pine beetle at green, red, and grey stages at 10 sites across British Columbia. We retained 224 basidiomycete isolates that we classified into 34 species using morphological and physiological characteristics and rDNA large subunit sequences. The number of basidiomycete species varied from 4 to 14 species per site. We assessed the ability of these fungi to degrade both pine sapwood and heartwood using the soil jar decay test. The highest wood mass losses for both sapwood and heartwood were measured for the brown rot species Fomitopsis pinicola and the white rot Metulodontia and Ganoderma species. The sap rot species Trichaptum abietinum was more damaging for sapwood than for heartwood. A number of species caused more than 50% wood mass losses after 12 weeks at room temperature, suggesting that beetle-killed trees can rapidly lose market value due to degradation of wood structural components.  相似文献   

11.
This study investigates the relationship between the abundance of wood-rotting fungus suggested as 'continuity indicator species' and environmental variables for the assemblage of saproxylic (wood-living) beetles associated with Fomitopsis pinicola fruiting bodies in a mature spruce forest in southeastern Norway. The presence of species thought to indicate continuity in old growth is one of the criteria used when finding and delineating small protected areas ('woodland key habitats') in Scandinavian forestry. Although it is clear that remnants of old-growth forest are important for many taxa, documentation as to which entities or species the indicator species indeed indicate is scarce. If stands with a continuous and unbroken input of dead wood have a unique assemblage of wood-rotting fungi, it seems relevant to ask if these stands also have a unique assemblage of rare saproxylic beetles. I find that the indicator species exhibit no significant correlations with beetle species richness or with the presence of red-listed saproxylic beetles as a group. The different characteristics of dead wood conditions are the most important environmental variables that explain both the species richness and the presence of red-listed beetles. Single-species analyses reveal contrasting relationships. The red-listed beetle Atomaria alpina shows a significant and positive association to the abundance of indicator species. Contrary, a group of three red-listed species with similar ecology in the family Cisidae exhibits a significant and negative association to indicator species abundance. This indicates that important patterns are concealed when considering general measures such as overall presence of red-listed beetles. Single-species studies are necessary in order to correctly understand how rare beetles respond to forestry activities and to develop a policy that can secure their continuing existence in the boreal forest.  相似文献   

12.
Wood decay fungi are considered to be dispersed by wind, but dispersal by animals may also be important, and more so in managed forests where dead wood is scarce. We investigated whether beetles could disperse spores of the keystone species Fomitopsis pinicola. Beetles were collected on sporocarps and newly felled spruce logs, a favourable habitat for spore deposition. Viable spores (and successful germination) of F. pinicola were detected by dikaryotization of monokaryotic bait mycelium from beetle samples. Viable spores were on the exoskeleton and in the faeces of all beetles collected from sporulating sporocarps. On fresh spruce logs, nine beetle species transported viable spores, of which several bore into the bark. Our results demonstrate that beetles can provide directed dispersal of wood decay fungi. Potentially, it could contribute to a higher persistence of some species in fragmented forests where spore deposition by wind on dead wood is less likely.  相似文献   

13.
The association between 11 species of bark beetles (Coleoptera: Scolytinae) and one weevil (Coleoptera: Entiminae) with the pitch canker fungus, Fusarium circinatum Nirenberg and O'Donnell, was determined by crushing beetles on selective medium and histone H3 gene sequencing. Pityophthorus pubescens (Marsham) (25.00%), Hylurgops palliatus (Gyllenhal) (11.96%), Ips sexdentatus (B?rner) (8.57%), Hypothenemus eruditus Westwood (7.89%), Hylastes attenuatus Erichson (7.40%), and Orthotomicus erosus (Wollaston) (2.73%) were found to carry the inoculum. In addition, the root weevil Brachyderes incanus L. (14.28%) had the second highest frequency of occurrence of the fungus. The responses of the insects to a range of verbenone doses were tested in field bioassays using funnel traps. Catches of P. pubescens, a species colonizing branch tips of live trees, were significantly reduced in a log-linear dose-dependent relationship. Catches of I. sexdentatus, an opportunistic species normally attacking fresh dead host material, were also gradually reduced with increasing verbenone dose. Catches of Tomicus piniperda L., O. erosus, Dryocoetes autographus (Ratzeburg), H. eruditus, Xyleborus dryographus (Ratzeburg), Hylastes ater (Paykull), Hylurgus ligniperda (F.), H. attenuatus, and B. incanus were not significantly affected by verbenone. The effects of verbenone were consistent with differences in host-age preference. Semiochemical disruption by verbenone in P. pubescens and I. sexdentatus could represent an integrated pest management strategy for the prevention of the spread of pitch canker disease between different stands. However, several species associated with F. circinatum were unaffected by verbenone, not supporting this compound for prevention of the establishment of potential vectors in Northern Spain.  相似文献   

