首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Goto-Kakizaki (GK) rat, which has been developed by repeated inbreeding of glucose-intolerant Wistar rats, is the most widely studied rat model for Type 2 diabetes (T2D). However, the detailed genetic background of T2D phenotype in GK rats is still largely unknown. We report a survey of T2D susceptible variations based on high-quality whole genome sequencing of GK and Wistar rats, which have generated a list of GK-specific variations (228 structural variations, 2660 CNV amplification and 2834 CNV deletion, 1796 protein affecting SNVs or indels) by comparative genome analysis and identified 192 potential T2D-associated genes. The genes with variants are further refined with prior knowledge and public resource including variant polymorphism of rat strains, protein-protein interactions and differential gene expression. Finally we have identified 15 genetic mutant genes which include seven known T2D related genes (Tnfrsf1b, Scg5, Fgb, Sell, Dpp4, Icam1, and Pkd2l1) and eight high-confidence new candidate genes (Ldlr, Ccl2, Erbb3, Akr1b1, Pik3c2a, Cd5, Eef2k, and Cpd). Our result reveals that the T2D phenotype may be caused by the accumulation of multiple variations in GK rat, and that the mutated genes may affect biological functions including adipocytokine signaling, glycerolipid metabolism, PPAR signaling, T cell receptor signaling and insulin signaling pathways. We present the genomic difference between two closely related rat strains (GK and Wistar) and narrow down the scope of susceptible loci. It also requires further experimental study to understand and validate the relationship between our candidate variants and T2D phenotype. Our findings highlight the importance of sequenced-based comparative genomics for investigating disease susceptibility loci in inbreeding animal models.  相似文献   

2.
Copy number variation (CNV), an essential form of genetic variation, has been increasingly recognized as one promising genetic marker in the analysis of animal genomes. Here, we used the Equine 70K single nucleotide polymorphism genotyping array for the genome‐wide detection of CNVs in 96 horses from three diverse Chinese breeds: Debao pony (DB), Mongolian horse (MG) and Yili horse (YL). A total of 287 CNVs were determined and merged into 122 CNV regions (CNVRs) ranging from 199 bp to 2344 kb in size and distributed in a heterogeneous manner on chromosomes. These CNVRs were integrated with seven existing reports to generate a composite genome‐wide dataset of 1558 equine CNVRs, revealing 69 (56.6%) novel CNVRs. The majority (69.7%) of the 122 CNVRs overlapped with 438 genes, whereas 30.3% were located in intergenic regions. Most of these genes were associated with common CNVRs, which were shared by divergent horse breeds. As many as 60, 42 and 91 genes overlapping with the breed‐specific ss were identified in DB, MG and YL respectively. Among these genes, FGF11, SPEM1, PPARG, CIDEB, HIVEP1 and GALR may have potential relevance to breed‐specific traits. These findings provide valuable information for understanding the equine genome and facilitating association studies of economically important traits with equine CNVRs in the future.  相似文献   

3.
We carried out a comprehensive genomic analysis of porcine copy number variants (CNVs) based on whole‐genome SNP genotyping data and provided new measures of genomic diversity (number, length and distribution of CNV events) for a highly inbred strain (the Guadyerbas strain). This strain represents one of the most ancient surviving populations of the Iberian breed, and it is currently in serious danger of extinction. CNV detection was conducted on the complete Guadyerbas population, adjusted for genomic waves, and used strict quality criteria, pedigree information and the latest porcine genome annotation. The analysis led to the detection of 65 CNV regions (CNVRs). These regions cover 0.33% of the autosomal genome of this particular strain. Twenty‐nine of these CNVRs were identified here for the first time. The relatively low number of detected CNVRs is in line with the low variability and high inbreeding estimated previously for this Iberian strain using pedigree, microsatellite or SNP data. A comparison across different porcine studies has revealed that more than half of these regions overlap with previously identified CNVRs or multicopy regions. Also, a preliminary analysis of CNV detection using whole‐genome sequence data for four Guadyerbas pigs showed overlapping for 16 of the CNVRs, supporting their reliability. Some of the identified CNVRs contain relevant functional genes (e.g., the SCD and USP15 genes), which are worth being further investigated because of their importance in determining the quality of Iberian pig products. The CNVR data generated could be useful for improving the porcine genome annotation.  相似文献   

