首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetanus and botulinum toxins bind and are internalized at the neuromuscular junction. Botulinum neurotoxins (BoNTs) enter the cytosol at the motor nerve terminal; tetanus neurotoxin (TeNT) proceeds retroaxonally inside the motor axon to reach the spinal cord inhibitory interneurons. Although the major target of BoNTs is the peripheral cholinergic terminals, CNS neurons are susceptible to intoxication as well. We investigated the route of entry and the proteolytic activity of BoNT/B and BoNT/F in cultured hippocampal neurons and astrocytes. We show that, differently from TeNT, which enters hippocampal neurons via the process of synaptic vesicle (SV) recycling, BoNTs are internalized and cleave the substrate synaptobrevin/VAMP2 via a process independent of synaptic activity. Labeling of living neurons with Texas Red-conjugated BoNTs and fluoresceinated dextran revealed that these toxins enter hippocampal neurons via endocytic processes not mediated by SV recycling. Botulinum toxins also exploit endocytosis to enter cultured astrocytes, where they partially cleave cellubrevin, a ubiquitous synaptobrevin/VAMP isoform. These results indicate that, in spite of their closely related protein structure, TeNT and BoNTs use different routes to penetrate hippocampal neurons. These findings bear important implications for the identification of the protein receptors of clostridial toxins.  相似文献   

2.
Tetanus toxin elicits spastic paralysis by cleaving VAMP‐2 to inhibit neurotransmitter release in inhibitory neurons of the central nervous system. As the retrograde transport of tetanus neurotoxin (TeNT) from endosomes has been described, the initial steps that define how TeNT initiates trafficking to the retrograde system are undefined. This study examines TeNT entry into primary cultured cortical neurons by total internal reflection fluorescence (TIRF) microscopy. The initial association of TeNT with the plasma membrane was dependent upon ganglioside binding, but segregated from synaptophysin1 (Syp1), a synaptic vesicle (SV) protein. TeNT entry was unaffected by membrane depolarization and independent of SV cycling, whereas entry of the receptor‐binding domain of TeNT (HCR/T) was stimulated by membrane depolarization and inhibited by blocking SV cycling. Measurement of the incidence of colocalization showed that TeNT segregated from Syp1, whereas HCR/T colocalized with Syp1. These studies show that while the HCR defines the initial association of TeNT with the cell membrane, regions outside the HCR define how TeNT enters neurons independent of SV cycling. This provides a basis for the unique entry of botulinum toxin and tetanus toxin into neurons.   相似文献   

3.
Tetanus toxin is a potent neurotoxin that inhibits the release of neurotransmitters from presynaptic nerve endings. The mature toxin is composed of a heavy and a light chain that are linked via a disulfide bridge. After entry of tetanus toxin into the cytoplasm, the released light chain causes block of neurotransmitter release. Recent evidence suggests that the L-chain may act as a metalloendoprotease. Here we demonstrate that blockade of neurotransmission by tetanus toxin in isolated nerve terminals is associated with a selective proteolysis of synaptobrevin, an integral membrane protein of synaptic vesicles. No other proteins appear to be affected by tetanus toxin. In addition, recombinant light chain selectively cleaves synaptobrevin when incubated with purified synaptic vesicles. Our data suggest that cleavage of synaptobrevin is the molecular mechanism of tetanus toxin action.  相似文献   

4.
Tetanus and botulinum neurotoxins: mechanism of action and therapeutic uses   总被引:11,自引:0,他引:11  
The clostridial neurotoxins responsible for tetanus and botulism are proteins consisting of three domains endowed with different functions: neurospecific binding, membrane translocation and proteolysis for specific components of the neuroexocytosis apparatus. Tetanus neurotoxin (TeNT) binds to the presynaptic membrane of the neuromuscular junction, is internalized and transported retroaxonally to the spinal cord. The spastic paralysis induced by the toxin is due to the blockade of neurotransmitter release from spinal inhibitory interneurons. In contrast, the seven serotypes of botulinum neurotoxins (BoNTs) act at the periphery by inducing a flaccid paralysis due to the inhibition of acetylcholine release at the neuromuscular junction. TeNT and BoNT serotypes B, D, F and G cleave specifically at single but different peptide bonds, of the vesicle associated membrane protein (VAMP) synaptobrevin, a membrane protein of small synaptic vesicles (SSVs). BoNT types A, C and E cleave SNAP-25 at different sites located within the carboxyl-terminus, while BoNT type C additionally cleaves syntaxin. The remarkable specificity of BoNTs is exploited in the treatment of human diseases characterized by a hyperfunction of cholinergic terminals.  相似文献   

