首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
European starlings (Sturnus vulgaris) represent one of the most widespread and problematic avian invasive species in the world. Understanding their unique population history and current population dynamics can contribute to conservation efforts and clarify evolutionary processes over short timescales. European starlings were introduced to Central Park, New York in 1890, and from a founding group of about 100 birds, they have expanded across North America with a current population of approximately 200 million. There were also multiple introductions in Australia in the mid‐19th century and at least one introduction in South Africa in the late 19th century. Independent introductions on these three continents provide a robust system to investigate invasion genetics. In this study, we compare mitochondrial diversity in European starlings from North America, Australia, and South Africa, and a portion of the native range in the United Kingdom. Of the three invasive ranges, the North American population shows the highest haplotype diversity and evidence of both sudden demographic and spatial expansion. Comparatively, the Australian population shows the lowest haplotype diversity, but also shows evidence for sudden demographic and spatial expansion. South Africa is intermediate to the other invasive populations in genetic diversity but does not show evidence of demographic expansion. In previous studies, population genetic structure was found in Australia, but not in South Africa. Here we find no evidence of population structure in North America. Although all invasive populations share haplotypes with the native range, only one haplotype is shared between invasive populations. This suggests these three invasive populations represent independent subsamples of the native range. The structure of the haplotype network implies that the native‐range sampling does not comprehensively characterize the genetic diversity there. This study represents the most geographically widespread analysis of European starling population genetics to date.  相似文献   

2.
The expansion of invasive species challenges our understanding of the process of adaptation. Given that the invasion process often entails population bottlenecks, it is surprising that many invasives appear to thrive even with low levels of sequence-based genetic variation. Using Amplified Fragment Length Polymorphism (AFLP) and methylation sensitive-AFLP (MS-AFLP) markers, we tested the hypothesis that differentiation of invasive Japanese knotweed in response to new habitats is more correlated with epigenetic variation than DNA sequence variation. We found that the relatively little genetic variation present was differentiated among species, with less differentiation among sites within species. In contrast, we found a great deal of epigenetic differentiation among sites within each species and evidence that some epigenetic loci may respond to local microhabitat conditions. Our findings indicate that epigenetic effects could contribute to phenotypic variation in genetically depauperate invasive populations. Deciphering whether differences in methylation patterns are the cause or effect of habitat differentiation will require manipulative studies.  相似文献   

3.
为探讨周公河中齐口裂腹鱼(Schizothorax prenanti)的遗传多样性和遗传结构, 沿周公河连续设定6个采样点进行齐口裂腹鱼采集, 在进行基因组DNA提取后以线粒体控制区(D-loop)为分子标记进行种群遗传多样性和遗传结构的评估。结果从63尾齐口裂腹鱼中共检测到32个单倍型, 核苷酸多样性(π)为0.013, 单倍型多样性(h)为0.966。遗传多样性最高的为张家湾种群(PopF, π=0.018, h=1.000), 核苷酸多样性最低的为罗坝种群(PopC, π=0.010, h=0.970), 单倍型多样性最低的为瓦屋山大坝下游种群(PopB, π=0.015, h=0.867)。种群间共享13个单倍型, 多数齐口裂腹鱼种群间的遗传分化水平中等或较低, 仅Pop C和Pop F (Fst=0.195, P<0.01), 种群Pop A 和PopE (Fst=0.158, P<0.01)分化程度较高, 显示各种群间较密切的遗传关系。周公河不同河段齐口裂腹鱼群体的遗传多样性处于较高的水平, 各种群间具有较近的遗传关系。  相似文献   

4.
Plant reproductive systems and evolution during biological invasion   总被引:4,自引:1,他引:3  
Recent biological invasions provide opportunities to investigate microevolution during contemporary timescales. The tempo and scope of local adaptation will be determined by the intensity of natural selection and the amounts and kinds of genetic variation within populations. In flowering plants, genetic diversity is strongly affected by interactions between reproductive systems and stochastic forces associated with immigration history and range expansion. Here, we explore the significance of reproductive system diversity for contemporary evolution during plant invasion. We focus in particular on how reproductive modes influence the genetic consequences of long-distance colonization and determine the likelihood of adaptive responses during invasion. In many clonal invaders, strong founder effects and restrictions on sexual reproduction limit opportunities for local adaptation. In contrast, adaptive changes to life-history traits should be a general expectation in both outbreeding and inbreeding species. We provide evidence that evolutionary modifications to reproductive systems promote the colonizing ability of invading populations and that reproductive timing is an important target of selection during range expansion. Knowledge of the likelihood and speed at which local adaptation evolves in invasive plants will be particularly important for management practices when evolutionary changes enhance ecological opportunities and invasive spread.  相似文献   