4.
In this study, we identified copy number variants (CNVs) in 19 European autochthonous pig breeds and in two commercial breeds (Italian Large White and Italian Duroc) that represent important genetic resources for this species. The genome of 725 pigs was sequenced using a breed-specific DNA pooling approach (30–35 animals per pool) obtaining an average depth per pool of 42×. This approach maximised CNV discovery as well as the related copy number states characterising, on average, the analysed breeds. By mining more than 17.5 billion reads, we identified a total of 9592 CNVs (~683 CNVs per breed) and 3710 CNV regions (CNVRs; 1.15% of the reference pig genome), with an average of 77 CNVRs per breed that were considered as private. A few CNVRs were analysed in more detail, together with other information derived from sequencing data. For example, the CNVR encompassing the KIT gene was associated with coat colour phenotypes in the analysed breeds, confirming the role of the multiple copies in determining breed-specific coat colours. The CNVR covering the MSRB3 gene was associated with ear size in most breeds. The CNVRs affecting the ELOVL6 and ZNF622 genes were private features observed in the Lithuanian Indigenous Wattle and in the Turopolje pig breeds respectively. Overall, the genome variability unravelled here can explain part of the genetic diversity among breeds and might contribute to explain their origin, history and adaptation to a variety of production systems.  相似文献   

5.

Background

Unlike Caucasian populations, genetic factors contributing to the risk of type 2 diabetes mellitus (T2DM) are not well studied in Asian populations. In light of this, and the fact that copy number variation (CNV) is emerging as a new way to understand human genomic variation, the objective of this study was to identify type 2 diabetes–associated CNV in a Korean cohort.

Methodology/Principal Findings

Using the Illumina HumanHap300 BeadChip (317,503 markers), genome-wide genotyping was performed to obtain signal and allelic intensities from 275 patients with type 2 diabetes mellitus (T2DM) and 496 nondiabetic subjects (Total n = 771). To increase the sensitivity of CNV identification, we incorporated multiple factors using PennCNV, a program that is based on the hidden Markov model (HMM). To assess the genetic effect of CNV on T2DM, a multivariate logistic regression model controlling for age and gender was used. We identified a total of 7,478 CNVs (average of 9.7 CNVs per individual) and 2,554 CNV regions (CNVRs; 164 common CNVRs for frequency>1%) in this study. Although we failed to demonstrate robust associations between CNVs and the risk of T2DM, our results revealed a putative association between several CNVRs including chr15:45994758–45999227 (P = 8.6E-04, Pcorr = 0.01) and the risk of T2DM. The identified CNVs in this study were validated using overlapping analysis with the Database of Genomic Variants (DGV; 71.7% overlap), and quantitative PCR (qPCR). The identified variations, which encompassed functional genes, were significantly enriched in the cellular part, in the membrane-bound organelle, in the development process, in cell communication, in signal transduction, and in biological regulation.

Conclusion/Significance

We expect that the methods and findings in this study will contribute in particular to genome studies of Asian populations.  相似文献   

6.
K. Dong  Y. Pu  N. Yao  G. Shu  X. Liu  X. He  Q. Zhao  W. Guan  Y. Ma 《Animal genetics》2015,46(2):101-109
We performed genome‐wide CNV detection based on SNP genotyping data of 96 Chinese‐native Tibetan, Dahe and Wuzhishan pigs. These pigs are particularly interesting because of their excellent adaptation to hypoxia or small body size, which facilitates the use of them as models of different human diseases in addition to valuable agricultural animals. A total of 105 CNV regions (CNVRs) were identified, encompassing 16.71 Mb of the pig genome. Seven of 10 (70%) CNVRs selected randomly were validated by quantitative real‐time PCR. Comparison with previous studies revealed 25 (23.81%) novel CNVRs, indicating that CNV coverage of the pig genome is still incomplete and there exists large diversity between pig breeds. Functional analysis of genes located in these CNVRs confirmed the high representation of genes involved in sensory perception, neurological system processes and other basic metabolic processes. In addition, the majority of these CNVRs were detected to span reported pig QTL that affect various traits, which highlighted three biologically interesting genes with copy number changes (i.e., ANKRD34B, FAM110B and ABCG1). These genes may have economic importance in pig breeding and are worth being further investigated. We also obtained some CNVRs harboring genes that had human orthologs involved in human diseases such as cardiovascular disease and Alzheimer's disease. The findings of this study are a significant extension of the coverage of CNVRs in the pig genome and provide valuable resources for follow‐up‐associated studies of CNVs in pig complex traits as well as important implications of human diseases.  相似文献   