5.
Tetanus toxin produces spastic paralysis in situ by blocking inhibitory neurotransmitter release in the spinal cord. Although di- and trisialogangliosides bind tetanus toxin, their role as productive toxin receptors remains unclear. We examined toxin binding and action in spinal cord cell cultures grown in the presence of fumonisin B(1), an inhibitor of ganglioside synthesis. Mouse spinal cord neurons grown for 3 weeks in culture in 20 microM fumonisin B(1) develop dendrites, axons, and synaptic terminals similar to untreated neurons, even though thin layer chromatography shows a greater than 90% inhibition of ganglioside synthesis. Absence of tetanus and cholera toxin binding by toxin-horseradish peroxidase conjugates or immunofluorescence further indicates loss of mono- and polysialogangliosides. In contrast to control cultures, tetanus toxin added to fumonisin B(1)-treated cultures does not block potassium-stimulated glycine release, inhibit activity-dependent uptake of FM1-43, or abolish immunoreactivity for vesicle-associated membrane protein, the toxin substrate. Supplementing fumonisin B(1)-treated cultures with mixed brain gangliosides completely restores the ability of tetanus toxin to bind to the neuronal surface and to block neurotransmitter release. These data demonstrate that fumonisin B(1) protects against toxin-induced synaptic blockade and that gangliosides are a necessary component of the receptor mechanism for tetanus toxin.  相似文献   

6.
Mechanism of action of tetanus and botulinum neurotoxins   总被引:23,自引:0,他引:23  
The clostridial neurotoxins responsible for tetanus and botulism are metallo-proteases that enter nerve cells and block neurotransmitter release via zinc-dependent cleavage of protein components of the neuroexocytosis apparatus. Tetanus neurotoxin (TeNT) binds to the presynaptic membrane of the neuromuscular Junction and is internalized and transported retroaxonally to the spinal cord. Whilst TeNT causes spastic paralysis by acting on the spinal inhibitory interneurons, the seven serotypes of botullnum neurotoxins (BoNT) induce a flaccid paralysis because they intoxicate the neuromuscular junction. TeNT and BoNT serotypes B, D, F and G specifically cleave VAMP/synaptobrevin, a membrane protein of small synaptic vesicles, at different single peptide bonds. Proteins of the presynaptic membrane are specifically attacked by the other BoNTs: serotypes A and E cleave SNAP-25 at two different sites located within the carboxyl terminus, whereas the specific target of serotype C is syntaxin.  相似文献   

7.
The supply of synaptic vesicles in the nerve terminal is maintained by a temporally linked balance of exo- and endocytosis. Tetanus and botulinum neurotoxins block neurotransmitter release by the enzymatic cleavage of proteins identified as critical for synaptic vesicle exocytosis. We show here that botulinum neurotoxin A is unique in that the toxin-induced block in exocytosis does not arrest vesicle membrane endocytosis. In the murine spinal cord, cell cultures exposed to botulinum neurotoxin A, neither K(+)-evoked neurotransmitter release nor synaptic currents can be detected, twice the ordinary number of synaptic vesicles are docked at the synaptic active zone, and its protein substrate is cleaved, which is similar to observations with tetanus and other botulinal neurotoxins. In marked contrast, K(+) depolarization, in the presence of Ca(2+), triggers the endocytosis of the vesicle membrane in botulinum neurotoxin A-blocked cultures as evidenced by FM1-43 staining of synaptic terminals and uptake of HRP into synaptic vesicles. These experiments are the first demonstration that botulinum neurotoxin A uncouples vesicle exo- from endocytosis, and provide evidence that Ca(2+) is required for synaptic vesicle membrane retrieval.  相似文献   