5.
The paradox of successful invading species is that they are likely to be genetically depauperate compared to their source population. This study on Colorado potato beetles is one of the few studies of the genetic consequences of continent-scale invasion in an insect pest. Understanding gene flow, population structure and the potential for rapid evolution in native and invasive populations offers insights both into the dynamics of small populations that become successful invaders and for their management as pests. We used this approach to investigate the invasion of the Colorado potato beetle (Leptinotarsa decemlineata) from North America to Europe. The beetles invaded Europe at the beginning of the 20th century and expanded almost throughout the continent in about 30 years. From the analysis of mitochondrial DNA (mtDNA) and amplified fragment length polymorphism (AFLP) markers, we found the highest genetic diversity in beetle populations from the central United States. The European populations clearly contained only a fraction of the genetic variability observed in North American populations. European populations show a significant reduction at nuclear markers (AFLPs) and are fixed for one mitochondrial haplotype, suggesting a single successful founder event. Despite the high vagility of the species and the reduction of genetic diversity in Europe, we found a similar, high level of population structure and low gene flow among populations on both continents. Founder events during range expansion, agricultural management with crop rotation, and selection due to insecticide applications are most likely the causes partitioning genetic diversity in this species.  相似文献   

6.
Aim  Levels of genetic diversity can be used to determine haplotype frequency, population size and patterns of invasive species distribution. In this study, we sought to investigate the genetic structure of the invasive marine mussel Mytella charruana and compare variation from invasive populations with variation found within three native populations.
Location  Invaded areas in the USA (Florida, Georgia); native areas in Ecuador, Colombia and Brazil.
Methods  We sequenced 722 bp of the mitochondrial COI gene from 83 M. charruana samples from four invasive populations (USA) and 71 samples from two natural populations (Ecuador, Columbia). In addition, we sequenced 31 individuals of a congeneric species, Mytella guyanensis , from Salvador, Brazil. We constructed the phylogenetic relationship among all haplotypes and compared diversity measures among all populations.
Results  We found significantly higher levels of nucleotide diversity in invasive populations than in native populations, although the number of haplotypes was greater in the native populations. Moreover, mismatch distribution analyses resulted in a pattern indicative of population admixture for the invasive populations. Conversely, mismatch distributions of native populations resulted in a pattern indicative of populations in static equilibrium.
Main conclusion  Our data present compelling evidence that the M. charruana invasion resulted from admixture of at least two populations, which combined to form higher levels of genetic diversity in invasive populations. Moreover, our data suggest that one of these populations originated from the Caribbean coast of South America. Overall, this study provides an analysis of genetic diversity within invasive populations and explores how that diversity may be influenced by the genetic structure of native populations and how mass dispersal may lead to invasion success.  相似文献   

7.
While many introduced invasive species can increase genetic diversity through multiple introductions and/or hybridization to colonize successfully in new environments, others with low genetic diversity have to persist by alternative mechanisms such as epigenetic variation. Given that Phragmites australis is a cosmopolitan reed growing in a wide range of habitats and its invasion history, especially in North America, has been relatively well studied, it provides an ideal system for studying the role and relationship of genetic and epigenetic variation in biological invasions. We used amplified fragment length polymorphism (AFLP) and methylation‐sensitive (MS) AFLP methods to evaluate genetic and epigenetic diversity and structure in groups of the common reed across its range in the world. Evidence from analysis of molecular variance (AMOVA) based on AFLP and MS‐AFLP data supported the previous conclusion that the invasive introduced populations of P. australis in North America were from European and Mediterranean regions. In the Gulf Coast region, the introduced group harbored a high level of genetic variation relative to originating group from its native location, and it showed epigenetic diversity equal to that of the native group, if not higher, while the introduced group held lower genetic diversity than the native. In the Great Lakes region, the native group displayed very low genetic and epigenetic variation, and the introduced one showed slightly lower genetic and epigenetic diversity than the original one. Unexpectedly, AMOVA and principal component analysis did not demonstrate any epigenetic convergence between native and introduced groups before genetic convergence. Our results suggested that intertwined changes in genetic and epigenetic variation were involved in the invasion success in North America. Although our study did not provide strong evidence proving the importance of epigenetic variation prior to genetic, it implied the similar role of stable epigenetic diversity to genetic diversity in the adaptation of P. australis to local environment.  相似文献   

