首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryphonectria parasitica, the chestnut blight fungus, and hypoviruses are excellent models for examining fungal pathogenesis and virus–host interactions. Increasing evidence suggests that lysine acetylation plays a regulatory role in cell processes and signalling. To understand protein regulation in C. parasitica by hypoviruses at the level of posttranslational modification, a label-free comparative acetylome analysis was performed in the fungus with or without Cryphonectria hypovirus 1 (CHV1) infection. Using enrichment of acetyl-peptides with a specific anti-acetyl-lysine antibody, followed by high accuracy liquid chromatography–tandem mass spectrometry analysis, 638 lysine acetylation sites were identified on 616 peptides, corresponding to 325 unique proteins. Further analysis revealed that 80 of 325 proteins were differentially acetylated between C. parasitica strain EP155 and EP155/CHV1-EP713, with 43 and 37 characterized as up- and down-regulated, respectively. Moreover, 75 and 65 distinct acetylated proteins were found in EP155 and EP155/CHV1-EP713, respectively. Bioinformatics analysis revealed that the differentially acetylated proteins were involved in various biological processes and were particularly enriched in metabolic processes. Differences in acetylation in C. parasitica citrate synthase, a key enzyme in the tricarboxylic acid cycle, were further validated by immunoprecipitation and western blotting. Site-specific mutagenesis and biochemical studies demonstrated that the acetylation of lysine-55 plays a vital role in the regulation of the enzymatic activity of C. parasitica citrate synthase in vitro and in vivo. These findings provide a valuable resource for the functional analysis of lysine acetylation in C. parasitica, as well as improving our understanding of fungal protein regulation by hypoviruses from a protein acetylation perspective.  相似文献   

2.
3.
Myst family is highly conserved histone acetyltransferases in eukaryotic cells and is known to play crucial roles in various cellular processes; however, acetylation catalysed by acetyltransferases is unclear in filamentous fungi. Here, we identified two classical nonessential Myst enzymes and analysed their functions in Aspergillus flavus, which generates aflatoxin B1, one of the most carcinogenic secondary metabolites. MystA and MystB located in nuclei and cytoplasm, and mystA could acetylate H4K16ac, while mystB acetylates H3K14ac, H3K18ac and H3K23ac. Deletion mystA resulted in decreased conidiation, increased sclerotia formation and aflatoxin production. Deletion of mystB leads to significant defects in conidiation, sclerotia formation and aflatoxin production. Additionally, double-knockout mutant (ΔmystA/mystB) display a stronger and similar defect to ΔmystB mutant, indicating that mystB plays a major role in regulating development and aflatoxin production. Both mystA and mystB play important role in crop colonization. Moreover, catalytic domain MOZ and the catalytic site E199/E243 were important for the acetyltransferase function of Myst. Notably, chromatin immunoprecipitation results indicated that mystB participated in oxidative detoxification by regulating the acetylation level of H3K14, and further regulated nsdD to affect sclerotia formation and aflatoxin production. This study provides new evidences to discover the biological functions of histone acetyltransferase in A. flavus.  相似文献   

4.
Protein lysine acetylation is a reversible and highly regulated post‐translational modification with the well demonstrated physiological relevance in eukaryotes. Recently, its important role in the regulation of metabolic processes in bacteria was highlighted. Here, we reported the lysine acetylproteome of Pseudomonas aeruginosa using a proteomic approach. We identified 430 unique peptides corresponding to 320 acetylated proteins. In addition to the proteins involved in various metabolic pathways, several enzymes contributing to the lipopolysaccharides biosynthesis were characterized as acetylated. This data set illustrated the abundance and the diversity of acetylated lysine proteins in P. aeruginosa and opens opportunities to explore the role of the acetylation in the bacterial physiology.  相似文献   