7.
G. Yi  L. Qu  S. Chen  G. Xu  N. Yang 《Animal genetics》2015,46(2):148-157
Phenotypic diversity is a direct consequence resulting mainly from the impact of underlying genetic variation, and recent studies have shown that copy number variation (CNV) is emerging as an important contributor to both phenotypic variability and disease susceptibility. Herein, we performed a genome‐wide CNV scan in 96 chickens from 12 diversified breeds, benefiting from the high‐density Affymetrix 600 K SNP arrays. We identified a total of 231 autosomal CNV regions (CNVRs) encompassing 5.41 Mb of the chicken genome and corresponding to 0.59% of the autosomal sequence. The length of these CNVRs ranged from 2.6 to 586.2 kb with an average of 23.4 kb, including 130 gain, 93 loss and eight both gain and loss events. These CNVRs, especially deletions, had lower GC content and were located particularly in gene deserts. In particular, 102 CNVRs harbored 128 chicken genes, most of which were enriched in immune responses. We obtained 221 autosomal CNVRs after converting probe coordinates to Galgal3, and comparative analysis with previous studies illustrated that 153 of these CNVRs were regarded as novel events. Furthermore, qPCR assays were designed for 11 novel CNVRs, and eight (72.73%) were validated successfully. In this study, we demonstrated that the high‐density 600 K SNP array can capture CNVs with higher efficiency and accuracy and highlighted the necessity of integrating multiple technologies and algorithms. Our findings provide a pioneering exploration of chicken CNVs based on a high‐density SNP array, which contributes to a more comprehensive understanding of genetic variation in the chicken genome and is beneficial to unearthing potential CNVs underlying important traits of chickens.  相似文献   

8.
Copy number variations (CNVs) are large insertions, deletions or duplications in the genome that vary between members of a species and are known to affect a wide variety of phenotypic traits. In this study, we identified CNVs in a population of bulls using low coverage next‐generation sequence data. First, in order to determine a suitable strategy for CNV detection in our data, we compared the performance of three distinct CNV detection algorithms on benchmark CNV datasets and concluded that using the multiple sample read depth approach was the best method for identifying CNVs in our sequences. Using this technique, we identified a total of 1341 copy number variable regions (CNVRs) from genome sequences of 154 purebred sires used in Cycle VII of the USMARC Germplasm Evaluation Project. These bulls represented the seven most popular beef breeds in the United States: Hereford, Charolais, Angus, Red Angus, Simmental, Gelbvieh and Limousin. The CNVRs covered 6.7% of the bovine genome and spanned 2465 protein‐coding genes and many known quantitative trait loci (QTL). Genes harbored in the CNVRs were further analyzed to determine their function as well as to find any breed‐specific differences that may shed light on breed differences in adaptation, health and production.  相似文献   

9.
YB Zhang  X Li  F Zhang  DM Wang  J Yu 《PloS one》2012,7(7):e41768
Genetic features of Tibetans have been broadly investigated, but the properties of copy number variation (CNV) have not been well examined. To get a preliminary view of CNV in Tibetans, we scanned 29 Tibetan genomes with the Illumina Human-1 M high-resolution genotyping microarray and identified 139 putative copy number variable regions (CNVRs), consisting of 70 deletions, 61 duplications, and 8 multi-allelic loci. Thirty-four of the 139 CNVRs showed differential allele frequencies versus other East-Asian populations, with P values <0.0001. These results indicated a distinct pattern of CNVR allele frequency distribution in Tibetans. The Tibetan CNVRs are enriched for genes in the disease class of human reproduction (such as genes from the DAZ, BPY2, CDY, and HLA-DQ and -DR gene clusters) and biological process categories of "response to DNA damage stimulus" and "DNA repair" (such as RAD51, RAD52, and MRE11A). These genes are related to the adaptive traits of high infant birth weight and darker skin tone of Tibetans, and may be attributed to recent local adaptation. Our results provide a different view of genetic diversity in Tibetans and new insights into their high-altitude adaptation.  相似文献   

10.