8.
Population genetic studies are efficient for inferring the invasion history based on a comparison of native and invasive populations, especially when conducted at species scale. An expected outcome in invasive populations is variability loss, and this is especially true in self‐fertilizing species. We here focus on the self‐fertilizing Pseudosuccinea columella, an invasive hermaphroditic freshwater snail that has greatly expanded its geographic distribution and that acts as intermediate host of Fasciola hepatica, the causative agent of human and veterinary fasciolosis. We evaluated the distribution of genetic diversity at the largest geographic scale analysed to date in this species by surveying 80 populations collected during 16 years from 14 countries, using eight nuclear microsatellites and two mitochondrial genes. As expected, populations from North America, the putative origin area, were strongly structured by selfing and history and harboured much more genetic variability than invasive populations. We found high selfing rates (when it was possible to infer it), none‐to‐low genetic variability and strong population structure in most invasive populations. Strikingly, we found a unique genotype/haplotype in populations from eight invaded regions sampled all over the world. Moreover, snail populations resistant to infection by the parasite are genetically distinct from susceptible populations. Our results are compatible with repeated introductions in South America and flash worldwide invasion by this unique genotype/haplotype. Our study illustrates the population genetic consequences of biological invasion in a highly selfing species at very large geographic scale. We discuss how such a large‐scale flash invasion may affect the spread of fasciolosis.  相似文献   

9.
One of the most invasive species worldwide, Solenopsis invicta Buren, has been described in China since 2003. Recent studies have suggested that China populations are the result of introductions from the USA; however, detailed molecular studies need to be performed in order to understand the expansion and potential multiple introductions from other countries into China. As there were populations of red imported fire ant, S. invicta in different areas and with different methods of introduction, mitochondrial cytochrome oxidase Ⅰ gene was used as a marker from 12 populations in four cities in Fujian Province, China, to determine the relationship of invasion among these populations. The three most common haplotypes previously describe in invasive populations of S. invicta: H5, H22 and H36, were found in Fujian. However, frequencies in each city were different. For instance, three populations from Longyan city which invaded with waste plastics, shared haplotype H5. Populations from Xiamen city and Jinjiang city which dispersed with nursery stock, sward and scrap leather, shared haplotype H22. The population from Nanyan village of Xinluo district, Longyan city, bore haplotype H36. Mitochondrial data reveals that the invasion history of S. invicta in Fujian Province is complex, including multiple invasions probably from other provinces within China. Security measures to prevent S. invicta spreading within China are as important as from overseas.  相似文献   

10.
The invasion of the zebra mussel, Dreissena polymorpha, into North American waters has resulted in profound ecological disturbances and large monetary losses. This study examined the invasion history and patterns of genetic diversity among endemic and invading populations of zebra mussels using DNA sequences from the mitochondrial cytochrome oxidase I (COI) gene. Patterns of haplotype frequency indicate that all invasive populations of zebra mussels from North America and Europe originated from the Ponto-Caspian Sea region. The distribution of haplotypes was consistent with invasive populations arising from the Black Sea drainage, but could not exclude the possibility of an origin from the Caspian Sea drainage. Similar haplotype frequencies among North American populations of D. polymorpha suggest colonization by a single founding population. There was no evidence of invasive populations arising from tectonic lakes in Turkey, while lakes in Greece and Macedonia contained only Dreissena stankovici. Populations in Turkey might be members of a sibling species complex of D. polymorpha. Ponto-Caspian derived populations of D. polymorpha (theta = 0.0011) and Dreissena bugensis (one haplotype) exhibited low levels of genetic diversity at the COI gene, perhaps as a result of repeated population bottlenecks. In contrast, geographically isolated tectonic lake populations exhibited relatively high levels of genetic diversity (theta = 0.0032 to 0.0134). It is possible that the fluctuating environment of the Ponto-Caspian basin facilitated the colonizing habit of invasive populations of D. polymorpha and D. bugensis. Our findings were concordant with the general trend of destructive freshwater invaders in the Great Lakes arising from the Ponto-Caspian Sea basin.  相似文献   