5.
Aflatoxins are toxic and carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and Aspergillus parasiticus. To better understand the molecular mechanisms that regulate aflatoxin production, the biosynthesis of the toxin in A. flavus and A. parasticus grown in yeast extract sucrose media supplemented with 50 mM tryptophan (Trp) were examined. Aspergillus flavus grown in the presence of 50 mM tryptophan was found to have significantly reduced aflatoxin B1 and B2 biosynthesis, while A. parasiticus cultures had significantly increased B1 and G1 biosynthesis. Microarray analysis of RNA extracted from fungi grown under these conditions revealed 77 genes that are expressed significantly different between A. flavus and A. parasiticus, including the aflatoxin biosynthetic genes aflD (nor-1), aflE (norA), and aflO (omtB). It is clear that the regulatory mechanisms of aflatoxin biosynthesis in response to Trp in A. flavus and A. parasiticus are different. These candidate genes may serve as regulatory factors of aflatoxin biosynthesis.  相似文献   

6.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   

7.
Aflatoxins are the most toxic and carcinogenic naturally occurring mycotoxins. They are produced primarily byAspergillus flavus andA. parasiticus. In order to better understand the molecular mechanisms that control aflatoxin production, identification of genes usingA. flavus expressed sequence tags (ESTs) and microarrays is currently being performed. Sequencing and annotation ofA. flavus ESTs from a normalizedA. flavus cDNA library identified 7,218 unique EST sequences. Genes that are putatively involved in aflatoxin biosynthesis, regulation and signal transduction, fungal virulence or pathogenicity, stress response or antioxidation, and fungal development were identified from these ESTs. Microarrays containing over 5,000 uniqueA. flavus gene amplicons were constructed at The Institute for Genomic Research. Gene expression profiling under aflatoxin-producing and non-producing conditions using this microarray has identified hundreds of genes that are potentially involved in aflatoxin production. Further investigations on the functions of these genes by gene knockout experiments are underway. This research is expected to provide information for developing new strategies for controlling aflatoxin contamination of agricultural commodities.  相似文献   

8.
Lysine acetylation has emerged as a major post‐translational modification involved in diverse cellular functions. Using a combination of immunoisolation and liquid chromatography coupled to accurate mass spectrometry, we determined the first acetylome of the human malaria parasite Plasmodium falciparum during its active proliferation in erythrocytes with 421 acetylation sites identified in 230 proteins. Lysine‐acetylated proteins are distributed in the nucleus, cytoplasm, mitochondrion and apicoplast. Whereas occurrence of lysine acetylation in a similarly wide range of cellular functions suggests conservation of lysine acetylation through evolution, the Plasmodium acetylome also revealed significant divergence from those of other eukaryotes and even the closely related parasite Toxoplasma. This divergence is reflected in the acetylation of a large number of Plasmodium‐specific proteins and different acetylation sites in evolutionarily conserved acetylated proteins. A prominent example is the abundant acetylation of proteins in the glycolysis pathway but relatively deficient acetylation of enzymes in the citrate cycle. Using specific transgenic lines and inhibitors, we determined that the acetyltransferase PfMYST and lysine deacetylases play important roles in regulating the dynamics of cytoplasmic protein acetylation. The Plasmodium acetylome provides an exciting start point for further exploration of functions of acetylation in the biology of malaria parasites.  相似文献   

