首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of d-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing d-rhamnose and not d-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins.  相似文献   

2.
Herbaspirillum seropedicae is a plant growth-promoting diazotrophic betaproteobacterium which associates with important crops, such as maize, wheat, rice and sugar-cane. We have previously reported that intact lipopolysaccharide (LPS) is required for H. seropedicae attachment and endophytic colonization of maize roots. In this study, we present evidence that the LPS biosynthesis gene waaL (codes for the O-antigen ligase) is induced during rhizosphere colonization by H. seropedicae. Furthermore a waaL mutant strain lacking the O-antigen portion of the LPS is severely impaired in colonization. Since N-acetyl glucosamine inhibits H. seropedicae attachment to maize roots, lectin-like proteins from maize roots (MRLs) were isolated and mass spectrometry (MS) analysis showed that MRL-1 and MRL-2 correspond to maize proteins with a jacalin-like lectin domain, while MRL-3 contains a B-chain lectin domain. These proteins showed agglutination activity against wild type H. seropedicae, but failed to agglutinate the waaL mutant strain. The agglutination reaction was severely diminished in the presence of N-acetyl glucosamine. Moreover addition of the MRL proteins as competitors in H. seropedicae attachment assays decreased 80-fold the adhesion of the wild type to maize roots. The results suggest that N-acetyl glucosamine residues of the LPS O-antigen bind to maize root lectins, an essential step for efficient bacterial attachment and colonization.  相似文献   

3.
The sigma54 factor has been previously described to be involved in Listeria monocytogenes sensitivity to mesentericin Y105, a subclass IIa bacteriocin. Here, we identified the rpoN gene, encoding sigma54, of Enterococcus faecalis JH2-2 and showed that its interruption leads to E. faecalis resistance to different subclass IIa bacteriocins. Moreover, this rpoN mutant remained sensitive to nisin, a class I bacteriocin, suggesting that sigma54 is especially involved in sensitivity to subclass IIa bacteriocins. Received: 5 May 2000 / Accepted 28 June 2000  相似文献   

4.
Studies were carried out to understand parallel survival of two strains when cultivated as co-culture on a single carbon source in continuous cultivation. Strains used were Pseudomonas sp. strain CF600 that is reported for degradation of phenol; and HKR1 a lab strain, which was isolated from a site contaminated with phenol. In continuous cultivation Pseudomonas sp. CF600 showed an accumulation of colored intermediate, 2-hydroxy muconic semialdehyde (HMS), when fed with phenol as a sole source of carbon under dissolved oxygen limiting condition (40% saturation level). Under the same cultivation condition when it was co-cultured with strain HKR1, complete degradation of phenol was observed with no accumulation of intermediate. Different dilution rates (0.03, 0.15, and 0.30) were set in the bioreactor during cultivation. It was also observed that both the strains follow a typical cell density ratio of 1:18 as strain HKR1: Pseudomonas sp. CF600 irrespective of the dilution rates used in the study to favor degradation of phenol. Pseudomonas sp. CF600 is reported to degrade phenol via a plasmid-encoded pathway (pVI150). The enzymes for this meta-cleavage pathway are clustered on 15 genes encoded by a single operon, the dmp operon. PCR using primers from the different catabolic loci of dmp operon, demonstrated that the strain HKR1 follows a different metabolic pathway for intermediate utilization.  相似文献   

5.
Bacteriocin LlpA, produced by Pseudomonas sp. strain BW11M1, is a peculiar antibacterial protein due to its homology to mannose-binding lectins mostly found in monocots (A. H. A. Parret, G. Schoofs, P. Proost, and R. De Mot, J. Bacteriol. 185:897-908, 2003). Biocontrol strain Pseudomonas fluorescens Pf-5 contains two llpA-like genes, named llpA1Pf-5 and llpA2Pf-5. Recombinant Escherichia coli cells expressing llpA1Pf-5 or llpA2Pf-5 acquired bacteriocin activity and secreted a 31-kDa protein cross-reacting with LlpABW11M1 antibodies. Antibacterial activity of the recombinant proteins was evidenced by gel overlay assays. Analysis of the antimicrobial spectrum indicated that LlpA1Pf-5 and LlpA2Pf-5 are able to inhibit P. fluorescens strains, as well as the related mushroom pathogen Pseudomonas tolaasii. LlpA-type bacteriocins are characterized by a domain structure consisting of tandem monocot mannose-binding lectin (MMBL) domains. Molecular phylogeny of these MMBL domains suggests that the individual MMBL domains within an LlpA protein have evolved separately toward a specific, as yet unknown, function or, alternatively, were acquired from different ancestral sources. Our observations are consistent with earlier observations, which hinted that MMBL-like bacteriocins represent a new family of antibacterial proteins, probably with a novel mode of action.  相似文献   