11.
The mechanisms underlying heritable phenotypic divergence associated with adaptation in response to environmental stresses may involve both genetic and epigenetic variations. Several prior studies have revealed even higher levels of epigenetic variation than genetic variation. However, few population‐level studies have explored the effects of epigenetic variation on species with high levels of genetic diversity distributed across different habitats. Using AFLP and methylation‐sensitive AFLP markers, we tested the hypothesis that epigenetic variation may contribute to differences in plants occupying different habitats when genetic variation alone cannot fully explain adaptation. As a cosmopolitan invasive species, Phragmites australis (common reed) together with high genetic diversity and remarkable adaptability has been suggested as a model for responses to global change and indicators of environmental fluctuations. We found high levels of genetic and epigenetic diversity and significant genetic/epigenetic structure within each of 12 studied populations sampled from four natural habitats of P. australis. Possible adaptive epigenetic variation was suggested by significant correlations between DNA methylation‐based epigenetic differentiation and adaptive genetic divergence in populations across the habitats. Meanwhile, various AMOVAs indicated that some epigenetic differences may respond to various local habitats. A partial Mantel test was used to tease out the correlations between genetic/epigenetic variation and habitat after controlling for the correlation between genetic and epigenetic variations. We found that epigenetic diversity was affected mostly by soil nutrient availability, suggesting that at least some epigenetic differentiation occurred independently of genetic variation. We also found stronger correlations between epigenetic variation and phenotypic traits than between genetic variation and such traits. Overall, our findings indicate that genetically based differentiation correlates with heterogeneous habitats, while epigenetic variation plays an important role in ecological differentiation in natural populations of P. australis. In addition, our results suggest that when assessing global change responses of plant species, intraspecific variation needs to be considered.  相似文献   

12.
Liu Y  Hou M  Wu K 《Environmental entomology》2010,39(4):1344-1351
The pink bollworm Pectinophora gossypiella is an invasive pest insect that has successfully established populations in many cotton growing regions around the world. In this study, the genetic diversity and population structure of Chinese populations of P. gossypiella were evaluated using mitochondrial DNA sequence data (COII and Nad4). For comparison, individuals of Pakistan and America were also sequenced at the same two mtDNA regions. Extremely low genetic variation was observed in the two mitochondrial regions among all populations examined. Most of the populations harbored only one to two haplotypes. Although the Nad4 region showed relatively high haplotype diversity and nucleotide variation, ranging from 0.363 to 0.591 and from 0.00078 to 0.00140, respectively, there were only three haplotypes observed in this region. COII and Nad4 haplotype networks shaved one or two common haplotype(s) forming the center of a star-shaped phylogeny. Pairwise tests showed that most of the populations were not significantly differentiated from each other. The Chinese populations were differentiated from the Pakistani and American populations in the Nad4 region. The low level of population genetic variation of P. gossypiella is attributed to invasion bottlenecks, which may have been subsequently strengthened by its nonmigratory biology and the mosaic pattern of agricultural activities.  相似文献   

13.
Most invasion histories include an estimated arrival time, followed by range expansion. Yet, such linear progression may not tell the entire story. The European green crab (Carcinus maenas) was first recorded in the US in 1817, followed by an episodic expansion of range to the north. Its population has recently exploded in the Canadian Maritimes. Although it has been suggested that this northern expansion is the result of warming sea temperatures or cold-water adaptation, Canadian populations have higher genetic diversity than southern populations, indicating that multiple introductions have occurred in the Maritimes since the 1980s. These new genetic lineages, probably from the northern end of the green crab's native range in Europe, persist in areas that were once thought to be too cold for the original southern invasion front. It is well established that ballast water can contain a wide array of nonindigenous species. Ballast discharge can also deliver genetic variation on a level comparable to that of native populations. Such gene flow not only increases the likelihood of persistence of invasive species, but it can also rapidly expand the range of long-established nonindigenous species.  相似文献   

