首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spermatogonial stem cells (SSCs) can produce numerous male gametes after transplantation into recipient testes, presenting a valuable approach for gene therapy and continuous production of gene-modified animals. However, successful genetic manipulation of SSCs has been limited, partially due to complexity and low efficiency of currently available genetic editing techniques. Here, we show that efficient genetic modifications can be introduced into SSCs using the CRISPR-Cas9 system. We used the CRISPR-Cas9 system to mutate an EGFP transgene or the endogenous Crygc gene in SCCs. The mutated SSCs underwent spermatogenesis after transplantation into the seminiferous tubules of infertile mouse testes. Round spermatids were generated and, after injection into mature oocytes, supported the production of heterozygous offspring displaying the corresponding mutant phenotypes. Furthermore, a disease-causing mutation in Crygc (Crygc−/−) that pre-existed in SSCs could be readily repaired by CRISPR-Cas9-induced nonhomologous end joining (NHEJ) or homology-directed repair (HDR), resulting in SSC lines carrying the corrected gene with no evidence of off-target modifications as shown by whole-genome sequencing. Fertilization using round spermatids generated from these lines gave rise to offspring with the corrected phenotype at an efficiency of 100%. Our results demonstrate efficient gene editing in mouse SSCs by the CRISPR-Cas9 system, and provide the proof of principle of curing a genetic disease via gene correction in SSCs.  相似文献   

2.
Alexandra Franz  Erich Brunner 《Fly》2017,11(4):303-311
The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.  相似文献   

3.
The motor protein myosin IIIA is critical for maintenance of normal hearing. Homozygosity and compound heterozygosity for loss-of-function mutations in MYO3A, which encodes myosin IIIA, are responsible for inherited human progressive hearing loss DFNB30. To further evaluate this hearing loss, we constructed a mouse model, Myo3a KI/KI , that harbors the mutation equivalent to the nonsense allele responsible for the most severe human phenotype. Myo3a KI/KI mice were compared to their wild-type littermates. Myosin IIIA, with a unique N-terminal kinase domain and a C-terminal actin-binding domain, localizes to the tips of stereocilia in wild-type mice but is absent in the mutant. The phenotype of the Myo3a KI/KI mouse parallels the phenotype of human DFNB30. Hearing loss, as measured by auditory brainstem response, is reduced and progresses significantly with age. Vestibular function is normal. Outer hair cells of Myo3a KI/KI mice degenerate with age in a pattern consistent with their progressive hearing loss.  相似文献   

4.
5.
The Drosophila Schneider S2 (S2) Expression System enables expression of recombinant proteins constitutively, as well as inductively. This system can establish both transient and stable transformants with various selection markers. The generation of stable cell lines for increased expression or large scale expression of the desired protein is currently accomplished by cotransfection of both the expression and selection vectors. The selection vectors, pCoHYGRO and pCoBLAST, are commercially available using hygromycin-B and blasticidin S, respectively. Recently, we generated a plasmid, pCoPURO, for selection of transfected S2 cells using puromycin, which allows significant acceleration of the selection time. Although co-transfection of the selection marker with the plasmid for heterologous protein expression is functional in stable expression at short culture periods, the expression levels of stable transformants are continuously decreased during long culture times. To overcome this limitation, we generated pMT-PURO, a new plasmid that contains both the expression cassette and puromycin selection marker in a single plasmid. This system allows rapid selection and maintenance of the transformed S2 lines for extended culture periods.  相似文献   

6.
【目的】本研究旨在对前期鉴定到的nce-miR-34537进行表达和序列验证,预测nce-miR-34537的靶基因并明确其分子特性,进而检测nce-miR-34537及其靶基因在东方蜜蜂微孢子虫(Nosema ceranae)侵染意大利蜜蜂(Apis mellifera ligustica)工蜂过程的表达谱,为进一步探究nce-miR-34537调控东方蜜蜂微孢子虫侵染的功能和作用机制提供基础。【方法】通过Stem-loop-RT-PCR和Sanger测序验证nce-miR-34537的表达和序列。通过生物信息学软件预测nce-miR-34537的靶基因PIP5KI(I型磷脂酰肌醇4-磷酸-5-激酶基因)的理化性质等分子特性和保守基序,并构建基于氨基酸序列的系统进化树。采用RT-qPCR检测nce-miR-34537及其靶基因的表达谱。【结果】nce-miR-34537在东方蜜蜂微孢子虫孢子中真实存在和表达。nce-miR-34537共靶向PIP5KI等151个基因。PIP5KI蛋白的分子式为C882H1 364N226  相似文献   