8.
The high toxicity of clostridial neurotoxins primarily results from their specific binding and uptake into neurons. At motor neurons, the seven botulinum neurotoxin serotypes A–G (BoNT/A–G) inhibit acetylcholine release, leading to flaccid paralysis, while tetanus neurotoxin blocks neurotransmitter release in inhibitory neurons, resulting in spastic paralysis. Uptake of BoNT/A, B, E and G requires a dual interaction with gangliosides and the synaptic vesicle (SV) proteins synaptotagmin or SV2, whereas little is known about the entry mechanisms of the remaining serotypes. Here, we demonstrate that BoNT/F as wells depends on the presence of gangliosides, by employing phrenic nerve hemidiaphragm preparations derived from mice expressing GM3, GM2, GM1 and GD1a or only GM3. Subsequent site-directed mutagenesis based on homology models identified the ganglioside binding site at a conserved location in BoNT/E and F. Using the mice phrenic nerve hemidiaphragm assay as a physiological model system, cross-competition of full-length neurotoxin binding by recombinant binding fragments, plus accelerated neurotoxin uptake upon increased electrical stimulation, indicate that BoNT/F employs SV2 as protein receptor, whereas BoNT/C and D utilise different SV receptor structures. The co-precipitation of SV2A, B and C from Triton-solubilised SVs by BoNT/F underlines this conclusion.  相似文献   

9.
Botulinum neurotoxin E (BoNT/E) can cause paralysis in humans and animals by blocking neurotransmitter release from presynaptic nerve terminals. How this toxin targets and enters neurons is not known. Here we identified two isoforms of the synaptic vesicle protein SV2, SV2A and SV2B, as the protein receptors for BoNT/E. BoNT/E failed to enter neurons cultured from SV2A/B knockout mice; entry was restored by expressing SV2A or SV2B, but not SV2C. Mice lacking SV2B displayed reduced sensitivity to BoNT/E. The fourth luminal domain of SV2A or SV2B alone, expressed in chimeric receptors by replacing the extracellular domain of the low-density lipoprotein receptor, can restore the binding and entry of BoNT/E into neurons lacking SV2A/B. Furthermore, we found disruption of a N-glycosylation site (N573Q) within the fourth luminal domain of SV2A rendered the mutant unable to mediate the entry of BoNT/E and also reduced the entry of BoNT/A. Finally, we demonstrate that BoNT/E failed to bind and enter ganglioside-deficient neurons; entry was rescued by loading exogenous gangliosides into neuronal membranes. Together, the data reported here demonstrate that glycosylated SV2A and SV2B act in conjunction with gangliosides to mediate the entry of BoNT/E into neurons.  相似文献   

10.
Y Li  R Aoki  J O Dolly 《Journal of biochemistry》1999,125(6):1200-1208
Tetanus toxin, composed of a disulphide-linked heavy (HC) and light (LC) chain, preferentially blocks the release of inhibitory neurotransmitters in the spinal cord by Zn2+-dependent proteolytic cleavage of synaptobrevin. This intoxication involves binding via HC to ecto-acceptors on peripheral nerve endings, followed by internalisation and retrograde transportation to its prime site of action in central neurons. To facilitate exploitation of the toxin's unique activities, HC was expressed at a high level in Escherichia coli as a fusion with maltose binding protein; after cleavage by thrombin, free HC was isolated and its identity confirmed by Western blotting and N-terminal microsequencing. The expressed and native HC gave very similar circular dichroism spectra, excluding any gross differences in their folded structures. Recombinant HC antagonised the neuromuscular paralysing activity of the native toxin, by competing for binding to neuronal ecto-acceptors. The HC was reconstituted with bacterially-expressed LC to create disulphide-bridged dichain toxin that blocked neuromuscular transmission. The fully-recombinant toxin produced spastic paralysis in mice characteristic of the blockade of central inhibitory synapses, revealing that it undergoes axonal transport to the spinal cord, like the native toxin but with a reduced efficacy. This first report of the large-scale production of recombinant tetanus toxin in active form should facilitate studies on the use of engineered innocuous forms of the toxin as neuronal transport vehicles.  相似文献   