14.
We compared the levels and distribution of genetic diversity in Eurasian and North American populations of Brachypodium sylvaticum (Huds.) Beauv. (false brome), a newly invasive perennial bunchgrass in western North America. Our goals were to identify source regions for invasive populations, determine the number of independent invasion events, and assess the possibility that postinvasion bottlenecks and hybridization have affected patterns of genetic diversity in the invaded range. We tested the hypothesis that this Eurasian grass was accidentally introduced into two areas in Oregon and one site in California by examining nuclear microsatellites and chloroplast haplotype variation in 23 introduced and 25 native populations. In the invaded range, there was significantly lower allelic richness (R(S)), observed heterozygosity (H(O)) and within-population gene diversity (H(S)), although a formal test failed to detect a significant genetic bottleneck. Most of the genetic variation existed among populations in the native range but within populations in the invaded range. All of the allelic variation in the invaded range could be explained based on alleles found in western European populations. The distribution of identified genetic clusters in the North American populations and the unique alleles associated with them is consistent with two historical introductions in Oregon and a separate introduction to California. Further analyses of population structure indicate that intraspecific hybridization among genotypes from geographically distinct regions of western Europe occurred following colonization in Oregon. The California populations, however, are more likely to be derived from one or perhaps several genetically similar regions in the native range. The emergence and spread of novel recombinant genotypes may be facilitating the rapid spread of this invasive species in Oregon.  相似文献   

15.
The Red‐whiskered bulbul is a very successful invasive bird species. Morphological differences have been reported among individuals inhabiting the humid and dry coasts of Reunion Island, in a 30‐year‐old population. This suggests a capacity for rapid local adaptation which could explain the general invasive success of this species. However, the origin and invasion history of this population is unknown. It is therefore not possible to establish with certainty the cause of these morphological differences. Here, we investigated the invasion history of populations of Red‐whiskered bulbul established on Reunion Island, Mauritius and Oahu (three geographically similar tropical islands) to assess the link between invasion history and morphological changes in these populations. We first assessed the source(s) of the invasive populations. We then compared the morphology of the individuals between the invasive and native populations and between the dry and humid coasts of invaded islands. Finally, we inferred the invasion history of the invasive populations to investigate the role of neutral processes (e.g. founder effect and drift) on morphology. We found that the invasive populations have a similar origin and that the morphology of the individuals in these populations has diverged in a similar way from the native range, suggesting a convergent adaptation to tropical islands. Like on Reunion, we found differences in morphology between the dry and humid coasts on Mauritius. These morphological differences can be explained by invasion history on Reunion but not on Mauritius. Both neutral evolution and adaptation thus shape the morphology of invasive Red‐whiskered bulbuls.  相似文献   

16.
We describe a scenario of plant speciation across a relict forest archipelago in South Africa involving Pleistocene habitat expansion-contraction cycles, dispersal and adaptation to lower temperatures. This is the first population level study using molecular data in South African forests and has significant implications for conservation efforts in this area. Populations of the mesophytic forest floor herbs Streptocarpus primulifolius sensu lato and Streptocarpus rexii were sampled throughout their range in the naturally fragmented forests of eastern South Africa in order to investigate population genetic and phylogenetic patterns within the species complex, using nuclear microsatellites, nuclear ribosomal ITS (internal transcribed spacer) sequences and chloroplast genome sequences. S. primulifolius harbours high levels of genetic diversity at both the nuclear (mean HE = 0.50) and the chloroplast level (each population fixed for a unique haplotype). This is consistent with populations of these coastal species being Pleistocene relicts. In contrast, populations of S. rexii in cooler habitats at higher altitudes and lower latitudes harbour little or no nuclear genetic diversity (mean HE = 0.09) and most share a common chloroplast haplotype. The split of S. rexii from populations intermediate between the two species (S. cf. primulifolius) occurred between 0 and 0.44 million years ago according to the calibrated ITS phylogeny of the taxa. The low genetic diversity and homogeneity of S. rexii is congruent with this species having reached its current range during the Holocene. We found no evidence of monophyly of any of the taxa in this study, which we consider a consequence of recent evolution in a fragmented habitat.  相似文献   

17.
Populations of invasive species are often studied when their effects are perceived as a problem. Yet observing the dynamics of populations over longer time periods can highlight changes in effects on invaded communities, and assist with management decisions. In this study we revisit an invasion of the yellow crazy ant (Anoplolepis gracilipes) in the Tokelau archipelago to determine if the distribution and abundance of the ant has changed ~7 years after surveys completed in 2004. We were particularly interested in whether populations of a previously identified invasive haplotype (D) had increased in distribution and abundance, as this haplotype was implicated in negative effects on resident ant communities. Indeed, haplotype D populations have become more widespread since the initial survey, more likely owing to new introductions or movement by humans, rather than intrinsic characteristics of the haplotype. We also found that despite no significant change in the abundance of A. gracilipes overall, haplotype D populations have declined in abundance. Residents of the Tokelau atolls no longer consider the ant to be a pest as they did 7 years ago, when populations of this ant interfered with their food production and many other aspects of daily life. We observed no significant differences between A. gracilipes invaded and uninvaded communities, which suggests that the ant is at a level of abundance below which significant negative ecological effects may occur. Population declines of invasive species are not infrequent, and understanding these population dynamics, particularly the underlying mechanisms promoting population declines or stabilisation, should be a high priority for invasion ecology.  相似文献   