7.
Tissue-specific knockout technology enables the analysis of the gene function in specific tissues in adult mammals.However,conventional strategy for producing tissue-specific knockout mice is a time- and labor-consuming process,restricting rapid study of the gene function in vivo.CRISPR-Cas9 system from bacteria is a simple and efficient gene-editing technique,which has enabled rapid generation of gene knockout lines in mouse by direct injection of CRISPR-Cas9 into zygotes.Here,we demonstrate CRISPR-Cas9-mediated spermatogenic cell-specific disruption of Scp3 gene in testes in one step.We first generated transgenic mice by pronuclear injection of a plasmid containing Hspa2 promoter driving Cas9 expression and showed Cas9 specific expression in spermatogenic cells.We then produced transgenic mice carrying Hspa2 promoter driven Cas9 and constitutive expressed sgRNA targeting Scp3 gene.Male founders were infertile due to developmental arrest of spermatogenic cells while female founders could produce progeny normally.Consistently,male progeny from female founders were infertile and females could transmit the transgenes to the next generation.Our study establishes a CRISPR-Cas9-based one-step strategy to analyze the gene function in adult tissues by a temporal-spatial pattern.  相似文献   

8.
We report a large-scale study on the frequency of transgene and T-DNA backbone integration following Agrobacterium-mediated transformation of immature barley embryos. One hundred and ninety-one plant lines were regenerated after hygromycin selection and visual selection for GFP expression at the callus stage. Southern blotting performed on a subset of 53 lines that were PCR positive for the GFP gene documented the integration of the GFP gene in 27 of the lines. Twenty-three of these lines expressed GFP in T1 plantlets. Southern blotting with a vector backbone probe revealed that 13 of the 27 lines possessed one or more vector backbone fragments illustrating the regular occurrence of vector backbone integration following Agrobacterium infection of barley immature embryos.  相似文献   

9.
A new activity in the Ftra operon which is required for F-pilin synthesis   总被引:15,自引:0,他引:15  
Summary Membrane preparations from a series of Hfr mutant strains of Escherichia coli K12 deleted in the promoter distal end of the F transfer operon were analyzed. Deletions which extended into traG, as expected, had no discernible effect on synthesis of membrane F-pilin. A more extensive deletion in strain KI777 which eliminated traH activity similarly had no effect on F-pilin synthesis. Membranes from three other TraF+ TraH- deletion strains, as well as membranes from all strains carrying deletions extending into traF or further, lacked F-pilin, however. Since traH amber mutations do not affect synthesis of membrane pilin (Moore et al. 1981 b) we conclude that a gene required for F-pilin biosynthesis is located between traF and traH. We have named this gene traQ.Further evidence for traQ and an assay for its activity was obtained by examining the products of a TraM+ TraJ+ TraA+ lambda transducing phage, KI13, in UV irradiated cells. Infection of F- cells with KI13 does not result in F-pilin synthesis. Membrane pilin is synthesized as a product of the transducing phage if an Flac or Hfr irradiated host is used, however. Mutant analysis demonstrated that this synthesis is independent of host expression of traA, traL, traE, traK, traB, traV, traW, traC, traU, traF, or traH, but dependent on expression of the traF-traH region. We interpret our data to indicate that an activity encoded by traQ is required for the conversion of traA product to F-pilin.  相似文献   

10.