6.
Amyloids are highly abundant in many microbial biofilms and may play an important role in their architecture. Nevertheless, little is known of the amyloid proteins. We report the discovery of a novel functional amyloid expressed by a Pseudomonas strain of the P. fluorescens group. The amyloid protein was purified and the amyloid‐like structure verified. Partial sequencing by MS/MS combined with full genomic sequencing of the Pseudomonas strain identified the gene coding for the major subunit of the amyloid fibril, termed fapC. FapC contains a thrice repeated motif that differs from those previously found in curli fimbrins and prion proteins. The lack of aromatic residues in the repeat shows that aromatic side chains are not needed for efficient amyloid formation. In contrast, glutamine and asparagine residues seem to play a major role in amyloid formation as these are highly conserved in curli, prion proteins and FapC. fapC is conserved in many Pseudomonas strains including the opportunistic pathogen P. aeruginosa and is situated in a conserved operon containing six genes, of which one encodes a fapC homologue. Heterologous expression of the fapA–F operon in Escherichia coli BL21(DE3) resulted in a highly aggregative phenotype, showing that the operon is involved in biofilm formation.  相似文献   

7.
Two novel 3-chlorobenzoate-degrading bacteria were previously isolated from an aquifer in which no such bacteria could be enriched prior to the introduction of the 3-chlorobenzoate-degrading strain, Pseudomonas sp. B13. To understand the origin of 3-chlorobenzoate-degrading genes in the two novel isolates, the 16S ribosomal RNA, clcD (dienelactone hydrolase) and clcA (chlorocatechol oxygenase) genes from these bacteria were amplified and sequenced. The partial 16S rRNA gene sequences and REP-PCR patterns showed that these two novel isolates were identical but differed from strain B13. Phylogenetic analyses revealed that the novel isolates were closely related to Alcaligenes eutrophus in the beta subclass of the Proteobacteria, whereas strain B13 was related to Pseudomonas aeruginosa and P. mendocina in the gamma subclass of the Proteobacteria. In contrast, the clcD and clcA gene sequences were identical on strain B13 and these two isolates, indicating that the 3-chlorobenzoate-degrading genes were transferred from strain B13 to these isolates. What cannot be established is when this transfer occurred.  相似文献   

8.
9.
Transport of ferric-siderophores across the outer membrane of gram-negative bacteria is mediated by specific outer membrane receptors. To localize the substrate-binding domain of the ferric-pseudobactin 358 receptor, PupA, of Pseudomonas putida WCS358, we constructed chimeric receptors in which different domains of PupA were replaced by the corresponding domains of the related ferric-pseudobactin receptors PupB and PupX, or the coprogen receptor FhuE of Escherichia coli. None of the chimeric proteins composed of pseudobactin receptor domains facilitated growth on any of the original substrates, or they showed only an extremely low efficiency. However, these receptors enabled cells of Pseudomonas BN8 to grow on media supplemented with uncharacterized siderophore preparations. These siderophore preparations were isolated from the culture supernatant of WCS358 cells carrying plasmids that contain genes of Pseudomonas B10 required for the biosynthesis of pseudobactin B10. Hybrid proteins that contained at least the amino-terminal 516 amino acids of mature FhuE were active as a receptor for coprogen and interacted with the E. coli TonB protein. A chimeric PupA-FhuE protein, containing the amino-terminal 94 amino acids of mature PupA, was also active as a coprogen receptor, but only in the presence of Pseudomonas TonB. It is concluded that the carboxy-terminal domain of ferric-pseudobactin receptors is important, but not sufficient, for ligand interaction, whereas binding of coprogen by the FhuE receptor is not dependent on this domain. Apparently, the ligand-binding sites of different receptors are located in different regions of the proteins. Furthermore, species-specific TonB binding by the PupA receptor is dependent on the amino-terminal domain of the receptor.  相似文献   

10.
Forty‐seven manganese‐oxidizing bacterial strains, isolated from manganese nodules, sediment, and sea‐water samples collected from the Pacific Ocean and the Mediterranean Sea, were studied to elucidate the role, if any, of plasmids in bacterial manganese oxidation in the marine environment.