9.
Plants need to rapidly and flexibly adjust their metabolism to changes of their immediate environment. Since this necessity results from the sessile lifestyle of land plants, key mechanisms for orchestrating central metabolic acclimation are likely to have evolved early. Here, we explore the role of lysine acetylation as a post-translational modification to directly modulate metabolic function. We generated a lysine acetylome of the moss Physcomitrium patens and identified 638 lysine acetylation sites, mostly found in mitochondrial and plastidial proteins. A comparison with available angiosperm data pinpointed lysine acetylation as a conserved regulatory strategy in land plants. Focusing on mitochondrial central metabolism, we functionally analyzed acetylation of mitochondrial malate dehydrogenase (mMDH), which acts as a hub of plant metabolic flexibility. In P. patens mMDH1, we detected a single acetylated lysine located next to one of the four acetylation sites detected in Arabidopsis thaliana mMDH1. We assessed the kinetic behavior of recombinant A. thaliana and P. patens mMDH1 with site-specifically incorporated acetyl-lysines. Acetylation of A. thaliana mMDH1 at K169, K170, and K334 decreases its oxaloacetate reduction activity, while acetylation of P. patens mMDH1 at K172 increases this activity. We found modulation of the malate oxidation activity only in A. thaliana mMDH1, where acetylation of K334 strongly activated it. Comparative homology modeling of MDH proteins revealed that evolutionarily conserved lysines serve as hotspots of acetylation. Our combined analyses indicate lysine acetylation as a common strategy to fine-tune the activity of central metabolic enzymes with likely impact on plant acclimation capacity.  相似文献   

10.
Recent analysis of prokaryotic Nε‐lysine‐acetylated proteins highlights the posttranslational regulation of a broad spectrum of cellular proteins. However, the exact role of acetylation remains unclear due to a lack of acetylated proteome data in prokaryotes. Here, we present the Nε‐lysine‐acetylated proteome of gram‐positive thermophilic Geobacillus kaustophilus. Affinity enrichment using acetyl‐lysine‐specific antibodies followed by LC‐MS/MS analysis revealed 253 acetylated peptides representing 114 proteins. These acetylated proteins include not only common orthologs from mesophilic Bacillus counterparts, but also unique G. kaustophilus proteins, indicating that lysine acetylation is pronounced in thermophilic bacteria. These data complement current knowledge of the bacterial acetylproteome and provide an expanded platform for better understanding of the function of acetylation in cellular metabolism.  相似文献   

11.
12.
Mitogen-activated protein kinase (MAPK) cascades are highly conserved in eukaryotic cells and are known to play crucial roles in the regulation of various cellular processes. However, compared with kinase-mediated phosphorylation, dephosphorylation catalysed by phosphatases has not been well characterized in filamentous fungi. In this study, we identified five MAPK pathway-related phosphatases (Msg5, Yvh1, Ptp1, Ptp2 and Oca2) and characterized their functions in Aspergillus flavus, which produces aflatoxin B1 (AFB1), one of the most toxic and carcinogenic secondary metabolites. These five phosphatases were identified as negative regulators of MAPK (Slt2, Fus3 and Hog1) pathways. Deletion of Msg5 and Yvh1 resulted in significant defects in conidiation, sclerotia formation, aflatoxin production and crop infection. Additionally, double knockout mutants (ΔMsg5/ΔPtp1, ΔMsg5/ΔPtp2 and ΔMsg5/ΔOca2) displayed similar defects to those observed in the ΔMsg5 single mutant, indicating that Msg5 plays a major role in the regulation of development and pathogenicity in A. flavus. Importantly, we found that the active site at C439 is essential for the function of the Msg5 phosphatase. Furthermore, the MAP kinase Fus3 was found to be involved in the regulation of development, aflatoxin biosynthesis and pathogenicity, and its conserved phosphorylation residues (Thr and Tyr) were critical for the full range of its functions in A. flavus. Overall, our results reveal that MAPK related tyrosine phosphatases play important roles in the regulation of development, secondary metabolism and pathogenicity in A. flavus, and could be developed as potential targets for preventing damage caused by this fungal pathogen.  相似文献   

13.
Aspergillus niger or Aspergillus tamarii when grown as mixed cultures with toxigenic A. flavus inhibits biosynthesis of aflatoxin by A. flavus, owing primarily to its ability to produce inhibitors of aflatoxin biosynthesis and to their ability to degrade aflatoxin. Gluconic acid partly prevents aflatoxin production. The other factors such as changes in pH of the medium and the effect on the growth of A. flavus have no role in imparting capabilities to these cultures to inhibit aflatoxin production by A. flavus.  相似文献   