To develop an effective genome editing tool for blueberry breeding, CRISPR-Cas9 and CRISPR-Cas12a were evaluated for their editing efficiencies of a marker gene, beta-glucuronidase (gusA), which was previously introduced into two blueberry cultivars each a single-copy transgene. Four expression vectors were built, with CRISPR-Cas9 and CRISPR-Cas12a each driven by a 35S promoter or AtUbi promoter. Each vector contained two editing sites in the gusA. These four vectors were respectively transformed into the leaf explants of transgenic gusA blueberry and the resulting transgenic calli were induced under hygromycin selection. GUS staining showed that some small proportions of the hygromycin-resistant calli had non-GUS stained sectors, suggesting some possible occurrences of gusA editing. We sequenced GUS amplicons spanning the two editing sites in three blueberry tissues and found about 5.5% amplicons having editing features from the calli transformed with the 35S-Cas9 vector. Further, we conducted a second round of shoot regeneration from leaf explants derived from the initial Cas9- and Cas12a-containing calli (T0) and analyzed amplicons of the target editing region. Of the newly induced shoots, 15.5% for the 35S-Cas9 and 5.3% for the AtUbi-Cas9 showed non-GUS staining, whereas all of the shoots containing the Cas12a vectors showed blue staining. Sanger sequencing confirmed the editing-induced mutations in two representative non-GUS staining lines. Clearly, the second round of regeneration had enriched editing events and enhanced the production of edited shoots. The results and protocol described will be helpful to facilitating high-precision breeding of blueberries using CRISPR Cas technologies.

  相似文献   

11.
以质粒pMCB30为模板,扩增GFP基因,连接到载体pCMBIA2300-35S-OCS上,构建过量表达载体p35S:GFP,将其转入农杆菌GV3101.通过农杆菌介导法将p35S:GFP载体分别转入新疆特色植物小拟南芥和拟南芥中.T0代经含有卡那霉素的1/2MS培养基筛选,获得了T1代转基因小拟南芥2株,T1代转基因拟南芥9株.通过激光共聚焦显微镜观察,在转基因小拟南芥和拟南芥的根尖细胞中均可检测到GFP绿色荧光蛋白;对转基因植株进行PCR扩增,均可检测到GFP基因,表明GFP基因已成功转入小拟南芥和拟南芥中.该研究建立了小拟南芥的遗传转化体系,为进一步利用GFP基因和进一步研究小拟南芥的功能基因奠定基础.  相似文献   

12.
Sathiya N. Manivannan 《Fly》2016,10(3):134-141
A long-standing problem with analyzing transgene expression in tissue-culture cells is the variation caused by random integration of different copy numbers of transfected transgenes. In mammalian cells, single transgenes can be inserted by homologous recombination but this process is inefficient in Drosophila cells. To tackle this problem, our group, and the Cherbas group, used recombination-mediated cassette exchange (RMCE) to introduce single-copy transgenes into specific locations in the Drosophila genome. In both cases, ?C31 was used to catalyze recombination between its target sequences attP in the genome, and attB flanking the donor sequence. We generated cell lines de novo with a single attP-flanked cassette for recombination, whereas, Cherbas et al. introduced a single attP-flanked cassette into existing cell lines. In both approaches, a 2-drug selection scheme was used to select for cells with a single copy of the donor sequence inserted by RMCE and against cells with random integration of multiple copies. Here we describe the general advantages of using RMCE to introduce genes into fly cells, the different attributes of the 2 methods, and how future work could make use of other recombinases and CRISPR/Cas9 genome editing to further enable genetic manipulation of Drosophila cells in vitro.  相似文献   

13.
The immune systems that protect organisms from infectious agents invariably have a cost for the host. In bacteria and archaea CRISPR-Cas loci can serve as adaptive immune systems that protect these microbes from infectiously transmitted DNAs. When those DNAs are borne by lytic viruses (phages), this protection can provide a considerable advantage. CRISPR-Cas immunity can also prevent cells from acquiring plasmids and free DNA bearing genes that increase their fitness. Here, we use a combination of experiments and mathematical-computer simulation models to explore this downside of CRISPR-Cas immunity and its implications for the maintenance of CRISPR-Cas loci in microbial populations. We analyzed the conjugational transfer of the staphylococcal plasmid pG0400 into Staphylococcus epidermidis RP62a recipients that bear a CRISPR-Cas locus targeting this plasmid. Contrary to what is anticipated for lytic phages, which evade CRISPR by mutations in the target region, the evasion of CRISPR immunity by plasmids occurs at the level of the host through loss of functional CRISPR-Cas immunity. The results of our experiments and models indicate that more than 10−4 of the cells in CRISPR-Cas positive populations are defective or deleted for the CRISPR-Cas region and thereby able to receive and carry the plasmid. Most intriguingly, the loss of CRISPR function even by large deletions can have little or no fitness cost in vitro. These theoretical and experimental results can account for the considerable variation in the existence, number and function of CRISPR-Cas loci within and between bacterial species. We postulate that as a consequence of the opposing positive and negative selection for immunity, CRISPR-Cas systems are in a continuous state of flux. They are lost when they bear immunity to laterally transferred beneficial genes, re-acquired by horizontal gene transfer, and ascend in environments where phage are a major source of mortality.  相似文献   