Background

In this study we applied the extreme groups/selective genotyping approach for identifying copy number variations in high and low fertility breeding boars. The fertility indicator was the calculated Direct Boar Effect on litter size (DBE) that was obtained as a by-product of the national genetic evaluation for litter size (BLUP). The two groups of animals had DBE values at the upper (high fertility) and lower (low fertility) end of the distribution from a population of more than 38,000 boars. Animals from these two diverse phenotypes were genotyped with the Porcine SNP60K chip and compared by several approaches in order to prove the feasibility of our CNV analysis and to identify putative markers of fertility.

Results

We have identified 35 CNVRs covering 36.5 Mb or ~1.3% of the porcine genome. Among these 35 CNVRs, 14 were specific to the high fertility group, while 19 CNVRs were specific to the low fertility group which overlap with 137 QTLs of various reproductive traits. The identified 35 CNVRs encompassed 50 genes, among them 40 were specific to the low fertility group, seven to the high fertility group, while three were found in regions that were present in both groups but with opposite gain/loss status. A functional analysis of several databases revealed that the genes found in CNVRs from the low fertility group have been significantly enriched in members of the innate immune system, Toll-like receptor and RIG-I-like receptor signaling and fatty acid oxidation pathways.

Conclusions

We have demonstrated that our analysis pipeline could identify putative CNV markers of fertility, especially in case of low fertility boars.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1473-9) contains supplementary material, which is available to authorized users.  相似文献   

11.
Copy number variants (CNVs) in the human genome contribute to both Mendelian and complex traits as well as to genomic plasticity in evolution. The investigation of mutational rates of CNVs is critical to understanding genomic instability and the etiology of the copy number variation (CNV)-related traits. However, the evaluation of the CNV mutation rate at the genome level poses an insurmountable practical challenge that requires large samples and accurate typing. In this study, we show that an approximate estimation of the CNV mutation rate could be achieved by using the phylogeny information of flanking SNPs. This allows a genome-wide comparison of mutation rates between CNVs with the use of vast, readily available data of SNP genotyping. A total of 4187 CNV regions (CNVRs) previously identified in HapMap populations were investigated in this study. We showed that the mutation rates for the majority of these CNVRs are at the order of 10−5 per generation, consistent with experimental observations at individual loci. Notably, the mutation rates of 104 (2.5%) CNVRs were estimated at the order of 10−3 per generation; therefore, they were identified as potential hotspots. Additional analyses revealed that genome architecture at CNV loci has a potential role in inciting mutational hotspots in the human genome. Interestingly, 49 (47%) CNV hotspots include human genes, some of which are known to be functional CNV loci (e.g., CNVs of C4 and β-defensin causing autoimmune diseases and CNVs of HYDIN with implication in control of cerebral cortex size), implicating the important role of CNV in human health and evolution, especially in common and complex diseases.  相似文献   

12.
刘静  王亚楠  孙亚奇  王洪洋  汪超  彭中镇  刘榜 《遗传》2014,36(4):354-359
拷贝数变异(Copy number variation, CNV)是染色体上发生的一种微结构变异, 已引起越来越多研究者的关注。本课题组前期已获得猪13号染色体上的32个CNV区域(CNV region, CNVR), 为了发掘CNVR内的基因信息, 文章在线检索了上述CNVR内的基因并进行基因本体(Gene Ontology)分析。结果共发现236个基因, 其中有注释基因169个, 主要参与蛋白质水解、细胞粘附、大分子降解等生物过程。为了探索这些基因拷贝数变异的遗传规律, 文章选择RCAN1(Regulators of calcineurin 1)基因为候选基因, 利用QPCR方法在莱芜猪群中检测了该基因的拷贝数, 并分析了CNV在莱芜猪3个家系中的遗传规律。结果表明, RCAN1基因在莱芜猪群体中存在拷贝数的缺失、重复现象, 其拷贝数变异的遗传规律符合孟德尔遗传方式。  相似文献   