14.
15.
Lysine acetylation (Kac) is a vital post-translational modification that plays an important role in many cellular processes in organisms. In the present study, the nutrient storage proteins in hemolymph were first found to be highly acetylated—particularly SP2 protein, which contains 20 potential Kac sites. Further results confirmed that lysine acetylation could stabilize and up-regulate the protein level of anti-apoptosis protein SP2, thereby improving the survival of H2O2-treated BmN cells and suppressing the apoptosis induced by H2O2. The potential mechanism involved in the inhibition of ubiquitin-mediated proteasomal degradation by crosstalk between lysine acetylation and ubiquitination. Our results showed that the increase in the acetylation level by TSA could decrease the ubiquitination and improve the protein level of SP2, indicating that lysine acetylation could influence the SP2 protein level through competition between ubiquitination and the suppression of ubiquitin-mediated proteasomal degradation, thereby stabilizing the protein. SP2 is a major nutrient storage protein from hemolymph for amino acid storage and utilization. The crosstalk between lysine acetylation and ubiquitination of SP2 might imply an important role of lysine acetylation for nutrient storage and utilization in silkworm.  相似文献   

16.
The report presents a rapid, inexpensive and simple method for monitoring indels with influence on aflatoxin biosynthesis within Aspergillus flavus populations. PCR primers were developed for 32 markers spaced approximately every 5 kb from 20 kb proximal to the aflatoxin biosynthesis gene cluster to the telomere repeat. This region includes gene clusters required for biosynthesis of aflatoxins and cyclopiazonic acid; the resulting data were named cluster amplification patterns (CAPs). CAP markers are amplified in four multiplex PCRs, greatly reducing the cost and time to monitor indels within this region across populations. The method also provides a practical tool for characterizing intraspecific variability in A. flavus not captured with other methods.

Significance and Impact of the Study

Aflatoxins, potent naturally‐occurring carcinogens, cause significant agricultural problems. The most effective method for preventing contamination of crops with aflatoxins is through use of atoxigenic strains of Aspergillus flavus to alter the population structure of this species and reduce incidences of aflatoxin producers. Cluster amplification pattern (CAP) is a rapid multiplex PCR method for identifying and monitoring indels associated with atoxigenicity in A. flavus. Compared to previous techniques, the reported method allows for increased resolution, reduced cost, and greater speed in monitoring the stability of atoxigenic strains, incidences of indel mediated atoxigenicity and the structure of A. flavus populations.  相似文献   

17.
It was initially shown that gallic acid, from hydrolysable tannins in the pelliele of walnut kernels, dramatically inhibits biosynthesis of aflatoxin byAspergillus flavus. The mechanism of this inhibition was found to take place upstream from the gene cluster, including the regulatory gene,aflR, involved in aflatoxin biosynthesis. Additional research using other antioxidant phenolics showed similar antiaflatoxigenic activity to gallic acid. Treatment ofA. flavus withtert-butyl hydroperoxide resulted in an almost doubling of aflatoxin biosynthesis compared to untreated samples. Thus, antioxidative response systems are potentially useful molecular targets for control ofA. flavus. A high throughput screening system was developed using yeast,Saccharomyces cerevisiae, as a model fungus. This screening provided an avenue to quickly identify fungal genes that were vulnerable to treatment by phenolic compounds. The assay also provided a means to quickly assess effects of combinations of phenolics and certain fungicides affecting mitochondrial respiration. For example, theS. cerevisiae sod2† mutant was highly sensitive to treatment by certain phenolics and strobilurins/antimycin A, fungicides which inhibit complex III of the mitochondrial respiratory chain. Verification of stress to this system in the target fungus,A. flavus, was shown through complementation analysis, wherein the mitochondrial superoxide dismutase (Mn-SOD) gene (sodA) ofA. flavus in the ortholog mutant,sod2†, ofS. cerevisiae, relieved phenolic-induced stress. Mitochondrial antioxidative stress systems play an important role in fungal response to antifungals. Combined treatment of fungi with phenolics and inhibitors of mitochondrial respiration can effectively suppress growth ofA. flavus in a synergistic fashion.  相似文献   