Twenty‐two strains of Pseudomonas and seven unidentified species were found to harbor single plasmids. Seven of the plasmid‐containing Pseudomonas spp. and one of the unidentified strains were selected for curing. Only Pseudomonas strain 57, originally isolated from a manganese nodule collected from the Pacific Ocean, was cured successfully. This strain carried a plasmid (pZPl) of about 9 Mdal, and demonstrated enzymatic oxidation of manganese. Although the function ascribable to pZPl remains cryptic, evidence obtained from the study of Pseudomonas strain 57 (carrying pZPl) and its cured derivative suggests that the plasmid encodes resistance to manganese and copper. It is hypothesized that the plasmid (pZPl) provides an ecologically significant strategy for survival in the deep‐sea nodule environment since it encodes for heavy metal resistance associated with the manganese oxidation process.  相似文献   

11.
Lactobacillus gasseri LF221, an isolate from the feces of a child, produces two bacteriocins. Standard procedures for molecular techniques were used to locate, clone and sequence the fragments of LF221 chromosomal DNA carrying the acidocin LF221 A and B structural genes, respectively. Sequencing analysis revealed the gene of acidocin LF221 A to be an open reading frame encoding a protein composed of 69 amino acids, including a 16-amino-acid N-terminal extension. The acidocin LF221 B gene was found to encode a 65-amino-acid bacteriocin precursor with a 17-amino-acid N-terminal leader peptide. DNA homology searches showed similarities of acidocin LF221 A to brochocin B, lactococcin N and thermophilin B, whereas acidocin LF221 B exhibited some homology to lactacin F and was virtually identical to gassericin X. The peptides encoded by orfA1 and orfB3 showed characteristics of class II bacteriocins and are suspected to be the complementary peptides of acidocin A and B, respectively. orfA3 and orfB5 are proposed to encode putative immunity proteins for the acidocins. Acidocin LF221 A and acidocin LF221 B are predicted to be members of the two-component class II bacteriocins, where acidocin LF221 A appears to be a novel bacteriocin. L. gasseri LF221 is being developed as a potential probiotic strain and a food/feed preservative. Detailed characterization of its acidocins is an important piece of background information useful in applying the strain into human or animal consumption. The genetic information on both acidocins also enables tracking of the LF221 strain in mixed populations and complex environments.  相似文献   

12.
An iron-regulated gene, pbsC, required for siderophore production in fluorescent Pseudomonas sp. strain M114 has been identified. A kanamycin-resistance cassette was inserted at specific restriction sites within a 7 kb genomic fragment of M114 DNA and by marker exchange two siderophore-negative mutants, designated M1 and M2, were isolated. The nucleotide sequence of approximately 4 kb of the region flanking the insertion sites was determined and a large open reading frame (ORF) extending for 2409 by was identified. This gene was designated pbsC (pseudobactin synthesis C) and its putative protein product termed PbsC. PbsC was found to be homologous to a family of enzymes involved in the biosynthesis of secondary metabolites, including EntF of Escherichia coli. These enzymes are believed to act via ATP-dependent binding of AMP to their substrate. Several areas of high sequence homology between these proteins and PbsC were observed, including a conserved AMP-binding domain. The expression of pbsC is iron-regulated as revealed when a DNA fragment containing the upstream region was cloned in a promoter probe vector and conjugated into the wild-type strain, M114. The nucleotide sequence upstream of the putative translational start site contains a region homologous to previously defined –16 to –25 sequences of iron-regulated genes but did not contain an iron-box consensus sequence. It was noted that inactivation of the pbsC gene also affected other iron-regulated phenotypes of Pseudomonas M114.  相似文献   

13.
Summary— Xenorhabdus nematophilus FI strain and Photorhabdus luminescens NC19 strain produced bacteriocins after mitomycin C treatment and under natural conditions respectively. The ultrastructure of these two strains was described and compared to the ultrastructure of untreated or normal cells. After image processing of purified bacteriocins we found morphological homology in infected cells with protoplasmic rods in longitudinal section and hexagonal aggregates in transversal section. We concluded that these particular structures, so-called ‘lattice structures’ and previously interpreted as ‘photosomes’, are in fact the early stages of in situ production of bacteriocins in these two bacterial genera. Natural occurrence of Photorhabdus spp bacteriocinogenesis was observed in other strains, while other lysogenic strains of Xenorhabdus spp are lysed after a mitomycin C treatment.  相似文献   

14.