14.
Summary Loblolly pines (Pinus taeda) are rapidly killed by colonizing southern pine beetle (Dendroctonus frontalis). The female beetles carry two species of fungi (Ceratocystis minor var. barrasii and an unnamed basidiomycete) within a mycangium. The insects are also frequently associated with a blue-staining form of C. minor. These fungi are inoculated into the tree during colonization. The tree has an induced defensive response that involves resin soaking and necrosis of affected tissue isolating the invading organlsms. The blue-staining fungus stimulates formation of this response in the tree, but the two mycangial fungi do not. These results suggest that the beetles are closely associated with two highly pathogenic fungi that do not stimulate one of the critical components of tree defense.  相似文献   

15.
To study the importance of insects in the establishment of fungi, stem sections of Norway spruce were placed in mature managed conifer forests in Southeast Sweden. After one or two flying seasons, fungal communities in wood, bark and bark beetle samples were analysed by molecular methods. Excluding insects from stem sections with cages had a significant effect on the fungal community. Small wounds made in the bark to mimic insect activity did not significantly alter the fungal community, indicating that physical holes as such only played a minor role for the insect interaction with the fungal community development. Several white rot species were significantly more abundant in stem sections with insect access and were also detected from bark beetle samples. This suggests that insects do contribute to the development of early fungal succession on dead wood, but that creating small disturbances in the bark only have a minor contributing effect.  相似文献   

16.
Several boreal wood-living insect species breed exclusively in recently burned forest. However, the reason for this dependence on fire is largely unknown. Here wood-living insects and other arthropods were sampled from burned and unburned logs of birch and spruce in a burned forest, together with unburned logs at a clearing and in an uncut forest, during two years of succession after tree death. Burned spruce logs hosted fewer beetles than unburned logs. Notably, bark-beetles and their associated fauna, responded negatively to fire-scorching of the logs while arthropods that feed on ascomycete fungi responded positively. Fire-scorched logs more often had visible ascomycete fungi, and lost their bark faster than unburned logs. However, despite this obvious effect of fire-scorching of the logs, the species composition in burned and unburned logs at the burned site was more similar than in unburned logs at the three different sites. A larger diversity of beetles, when measured with rarefaction, was found for fire-scorched logs. When sites were compared, birch logs had the most diverse fauna at the burned site and spruce logs in the uncut forest. Pyrophilous insect species were almost exclusively confined to the burned forest, but occurred in both burned and unburned logs. These species may be divided into two groups: (1) mycophagous species that need burned substrate per se because ascomycete fungi are favoured by burning, and (2) phloem-feeders and predators that are favoured by some habitat characteristic of recently burned forest rather than of burned wood.  相似文献   

17.
丰林国家级自然保护区木腐真菌多样性与寄主倒木的关系   总被引:1,自引:0,他引:1  
木腐真菌是一类以木材为生长基质的大型真菌, 通过分泌各种水解酶全部或部分降解木材中的木质素、纤维素和半纤维素, 促进森林生态系统的物质循环, 具有重要的生态功能。本研究调查了丰林国家级自然保护区固定样地中木腐真菌的多样性和倒木特征, 并进行了木腐真菌的物种多样性和数量与倒木的种类、数量、腐朽程度、直径大小等的相关性分析。结果显示: 在样地内共采集木腐真菌标本295份, 经鉴定为93种, Shannon多样性指数为3.86, Simpson指数为0.96。相关性分析发现木腐真菌的数量和种类与直径为2-5 cm和5-10 cm的倒木、2级腐烂的倒木和红松倒木均显著相关。样地中优势倒木寄主分别为槭属(Acer)、榛属(Corylus)、云杉属(Picea)和松属(Pinus), 这4类倒木上生长的木腐真菌种类组成具有明显的差异, 槭属和榛属倒木上的共有优势种主要是三色拟迷孔菌(Daedaleopsis tricolor)、云芝(Trametes versicolor)和桦附毛孔菌(Trichaptum pargamenum), 而松属和云杉属的共有优势种主要有白囊耙齿菌(Irpex lacteus)、云芝、冷杉附毛孔菌(Trichaptum abietinum)和褐紫附毛孔菌(T. fuscoviolaceum)。倒木产生真菌子实体的概率研究表明, 同一类寄主倒木上发生木腐真菌子实体的概率在调查面积增加到0.36 ha后趋于一个定值, 松属倒木中仅有10.2%产生真菌子实体, 槭属和云杉属分别是12.9%和13.4%, 榛属最高, 达到53.7%。本研究结果对于预测森林生态系统中木腐真菌的发生具有重要理论意义。  相似文献   