11.
Synaptophysin and synaptobrevin are abundant membrane proteins of neuronal small synaptic vesicles. In mature, differentiated neurons they form the synaptophysin/synaptobrevin (Syp/Syb) complex. Synaptobrevin also interacts with the plasma membrane-associated proteins syntaxin and SNAP25, thereby forming the SNARE complex necessary for exocytotic membrane fusion. The two complexes are mutually exclusive. Synaptobrevin is a C-terminally membrane-anchored protein with one transmembrane domain. While its interaction with its SNARE partners is mediated exclusively by its N-terminal cytosolic region it has been unclear so far how binding to synaptophysin is accomplished. Here, we show that synaptobrevin can be cleaved in its synaptophysin-bound form by tetanus toxin and botulinum neurotoxin B, or by botulinum neurotoxin D, leaving shorter or longer C-terminal peptide chains bound to synaptophysin, respectively. A recombinant, C-terminally His-tagged synaptobrevin fragment bound to nickel beads specifically bound synaptophysin, syntaxin and SNAP25 from vesicular detergent extracts. After cleavage by tetanus toxin or botulinum toxin D light chain, the remaining C-terminal fragment no longer interacted with syntaxin or SNAP 25. In contrast, synaptophysin was still able to bind to the residual C-terminal synaptobrevin cleavage product. In addition, the His-tagged C-terminal synaptobrevin peptide 68-116 was also able to bind synaptophysin in detergent extracts from adult brain membranes. These data suggest that synaptophysin interacts with the C-terminal transmembrane part of synaptobrevin, thereby allowing the N-terminal cytosolic chain to interact freely with the plasma membrane-associated SNARE proteins. Thus, by binding synaptobrevin, synaptophysin may positively modulate neurotransmission.  相似文献   

12.
Peng L  Tepp WH  Johnson EA  Dong M 《PLoS pathogens》2011,7(3):e1002008
Botulinum neurotoxins (BoNTs) include seven bacterial toxins (BoNT/A-G) that target presynaptic terminals and act as proteases cleaving proteins required for synaptic vesicle exocytosis. Here we identified synaptic vesicle protein SV2 as the protein receptor for BoNT/D. BoNT/D enters cultured hippocampal neurons via synaptic vesicle recycling and can bind SV2 in brain detergent extracts. BoNT/D failed to bind and enter neurons lacking SV2, which can be rescued by expressing one of the three SV2 isoforms (SV2A/B/C). Localization of SV2 on plasma membranes mediated BoNT/D binding in both neurons and HEK293 cells. Furthermore, chimeric receptors containing the binding sites for BoNT/A and E, two other BoNTs that use SV2 as receptors, failed to mediate the entry of BoNT/D suggesting that BoNT/D binds SV2 via a mechanism distinct from BoNT/A and E. Finally, we demonstrated that gangliosides are essential for the binding and entry of BoNT/D into neurons and for its toxicity in vivo, supporting a double-receptor model for this toxin.  相似文献   

13.
Tetanus toxin is a powerful neurotoxin known to inhibit neurotransmitter release. The tetanus toxin light chain is a metalloprotease that cleaves some members of the synaptobrevin gene family with high specificity. Here, we report the expression of a synthetic gene encoding the tetanus toxin light chain in the seminiferous epithelium of transgenic mice. Spermatogenesis was severely impaired and mature spermatozoa were completely absent. Late spermatids exhibited pleomorphic shapes and acrosomal distortions. The number of Leydig cells was greatly increased. In situ hybridization analysis revealed that the toxin acts on Sertoli cells. Affected cells exhibited an aberrant distribution of actin filaments and many cells contained large vacuoles. Our results demonstrate that tetanus toxin is active in non-neuronal cells and suggest an important function for members of the synaptobrevin gene family during the late stages of spermatogenesis.  相似文献   