13.
《Genomics》2019,111(6):1231-1238
Spodoptera litura is a polyphagous pest and can feed on more than 100 species of plants, causing great damage to agricultural production. The SNP results showed that there were gene exchanges between different regions. To explore the variations of larger segments in S. litura genome, we used genome resequencing samples from 14 regions of China, India, and Japan to study the copy number variations (CNVs). We identified 3976 CNV events and 1581 unique copy number variation regions (CNVRs) occupying the 108.5 Mb genome of S. litura. A total of 5527 genes that overlapped with CNVRs were detected. Selection signal analysis identified 19 shared CNVRs and 105 group-specific CNVRs, whose related genes were involved in various biological processes in S. litura. We constructed the first CNVs map in S. litura genome, and our findings will be valuable for understanding the genomic variations and population differences of S. litura.  相似文献   

14.
Copy number variations (CNVs) have recently been identified as promising sources of genetic variation, complementary to single nucleotide polymorphisms (SNPs). As a result, detection of CNVs has attracted a great deal of attention. In this study, we performed genome‐wide CNV detection using Illumina Bovine HD BeadChip (770k) data on 792 Simmental cattle. A total of 263 CNV regions (CNVRs) were identified, which included 137 losses, 102 gains and 24 regions classified as both loss and gain, covering 35.48 Mb (1.41%) of the bovine genome. The length of these CNVRs ranged from 10.18 kb to 1.76 Mb, with an average length of 134.78 kb and a median length of 61.95 kb. In 136 of these regions, a total of 313 genes were identified related to biological functions such as transmembrane activity and olfactory transduction activity. To validate the results, we performed quantitative PCR to detect nine randomly selected CNVRs and successfully confirmed seven (77.6%) of them. Our results present a map of cattle CNVs derived from high‐density SNP data, which expands the current CNV map of the cattle genome and provides useful information for investigation of genomic structural variation in cattle.  相似文献   

15.
The European rabbit (Oryctolagus cuniculus) is relevant in a large spectrum of fields: it is a livestock, a pet, a biomedical model and a biotechnology tool, a wild resource and a pest. The sequencing of the rabbit genome has opened new perspectives to study this lagomorph at the genome level. We herein investigated for the first time the O. cuniculus genome by array comparative genome hybridization (aCGH) and established a first copy number variation (CNV) genome map in this species comprising 155 copy number variation regions (CNVRs; 95 gains, 59 losses, 1 with both gain and loss) covering ~0.3% of the OryCun2.0 version. About 50% of the 155 CNVRs identified spanned 139 different protein coding genes, 110 genes of which were annotated or partially annotated (including Major Histocompatibility Complex genes) with 277 different gene ontology terms. Many rabbit CNVRs might have a functional relevance that should be further investigated.  相似文献   

16.
Wang Y  Gu X  Feng C  Song C  Hu X  Li N 《Animal genetics》2012,43(3):282-289
The discovery of copy number variation (CNV) in the genome has provided new insight into genomic polymorphism. Studies with chickens have identified a number of large CNV segments using a 385k comparative genomic hybridization (CGH) chip (mean length >140 kb). We present a detailed CNV map for local Chinese chicken breeds and commercial chicken lines using an Agilent 400k array CGH platform with custom-designed probes. We identified a total of 130 copy number variation regions (CNVRs; mean length = 25.70 kb). Of these, 104 (80.0%) were novel segments reported for the first time in chickens. Among the 104 novel CNVRs, 56 (53.8%) of the segments were non-coding sequences, 65 (62.5%) showed the gain of DNA and 40 (38.5%) showed the loss of DNA (one locus showed both loss and gain). Overlapping with the formal selective sweep data and the quantitative trait loci data, we identified four loci that might be considered to be high-confidence selective segments that arose during the domestication of chickens. Compared with the CNVRs reported previously, genes for the positive regulation of phospholipase A2 activity were discovered to be significantly over-represented in the novel CNVRs reported here by gene ontology analysis. Availability of our results should facilitate further research in the study of the genetic variability in chicken breeds.  相似文献   