18.
Protein lysine acetylation is a highly conserved post-translational modification with various biological functions. However, only a limited number of acetylation sites have been reported in plants, especially in cereals, and the function of non-histone protein acetylation is still largely unknown. In this report, we identified 1003 lysine acetylation sites in 692 proteins of developing rice seeds, which greatly extended the number of known acetylated sites in plants. Seven distinguished motifs were detected flanking acetylated lysines. Functional annotation analyses indicated diverse biological processes and pathways engaged in lysine acetylation. Remarkably, we found that several key enzymes in storage starch synthesis pathway and the main storage proteins were heavily acetylated. A comprehensive comparison of the rice acetylome, succinylome, ubiquitome and phosphorylome with available published data was conducted. A large number of proteins carrying multiple kinds of modifications were identified and many of these proteins are known to be key enzymes of vital metabolic pathways. Our study provides extending knowledge of protein acetylation. It will have critical reference value for understanding the mechanisms underlying PTM mediated multiple signal integration in the regulation of metabolism and development in plants.  相似文献   

19.
Reactive oxygen species (ROS) induce the synthesis of a myriad of secondary metabolites, including aflatoxins. It raises significant concern as it is a potent environmental contaminant. In Aspergillus flavus., antioxidant enzymes link ROS stress response with coordinated gene regulation of aflatoxin biosynthesis. In this study, we characterized the function of a core component of the antioxidant enzyme catalase (CTA1) of A. flavus. Firstly, we verified the presence of cta1 corresponding protein (CTA1) by Western blot analysis and mass-spectrometry based analysis. Then, the functional study revealed that the growth, sporulation and sclerotia formation significantly increased, while aflatoxins production and virulence were decreased in the cta1 deletion mutant as compared with the WT and complementary strains. Furthermore, the absence of the cta1 gene resulted in a significant rise in the intracellular ROS level, which in turn added to the oxidative stress level of cells. A further quantitative proteomics investigation hinted that in vivo, CTA1 might maintain the ROS level to facilitate the aflatoxin synthesis. All in all, the pleiotropic phenotype of A. flavus CTA1 deletion mutant revealed that the antioxidant system plays a crucial role in fungal development, aflatoxins biosynthesis and virulence.  相似文献   

20.
Nɛ-Acetylation of lysine residues represents a pivotal post-translational modification used by both eukaryotes and prokaryotes to modulate diverse biological processes. Mycobacterium tuberculosis is the causative agent of tuberculosis, one of the most formidable public health threats. Many aspects of the biology of M. tuberculosis remain elusive, in particular the extent and function of Nɛ-lysine acetylation. With a combination of anti-acetyllysine antibody-based immunoaffinity enrichment with high-resolution mass spectrometry, we identified 1128 acetylation sites on 658 acetylated M. tuberculosis proteins. GO analysis of the acetylome showed that acetylated proteins are involved in the regulation of diverse cellular processes including metabolism and protein synthesis. Six types of acetylated peptide sequence motif were revealed from the acetylome. Twenty lysine-acetylated proteins showed homology with acetylated proteins previously identified from Escherichia coli, Salmonella enterica, Bacillus subtilis and Streptomyces roseosporus, with several acetylation sites highly conserved among four or five bacteria, suggesting that acetylated proteins are more conserved. Notably, several proteins including isocitrate lyase involved in the persistence, virulence and antibiotic resistance are acetylated, and site-directed mutagenesis of isocitrate lyase acetylation site to glutamine led to a decrease of the enzyme activity, indicating major roles of KAc in these proteins engaged cellular processes. Our data firstly provides a global survey of M. tuberculosis acetylation, and implicates extensive regulatory role of acetylation in this pathogen. This may serve as an important basis to address the roles of lysine acetylation in M. tuberculosis metabolism, persistence and virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号