14.
Tetanus (TeNT) is a zinc protease that blocks neurotransmission by cleaving the synaptic protein vesicle-associated membrane protein/synaptobrevin. Although its intracellular catalytic activity is well established, the mechanism by which this neurotoxin interacts with the neuronal surface is not known. In this study, we characterize p15s, the first plasma membrane TeNT binding proteins and we show that they are glycosylphosphatidylinositol-anchored glycoproteins in nerve growth factor (NGF)-differentiated PC12 cells, spinal cord cells, and purified motor neurons. We identify p15 as neuronal Thy-1 in NGF-differentiated PC12 cells. Fluorescence lifetime imaging microscopy measurements confirm the close association of the binding domain of TeNT and Thy-1 at the plasma membrane. We find that TeNT is recruited to detergent-insoluble lipid microdomains on the surface of neuronal cells. Finally, we show that cholesterol depletion affects a raft subpool and blocks the internalization and intracellular activity of the toxin. Our results indicate that TeNT interacts with target cells by binding to lipid rafts and that cholesterol is required for TeNT internalization and/or trafficking in neurons.  相似文献   

15.
Tetanus toxin acts by blocking the release of glycine from inhibitory neurones within the spinal cord. An initial stage in the toxin's action is binding to acceptors on the nerve surface and polysialogangliosides are a component of these acceptor moieties. Using site-directed mutagenesis, we identify tyrosine-1290 of tetanus toxin as a key residue that is involved in ganglioside binding. This residue, which is located at the centre of a shallow pocket on the beta-trefoil domain of the tetanus H(c) fragment, is also shown to play a key role in the functional binding of tetanus toxin to spinal cord neurones leading to the inhibition of neurotransmitter release.  相似文献   

16.
Tetanus toxin (100 nM) when preincubated with guinea pig cerebrocortical synaptosomes for 45 min reduces the final extent of the KCl-evoked, Ca(2+)-dependent, glutamate transmitter release to 30% of non-intoxicated controls. Similarly, 100 nM Botulinum neurotoxins, types A and B, preincubated for 90 min inhibit release to 45-60% of non-intoxicated controls. The toxins preferentially attenuate a slow phase of KCl-evoked glutamate release which may be associated with synaptic vesicle mobilization. Tetanus toxin additionally inhibits the release of aspartate, gamma-aminobutyric acid and met-enkephalin from the same preparation. Since amino acids and neuropeptides are released by distinct mechanisms, this indicates that the toxin affects a step common to both exocytotic pathways. When Ba2+ (which does not interact with calmodulin) is substituted for Ca2+, the control KCl-evoked release of each transmitter is unaffected and tetanus toxin is still inhibitory. Taken together these results implicate a calmodulin-independent locus (or loci) of action common to small- and large-dense-core vesicles and associated with vesicle transport.  相似文献   

17.
Tetanus and botulinum neurotoxins are di-chain proteins that cause paralysis by inhibiting neuroexocytosis. These neurotoxins enter into nerve terminals via endocytosis inside synaptic vesicles, whose acidic pH induces a structural change of the neurotoxin molecule that becomes capable of translocating its L chain into the cytosol, via a transmembrane protein-conducting channel made by the H chain. This is the least understood step of the intoxication process primarily because it takes place inside vesicles within the cytosol. In the present study, we describe how this passage was made accessible to investigation by making it to occur at the surface of neurons. The neurotoxin, bound to the plasma membrane in the cold, was exposed to a warm low pH extracellular medium and the entry of the L chain was monitored by measuring its specific metalloprotease activity with a ratiometric method. We found that the neurotoxin has to be bound to the membrane via at least two anchorage sites in order for a productive low-pH induced structural change to take place. In addition, this process can only occur if the single inter-chain disulfide bond is intact. The pH dependence of the conformational change of tetanus neurotoxin and botulinum neurotoxin B, C and D is similar and take places in the same slightly acidic range, which comprises that present inside synaptic vesicles. Based on these and previous findings, we propose a stepwise sequence of molecular events that lead from toxin binding to membrane insertion.  相似文献   