17.
We carried out a cross species cattle-sheep array comparative genome hybridization experiment to identify copy number variations (CNVs) in the sheep genome analysing ewes of Italian dairy or dual-purpose breeds (Bagnolese, Comisana, Laticauda, Massese, Sarda, and Valle del Belice) using a tiling oligonucleotide array with ~385,000 probes designed on the bovine genome. We identified 135 CNV regions (CNVRs; 24 reported in more than one animal) covering ~10.5 Mb of the virtual sheep genome referred to the bovine genome (0.398%) with a mean and a median equal to 77.6 and 55.9 kb, respectively. A comparative analysis between the identified sheep CNVRs and those reported in cattle and goat genomes indicated that overlaps between sheep and both other species CNVRs are highly significant (P<0.0001), suggesting that several chromosome regions might contain recurrent interspecies CNVRs. Many sheep CNVRs include genes with important biological functions. Further studies are needed to evaluate their functional relevance.  相似文献   

18.
Copy number variations (CNVs) have provided a dynamic aspect to the apparently static human genome. We have analyzed CNVs larger than 100 kb in 477 healthy individuals from 26 diverse Indian populations of different linguistic, ethnic and geographic backgrounds. These CNVRs were identified using the Affymetrix 50K Xba 240 Array. We observed 1,425 and 1,337 CNVRs in the deletion and amplification sets, respectively, after pooling data from all the populations. More than 50% of the genes encompassed entirely in CNVs had both deletions and amplifications. There was wide variability across populations not only with respect to CNV extent (ranging from 0.04–1.14% of genome under deletion and 0.11–0.86% under amplification) but also in terms of functional enrichments of processes like keratinization, serine proteases and their inhibitors, cadherins, homeobox, olfactory receptors etc. These did not correlate with linguistic, ethnic, geographic backgrounds and size of populations. Certain processes were near exclusive to deletion (serine proteases, keratinization, olfactory receptors, GPCRs) or duplication (homeobox, serine protease inhibitors, embryonic limb morphogenesis) datasets. Populations having same enriched processes were observed to contain genes from different genomic loci. Comparison of polymorphic CNVRs (5% or more) with those cataloged in Database of Genomic Variants revealed that 78% (2473) of the genes in CNVRs in Indian populations are novel. Validation of CNVs using Sequenom MassARRAY revealed extensive heterogeneity in CNV boundaries. Exploration of CNV profiles in such diverse populations would provide a widely valuable resource for understanding diversity in phenotypes and disease.  相似文献   

19.

Background

Copy number variation (CNV) is important and widespread in the genome, and is a major cause of disease and phenotypic diversity. Herein, we performed a genome-wide CNV analysis in 12 diversified chicken genomes based on whole genome sequencing.

Results

A total of 8,840 CNV regions (CNVRs) covering 98.2 Mb and representing 9.4% of the chicken genome were identified, ranging in size from 1.1 to 268.8 kb with an average of 11.1 kb. Sequencing-based predictions were confirmed at a high validation rate by two independent approaches, including array comparative genomic hybridization (aCGH) and quantitative PCR (qPCR). The Pearson’s correlation coefficients between sequencing and aCGH results ranged from 0.435 to 0.755, and qPCR experiments revealed a positive validation rate of 91.71% and a false negative rate of 22.43%. In total, 2,214 (25.0%) predicted CNVRs span 2,216 (36.4%) RefSeq genes associated with specific biological functions. Besides two previously reported copy number variable genes EDN3 and PRLR, we also found some promising genes with potential in phenotypic variation. Two genes, FZD6 and LIMS1, related to disease susceptibility/resistance are covered by CNVRs. The highly duplicated SOCS2 may lead to higher bone mineral density. Entire or partial duplication of some genes like POPDC3 may have great economic importance in poultry breeding.

Conclusions

Our results based on extensive genetic diversity provide a more refined chicken CNV map and genome-wide gene copy number estimates, and warrant future CNV association studies for important traits in chickens.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-962) contains supplementary material, which is available to authorized users.  相似文献   

20.
Copy number variations (CNVs) are important forms of structural variation in human and animals and can be considered as a major genetic component of phenotypic diversity. Here we used the Illumina PorcineSNP60 BeadChip V2 and a DLY [Duroc × (Large White × Landrace)] commercial hybrid population to identify 272 CNVs belonging to 165 CNV regions (CNVRs), of which 66 are new. As CNVRs are specific to origin of population, our DLY-specific data is an important complementary to the existing CNV map in the pig genome. Eight CNVRs were selected for validation by quantitative real-time PCR (qRT-PCR) and the accurate rate was high (87.25%). Gene function analysis suggested that a common CNVR may play an important role in multiple traits, including growth rate and carcass quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号