Multidrug resistance (MDR) is a serious health threat throughout the world resulting in reduced efficacy of antibacterial, antiparasitic, antiviral, and antifungal drugs. One of the most promising concepts that may represent a good alternative to antibiotics can be the use of bacteriocins obtained from lactic acid bacteria. The L. rhamnosus BTK 20-12 strain was isolated from traditional Armenian naturally fermented salted cheese. The probiotic potential of the strain was approved. It was shown that strain produced at less two bacteriocins (BCN 1 and BCN 2) with different molecular weight (1427 Da and 602.6 Da, respectively). Bacteriocins inhibited the growth of multidrug-resistant bacteria of different etiologies and belong to different taxonomic groups with diverse efficiency and it depends on properties of bacteriocins, as well as from isolation sources of pathogens. Thus, bacteriocins of L. rhamnosus BTK 20-12 have protein-like nature and a broad range of activity and are excellent candidates for the development of new prophylactic and therapeutic substances to complement or replace conventional antibiotics.

  相似文献   

15.
Streptococcus pneumoniae colonizes the highly diverse polymicrobial community of the nasopharynx where it must compete with resident organisms. We have shown that bacterially produced antimicrobial peptides (bacteriocins) dictate the outcome of these competitive interactions. All fully-sequenced pneumococcal strains harbor a bacteriocin-like peptide (blp) locus. The blp locus encodes for a range of diverse bacteriocins and all of the highly conserved components needed for their regulation, processing, and secretion. The diversity of the bacteriocins found in the bacteriocin immunity region (BIR) of the locus is a major contributor of pneumococcal competition. Along with the bacteriocins, immunity genes are found in the BIR and are needed to protect the producer cell from the effects of its own bacteriocin. The overlay assay is a quick method for examining a large number of strains for competitive interactions mediated by bacteriocins. The overlay assay also allows for the characterization of bacteriocin-specific immunity, and detection of secreted quorum sensing peptides. The assay is performed by pre-inoculating an agar plate with a strain to be tested for bacteriocin production followed by application of a soft agar overlay containing a strain to be tested for bacteriocin sensitivity. A zone of clearance surrounding the stab indicates that the overlay strain is sensitive to the bacteriocins produced by the pre-inoculated strain. If no zone of clearance is observed, either the overlay strain is immune to the bacteriocins being produced or the pre-inoculated strain does not produce bacteriocins. To determine if the blp locus is functional in a given strain, the overlay assay can be adapted to evaluate for peptide pheromone secretion by the pre-inoculated strain. In this case, a series of four lacZ-reporter strains with different pheromone specificity are used in the overlay.  相似文献   

16.
Sphingomonas spp are phylogenetically placed in the α-4 subclass of Proteobacteria. They have glycosphingolipids (GSL) in their membranes instead of lipopolysaccharide (LPS) as in other Gram-negative bacteria. S. paucimobilis, the type species of the genus, has GSL-1, which contains only glucuronic acid (GlcA) as a sugar moiety, and GSL-4A, which contains a tetrasaccharide including GlcA. GSL-1 and GSL-4A form the outer membrane of S. paucimobilis with outer membrane proteins and phospholipids. In the outer membrane, GSLs are assumed to locate and function as does the LPS of other Gram-negative bacteria. Sphingomonas spp closely related to the type species contain both GSL-1 and the oligosaccharide-type GSL such as GSL-4A, but other Sphingomonas spp and other genera in the α-4 subclass of Proteobacteria contain only GSL-1. Structural variations of fatty acids and dihydrosphingosines in the GSL-1 are presented. Received 19 April 1999/ Accepted in revised form 18 June 1999  相似文献   

17.