18.
Wood-inhabiting fungi, not necessarily responsible for major decay, are shown to be capable of degrading a toxic compound into a less potent form, thus rendering it less effective in protecting wood from decay by less-tolerant basidiomycetous wood-destroyers. Sweetgum or pine sapwood blocks treated with preservatives (ammoniacal copper arsenate, fluor-chrome-arsenate-dinitrophenol, a creosote or pentachlorophenol) were exposed progressively to two different wood-inhabiting fungi with sterilization between the first and second exposure. The fungus in the first exposure was usually an Ascomycete or a Fungi Imperfecti-Chaetomium globosum, Phoma, Orbicula, Graphium, Pestalozzia, or Trichoderma species, isolated from wood below the ground. In one experiment, the fungus in the first exposure was a basidiomycete, Lenzites trabea or Polyporus versicolor. The second fungus, a prominent Basidiomycete-Coniophora puteana, Lentinus lepideus, or Lenzites trabea-was the bioassay fungus, since its purpose was to show whether the first fungus had degraded the preservative. Generally, the treated block, except where exposed to another fungus, remained virtually untouched by the bioassay fungus. Clearly, therefore, the first fungus had rendered the preservative ineffective but without appreciably decaying the wood itself Chemical analyses of treated blocks indicated that in the first exposure the fungi had substantially depleted sodium arsenate and pentachlorophenol.  相似文献   

19.
木腐真菌是微生物的一个重要类群, 主要以倒木为生长基质, 通过产生各种水解酶将倒木的纤维素、木质素和半纤维素分解为小分子物质, 对促进森林生态系统中的营养物质循环发挥着重要的生态功能。于2016年8月在浙江古田山国家级自然保护区开展的木腐真菌野外调查, 利用形态学和DNA序列分析对采集的标本进行了物种鉴定, 并分析了木腐真菌的物种组成和地理成分。在采集的158份标本中鉴定木腐真菌45属92种, 其中白腐真菌78种, 褐腐真菌14种。古田山的木腐真菌物种区系组成中, 热带-亚热带成分比例最高。在158份木腐真菌标本中, 97份标本采自直径大于10 cm的倒木或树桩上, 分属于76个种, 是木腐真菌生长的主要基质大小类型; 48份标本采自直径为2-10 cm的枝干上, 分属38个种; 13份标本采自直径小于2 cm的枝干上, 分属12种。不同腐烂等级倒木上生长的真菌数量和种类差异明显, 其中一级腐烂倒木上采集到9份标本(7种), 二级腐烂倒木上采集到86份标本(45种), 三级腐烂倒木上49份标本(29种), 四级腐烂倒木上14份标本(14种)。结果表明, 林分中倒木直径大小和腐烂程度是影响木腐真菌生长与分布的重要因子。  相似文献   

20.
Immunological probes were developed to discriminate between a potential biological control fungus and sap-staining fungi present in wood. This paper describes the production of monoclonal antibodies to isolated cell wall fragments of the biological control fungus Gliocladium roseum. Two monoclonals, designated 6A5 and 3F12, were characterized. Their specificity was assessed by ELISA, by immunogold silver staining light microscopy, by immunogold electron microscopy, and by immunoblotting. Monoclonal 6A5 specifically recognized G. roseum and closely related species and did not react with any of 21 sap-staining fungi tested. Monoclonal 3F12 recognized most of the biological control fungi tested and also showed reactivity with two of the 21 sap-staining fungi. Both monoclonals appeared to recognize carbohydrate epitopes of the cell wall in G. roseum. Although the antibodies were produced against the cell wall of fungus grown in liquid culture, they also detected specific fungi in wood and, therefore, can be used for studies of wood colonization by fungi and for investigations of the interactions between different fungi growing on wood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号