14.
An enhancer trap (ET) mediated by a transposon is an effective method for functional gene research. Here, an ET system based on a PB transposon that carries a mini Krt4 promoter (the keratin4 minimal promoter from zebrafish) and the green fluorescent protein gene (GFP) has been used to produce zebrafish ET lines. One enhancer trap line with eye-specific expression GFP named EYE was used to identify the trapped enhancers and genes. Firstly, GFP showed a temporal and spatial expression pattern with whole-embryo expression at 6, 12, and 24 hpf stages and eye-specific expression from 2 to 7 dpf. Then, the genome insertion sites were detected by splinkerette PCR (spPCR). The Krt4-GFP was inserted into the fourth intron of the gene itgav (integrin, alpha V) in chromosome 9 of the zebrafish genome, with the GFP direction the same as that of the itgav gene. By the alignment of homologous gene sequences in different species, three predicted endogenous enhancers were obtained. The trapped endogenous gene itgav, whose overexpression is related to hepatocellular carcinoma, showed a similar expression pattern as GFP detected by in situ hybridization, which suggested that GFP and itgav were possibly regulated by the same enhancers. In short, the zebrafish enhancer trap lines generated by the PB transposon-mediated enhancer trap technology in this study were valuable resources as visual markers to study the regulators and genes. This work provides an efficient method to identify and isolate tissue-specific enhancer sequences.  相似文献   

15.
In this work, Potato virus Y (PVY) resistant potatoes were generated using an environmentally safe construct. For this purpose, a ‘shooter’ mutant Agrobacterium-based transformation system was used. The isopentenyl transferase gene (ipt) present on the Ti plasmid of ‘shooter’ strains enhances shoot regeneration and can be used as a phenotypic selection marker. The introduced marker-free binary vector carried a hairpin construct derived from the coat protein gene of PVY-NTN strain in order to induce gene silencing. Transformation resulted in high regeneration rates (1.4–5.7 shoots per explant). With pre-selection for the ipt + phenotype the transformation frequency was 24–53%, while without selection 12–28% of the shoots were PCR positive. The presence of the transgene was verified by Southern hybridization. In 16 of 31 challenged transformant lines PVY could be detected neither by RT-PCR nor by back inoculation. A 62.5% of these resistant lines proved to be also ipt-free. This transformation system was reproducible in four potato cultivars, suggesting that it could easily be adapted for other species.  相似文献   

16.
Stem cells are recruited to the uterus where they differentiate into endometrial cells and have been suggested as potential therapy for uterine injury such as Asherman's syndrome. However, it is unknown whether local intrauterine injection may result in better stem cell engraftment of the uterus compared with systemic administration, and whether uterine‐derived cells (UDCs) may confer an advantage over BM‐derived cells (BMDCs). Mice underwent local injury to a single uterine horn. Green fluorescent protein (GFP)‐expressing BMDCs, UDCs or saline (control) were injected either intravenously or locally (uterine lumen) into wild‐type recipients. Two or 3 weeks post‐transplant, uterine tissues were collected for fluorescence‐activated cell sorting (FACS) and immunohistochemistry/immunofluorescence studies. Mice injected intravenously with BMDCs or UDCs had increased GFP+ cells recruitment to the non‐injured or injured uterus compared to those injected locally. No significant differences were noted in GFP+ cell recruitment to the injured versus non‐injured horn. In addition, systemic injection of BMDCs led to greater recruitment of GFP+ cells at 2 weeks and 3 weeks compared with UDCs. Immunohistochemical staining demonstrated that GFP+ cells were found in stroma but not in epithelium or blood vessels. Immunofluorescence analysis revealed that GFP+ cells were mostly CD45‐negative, and negative for CD31 and cytokeratin, confirming their stromal identity. In conclusion, the systemic route of administration results in better recruitment of BMDCs or UDCs to the injured uterus than local injection. In addition, BMDCs recruitment to the uterus is greater than UDCs. These findings inform the development of stem cell‐based therapies targeting the uterus.  相似文献   