18.
Kang M  Buckley YM  Lowe AJ 《Molecular ecology》2007,16(22):4662-4673
Knowledge of the introduction history of invasive plants informs on theories of invasiveness and assists in the invasives management. For the highly successful invasive shrub Scotch broom, Cytisus scoparius, we analysed a combination of nuclear and chloroplast microsatellites for eight native source regions and eight independent invasion events in four countries across three continents. We found that two exotic Australian populations came from different sources, one of which was derived from multiple native populations, as was an invasive sample from California. An invasive population from New Zealand appeared to be predominantly sourced from a single population, either from the native or exotic ranges. Four invasive populations from Chile were genetically differentiated from the native range samples analysed here and so their source of introduction could not be confirmed, but high levels of differentiation between the Chilean populations suggested a combination of different sources. This extensive global data set of replicated introductions also enabled tests of key theories of invasiveness in relation to genetic diversity. We conclude that invasive populations have similar levels of high genetic diversity to native ranges; levels of admixture may vary across invasive populations so admixture does not appear to have been an essential requirement for invasion; invasive and native populations exhibit similar level of genetic structure indicating similar gene flow dynamics for both types of populations. High levels of diversity and multiple source populations for invasive populations observed here discount founder effects or drift as likely explanations for previously observed seed size differences between ranges. The high levels of genetic diversity, differential and source admixture identified for most exotic populations are likely to limit the ability to source biocontrol agents from the native region of origin of invasive populations.  相似文献   

19.
Small populations of founding individuals or survivors of incomplete management programs often represent critical transitions in biological invasions. Theory predicts that population size affects reproduction and, consequently, a population’s expansion, but there are few empirical tests, and fewer that account for the reduced genetic diversity that often accompanies small population size. We created experimental small populations of invasive ryegrass (Lolium multiflorum) with population size varying independently from genetic diversity. Treatment independence was achieved by cloning plants to increase population size without changing diversity. Plant fitness was measured as the proportion of florets producing a seed. We analyzed the effects of population size, genetic diversity, and their interaction using ANCOVAs, one of which accounted for variation in individual plant growth. As predicted, smaller populations produced significantly lower proportion seed set. Low genetic diversity also reduced seed set, but this was best interpreted as part of a significant interaction with population size. Specifically, the effect of population size on the proportion seed set was over five times larger for populations in the medium genetic diversity treatment than the highest diversity treatment, and 6.7 times larger for populations with the lowest level of diversity. Population size variation had biologically meaningful consequences, as the rate of seed set within the low diversity treatment increased by 80 % with increasing population size. The results indicate that both the demographics and genetics of populations can influence reproduction and invasive potential, and must be considered when assessing risk and designing management plans for invasive plants.  相似文献   

20.
The ability of invasive species to adapt to novel conditions depends on population size and environmental mismatch, but also on genetic variation. Away from their native range, invasive species confronted with novel selective pressures may display different levels of neutral versus functional genetic variation. However, the majority of invasion studies have only examined genetic variation at neutral markers, which may reveal little about how invaders adapt to novel environments. Salmonids are good model systems to examine adaptation to novel pressures because they have been translocated all over the world and represent major threats to freshwater biodiversity in the Southern Hemisphere, where they have become invasive. We examined patterns of genetic differentiation at seven putatively neutral (microsatellites) loci and one immune‐related major histocompatibility complex (MHC class II‐β) locus among introduced rainbow trout living in captivity (farmed) or under natural conditions (naturalized) in Chilean Patagonia. A significant positive association was found between differentiation at neutral and functional markers, highlighting the role of neutral evolutionary forces in shaping genetic variation at immune‐related genes in salmonids. However, functional (MHC) genetic diversity (but not microsatellite diversity) decreased with time spent in the wild since introduction, suggesting that there was selection against alleles associated with captive rearing of donor populations that do not provide an advantage in the wild. Thus, although high genetic diversity may initially enhance fitness in translocated populations, it does not necessarily reflect invasion success, as adaptation to novel conditions may result in rapid loss of functional MHC diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号