18.
Botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT) inhibit neurotransmitter release by proteolyzing a single peptide bond in one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors SNAP-25, syntaxin, and vesicle-associated membrane protein (VAMP)/synaptobrevin. TeNT and BoNT/B, D, F, and G of the seven known BoNTs cleave the synaptic vesicle protein VAMP/synaptobrevin. Except for BoNT/B and TeNT, they cleave unique peptide bonds, and prior work suggested that different substrate segments are required for the interaction of each toxin. Although the mode of SNAP-25 cleavage by BoNT/A and E has recently been studied in detail, the mechanism of VAMP/synaptobrevin proteolysis is fragmentary. Here, we report the determination of all substrate residues that are involved in the interaction with BoNT/B, D, and F and TeNT by means of systematic mutagenesis of VAMP/synaptobrevin. For each of the toxins, three or more residues clustered at an N-terminal site remote from the respective scissile bond are identified that affect solely substrate binding. These exosites exhibit different sizes and distances to the scissile peptide bonds for each neurotoxin. Substrate segments C-terminal of the cleavage site (P4-P4') do not play a role in the catalytic process. Mutation of residues in the proximity of the scissile bond exclusively affects the turnover number; however, the importance of individual positions at the cleavage sites varied for each toxin. The data show that, similar to the SNAP-25 proteolyzing BoNT/A and E, VAMP/synaptobrevin-specific clostridial neurotoxins also initiate substrate interaction, employing an exosite located N-terminal of the scissile peptide bond.  相似文献   

19.
Tetanus neurotoxin and botulinum neurotoxins are the causative agents of tetanus and botulism. They block the release of neurotransmitters from synaptic vesicles in susceptible animals and man and act in nanogram quantities because of their ability to specifically attack motoneurons. They developed an ingenious strategy to enter neurons. This involves a concentration step via complex polysialo gangliosides at the plasma membrane and the uptake and ride in recycling synaptic vesicles initiated by binding to a specific protein receptor. Finally, the neurotoxins shut down the synaptic vesicle cycle, which they had misused before to enter their target cells, via specific cleavage of protein core components of the cellular membrane fusion machinery. The uptake of four out of seven known botulinum neurotoxins into synaptic vesicles has been demonstrated to rely on binding to intravesicular segments of the synaptic vesicle proteins synaptotagmin or synaptic vesicle protein 2. This review summarizes the present knowledge about the cell receptor molecules and the mode of toxin-receptor interaction that enables the toxins' sophisticated access to their site of action.  相似文献   

20.
Tetanus Toxin Fragment C Binds to a Protein Present in Neuronal Cell Lines and Motoneurons Tetanus neurotoxin is one of the most powerful protein toxins known, acting in vivo at femtomolar doses. Two main factors determine its high potency: a protease activity restricted to a single intracellular substrate and its absolute neurospecificity. Whereas the enzymatic properties of tetanus toxin have been thoroughly defined, the nature of its neuronal receptor(s) and their involvement in the intracellular trafficking of tetanus toxin are poorly understood. Using binding and crosslinking experiments, we report here on the characterisation of an N-glycosylated 15-kDa interacting protein, which behaves as an integral membrane protein. This putative receptor specifically interacts with the binding domain (fragment C) of tetanus toxin and not with several related botulinum neurotoxins in spinal cord motoneurons and neuronal-like cell lines. Sialic acid-specific lectins antagonise the binding of tetanus toxin to the cell surface and to the 15-kDa protein, supporting the central role of sialic acid residues in the recognition process. Altogether, these results indicate the existence of a neuronal protein receptor for tetanus toxin whose identification is likely to constitute a key step in the analysis of the molecular machinery involved in the toxin internalisation and retrograde transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号