Background  

Many Gram-positive lactic acid bacteria (LAB) produce anti-bacterial peptides and small proteins called bacteriocins, which enable them to compete against other bacteria in the environment. These peptides fall structurally into three different classes, I, II, III, with class IIa being pediocin-like single entities and class IIb being two-peptide bacteriocins. Self-protective cognate immunity proteins are usually co-transcribed with these toxins. Several examples of cognates for IIa have already been solved structurally. Streptococcus pyogenes, closely related to LAB, is one of the most common human pathogens, so knowledge of how it competes against other LAB species is likely to prove invaluable.  相似文献   

18.
Cellulosimicrobium cellulans (also known with the synonyms Cellulomonas cellulans, Oerskovia xanthineolytica, and Arthrobacter luteus) is an actinomycete that excretes yeast cell wall lytic enzyme complexes containing endo-β-1,3-glucanases [EC 3.2.1.39 and 3.2.1.6] as key constituents. Three genes encoding endo-β-1,3-glucanases from two C. cellulans strains have been cloned and characterised over the past years. The βglII and βglII A genes from strain DSM 10297 (also known as O. xanthineolytica LL G109) encoded proteins of 40.8 and 28.6 kDa, respectively, whereas the β-1,3-glucanase gene from strain ATCC 21606 (also known as A. luteus 73–14) encoded a 54.5 kDa protein. Alignment of their deduced amino acid sequences reveal that βglII and βglII A have catalytic domains assigned to family 16 of glycosyl hydrolases, whereas the catalytic domain from the 54.5 kDa glucanase belongs to family 64. Notably, both βglII and the 54.5 kDa β-1,3-glucanase are multidomain proteins, having a lectin-like C-terminal domain that has been assigned to family 13 of carbohydrate binding modules, and that confers to β-1,3-glucanases the ability to lyse viable yeast cells. Furthermore, βglII may also undergo posttranslational proteolytic processing of its C-terminal domain, resulting in a truncated enzyme retaining its glucanase activity but with very low yeast-lytic activity. In this review, the diversity in terms of structural and functional characteristics of the C. cellulans β-1,3-glucanases has been compiled and compared.  相似文献   

19.
The bacterial strain FLB300 was enriched with 3-fluorobenzoate as sole carbon source. Besides benzoate all isomeric monofluorobenzoates were utilized. Regioselective 1,2-dioxygenation rather than 1,6-dioxygenation yielded 4-fluorocatechol and minimized the production of toxic 3-fluorocatechol. Degradation of 4-fluorocatechol was mediated by reactions of ortho cleavage pathway activities. Chemotaxonomic and r-RNA data excluded strain FLB300 from a phylogenetically defined genus Pseudomonas and suggested its allocation to the alpha-2 subclass of Proteobacteria in a new genus of the Agrobacterium-Rhizobium branch.Abbreviations PYES peptone yeast extract soy medium - TLC thin layer chromatography - NTA nitrilotriacetate - SDS-PAGE sodium dodecylsulphate-polyacrylsulphate gel electrophoresis - FB fluorobenzoate - DHB 1,2-dihydro-1,2-dihydroxybenzoate - NB nutrient broth  相似文献   

20.
Members of the genus Pseudomonas inhabit diverse environments, such as soil, water, plants and humans. The variability of habitats is reflected in the diversity of the structure and composition of their genomes. This cosmopolitan bacterial genus includes species of biotechnological, medical and environmental importance. In this study, we report on the most relevant genomic characteristics of Pseudomonas sp. strain ABC1, a siderophore-producing fluorescent strain recently isolated from soil. Phylogenomic analyses revealed that this strain corresponds to a novel species forming a sister clade of the recently proposed Pseudomonas kirkiae. The genomic information reveals an overrepresented repertoire of mechanisms to hoard iron when compared to related strains, including a high representation of fecI-fecR family genes related to iron regulation and acquisition. The genome of the Pseudomonas sp. ABC1 contains the genes for non-ribosomal peptide synthetases (NRPSs) of a novel putative Azotobacter-related pyoverdine-type siderophore, a yersiniabactin-type siderophore and an antimicrobial betalactone; the last two are found only in a limited number of Pseudomonas genomes. Strain ABC1 can produce siderophores in a low-cost medium, and the supernatants from cultures of this strain promote plant growth, highlighting their biotechnological potential as a sustainable industrial microorganism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号