17.
The aim of this study was to achieve expression of recombinant rabies virus glycoprotein (rRVGP) in Drosophila S2 cells. For this, a cDNA coding for the selection hygromycin antibiotic and the cDNA encoding the RVGP protein under the control of the constitutive actin promoter (Ac) were cloned in an expression plasmid, which was transfected into S2 cells. S2 cell populations (S2AcRVGPHy) showed rRVGP expression in cell lysates, attaining concentrations up to 1.5 μg/107 cells (705 μg/L). Of the transfected cells, 20% were shown to express the rRVGP. Cell subpopulations selected by limiting dilution expressed higher rRVGP yields and 90% of the cells were shown to express the rRVGP. Cell populations re-selected by addition of hygromycin were shown to express 10 times higher rRVGP yields. The data presented here show that Drosophila S2 cells can be efficiently transfected with an expression/selection plasmid for rRVGP expression, allowing its synthesis with a high degree of physical and biological integrity. The importance of subpopulation selection was indicated by the increasing rRVGP yields during these procedures.  相似文献   

18.
M. Dutt  Z.T. Li  S.A. Dhekney  D.J. Gray   《Plant science》2008,175(3):423-430
A co-transformation system was developed to produce grapevines free of selectable marker genes. This was achieved by transforming Vitis vinifera L. ‘Thompson Seedless’ somatic embryos with a mixture of two Agrobacterium strains. The first strain contained a binary plasmid with an egfp gene of interest between the T-DNA borders. The second strain harbored the neomycin phosphotransferase (nptII) gene for positive selection and the cytosine deaminase (codA) gene for negative selection, linked together by a bi-directional dual promoter complex. Our technique included a short positive selection phase on medium containing 100 mg l−1 kanamycin before subjecting cultures to prolonged negative selection on medium containing 250 mg l−1 5-fluorocytosine. We regenerated 25 stable EGFP expressing transgenic lines. PCR analysis confirmed 18 lines contained only the egfp gene, whereas the remaining contained both egfp and codA/nptII genes. Presumably, the 18 monogenic lines arose through cross protection by being in close proximity to cells that expressed nptII and thus detoxified kanamycin in the immediate vicinity. This is the first report for grapevine using a combination of positive and negative selection to produce transgenic plants that do not contain marker genes.  相似文献   

19.
We describe a screen to isolate cDNAs encoding Drosophila mitosis inhibitors capable of suppressing the mitotic catastrophe phenotype resulting in Schizosaccharomyces pombe from the combination of the weel-50 mutation with either a deletion allele of mil1, or with overexpression of cdc25 +. One plasmid was isolated which could suppress the temperature sensitive lethality of both these strains. The cDNA in this plasmid encodes a protein highly homologous to the DEAD-box family of ATP-dependent RNA helicases, rather than to protein kinases as might be expected. It is possible that the RNA helicase described here may regulate entry into mitosis by down regulating the expression of other genes whose activity may be rate-limiting for entry into mitosis.  相似文献   

20.
【目的】CRISPR-Cas系统为嗜热链球菌抵抗噬菌体等外源基因元件提供获得性免疫,分析NCBI中已公开发表全基因组序列的9株嗜热链球菌所含CRISPR-Cas系统的数目和类型,对实验室相应菌株的CRISPR-Cas系统进行检测。【方法】利用生物信息学方法对NCBI中9株已测序嗜热链球菌所含CRISPR-Cas系统进行分析,根据其Cas基因序列设计引物,对实验室嗜热链球菌菌株的Cas基因进行扩增、测序,分析实验室6株嗜热链球菌的CRISPR-Cas系统情况。【结果】9株标准菌株均含不同数目的CRISPR-Cas系统,其类型主要为Ⅱ-A型、Ⅲ-A型和Ⅰ-E型,各类型的标志Cas基因高度保守。6株供试菌中,S4仅含Cas9基因,其它5株均含有Cas9基因、Cas10基因和Cas9*基因,79和KLDS3.0207还含有Cas3基因。【结论】可根据标准菌株高度保守的Cas基因设计引物,预测未知嗜热链球菌所含CRISPRCas系统的数目和类型。S4仅含1个Ⅱ-A型CRISPR-Cas系统,其它5株均含有2个Ⅱ-A型CRISPR-Cas系统和1个Ⅲ-A型CRISPR-Cas系统,此外,79和KLDS3.0207均含有1个Ⅰ-E型CRISPR-Cas系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号