首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyketides are important bioactive natural products biosynthesized by bacteria, fungi, and plants. The enzymes that synthesize polyketides are collectively referred to as polyketide synthases (PKSs). Because many of the natural hosts that produce polyketides are difficult to culture or manipulate, establishing a universal heterologous host that is genetically tractable has become an important goal toward the engineered biosynthesis of polyketides and analogues. Here, we summarize the recent progresses in engineering Escherichia coli as a heterologous host for reconstituting PKSs of different types. Our increased understanding of PKS enzymology and structural biology, combined with new tools in protein engineering, metabolic engineering, and synthetic biology, has firmly established E. coli as a powerful host for producing polyketides.  相似文献   

2.
Aims: Paromamine is a vital and common intermediate in the biosynthesis of 4,5 and 4,6‐disubstituted 2‐deoxystreptamine (DOS)‐containing aminoglycosides. Our aim is to develop an engineered Escherichia coli system for heterologous production of paromamine. Methods and Results: We have constructed a mutant of E. coli BL21 (DE3) by disrupting glucose‐6‐phosphate isomerase (pgi) of primary metabolic pathway to increase glucose‐6‐phosphate pool inside the host. Disruption was carried out by λ Red/ET recombination following the protocol mentioned in the kit. Recombinants bearing 2‐deoxy‐scyllo‐inosose (DOI), DOS and paromamine producing genes were constructed from butirosin gene cluster and heterologously expressed in engineered host designed as E. coli BL21 (DE3) Δpgi. Secondary metabolites produced by the recombinants fermentated in 2YTG medium were extracted, and analysis of the extracts showed there is formation of DOI, DOS and paromamine. Conclusions: Escherichia coli system is engineered for heterologous expression of paromamine derivatives of aminoglycoside biosynthesis. Significance and Impact of the Study: This is the first report of heterologous expression of paromamine gene set in E. coli. Hence a new platform is established in E. coli system for the production of paromamine which is useful for the exploration of novel aminoglycosides by combinatorial biosynthesis of 4,5‐ and 4,6‐disubtituted route of DOS‐containing aminoglycosides.  相似文献   

3.
L-5-Methyltetrahydrofolate (L-5-MTHF) is the only biologically active form of folate in the human body. Production of L-5-MTHF by using microbes is an emerging consideration for green synthesis. However, microbes naturally produce only a small amount of L-5-MTHF. Here, Escherichia coli BL21(DE3) was engineered to increase the production of L-5-MTHF by overexpressing the intrinsic genes of dihydrofolate reductase and methylenetetrahydrofolate (methylene-THF) reductase, introducing the genes encoding formate-THF ligase, formyl-THF cyclohydrolase and methylene-THF dehydrogenase from the one-carbon metabolic pathway of Methylobacterium extorquens or Clostridium autoethanogenum and disrupting the gene of methionine synthase involved in the consumption and synthesis inhibition of the target product. Thus, upon its native pathway, an additional pathway for L-5-MTHF synthesis was developed in E. coli, which was further analysed and confirmed by qRT-PCR, enzyme assays and metabolite determination. After optimizing the conditions of induction time, temperature, cell density and concentration of IPTG and supplementing exogenous substances (folic acid, sodium formate and glucose) to the culture, the highest yield of 527.84 μg g−1 of dry cell weight for L-5-MTHF was obtained, which was about 11.8 folds of that of the original strain. This study paves the way for further metabolic engineering to improve the biosynthesis of L-5-MTHF in E. coli.  相似文献   

4.
The establishment of erythromycin production within the heterologous host E. coli marked an accomplishment in genetic transfer capacity. Namely, over 20 genes and 50 kb of DNA was introduced to E. coli for successful heterologous biosynthetic reconstitution. However, the prospect for production levels that approach those of the native host requires the application of engineering tools associated with E. coli. In this report, metabolic and genomic engineering were implemented to improve the E. coli cellular background and the plasmid platform supporting heterologous erythromycin formation. Results include improved plasmid stability and metabolic support for biosynthetic product formation. Specifically, the new plasmid design for erythromycin formation allowed for ≥89% stability relative to current standards (20% stability). In addition, the new strain (termed LF01) designed to improve carbon flow to the erythromycin biosynthetic pathway provided a 400% improvement in titer level. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:271–276, 2018  相似文献   

5.
The methylotrophic yeast Pichia pastoris is a popular heterologous expression host for the recombinant production of a variety of prokaryotic and eukaryotic proteins. The rapid emergence of P. pastoris as a robust heterologous expression host was facilitated by the ease with which it can be manipulated and propagated, which is comparable to that of Escherichia coli and Saccharomyces cerevisiae. P. pastoris offers further advantages such as the tightly-regulated alcohol oxidase promoter that is particularly suitable for heterologous expression of foreign genes. While recombinant production of bacterial toxins and their derivatives is highly desirable, attempts at their heterologous expression using the traditional E. coli expression system can be problematic due to the formation of inclusion bodies that often severely limit the final yields of biologically active products. However, recent literature now suggests that P. pastoris may be an attractive alternative host for the heterologous production of bacterial toxins, such as those from the genera Bacillus, Clostridium, and Corynebacterium, as well as their more complex derivatives. Here, we review the recombinant production of bacterial toxins and their derivatives in P. pastoris with special emphasis on their potential clinical applications. Considering that de novo design and construction of synthetic toxin genes have often been necessary to achieve optimal heterologous expression in P. pastoris, we also present general guidelines to this end based on our experience with the P. pastoris expression of the Bacillus thuringiensis Cyt2Aa1 toxin.  相似文献   

6.
Phytochelatin (PC) is a naturally occurring peptide with high affinity towards arsenic (As). In this article, we demonstrated the systematic engineering of PC‐producing E. coli for As accumulation by addressing different bottlenecks in PC synthesis as well as As transport. Phytochelatin synthase from Schizosaccharomyces pombe (SpPCS) was expressed in E. coli resulting in 18 times higher As accumulation. PC production was further increased by co‐expressing a feedback desensitized γ‐glutamylcysteine synthetase (GshI*), resulting in 30‐fold higher PC levels and additional 2‐fold higher As accumulation. The significantly increased PC levels were exploited further by co‐expressing an arsenic transporter GlpF, leading to an additional 1.5‐fold higher As accumulation. These engineering steps were finally combined in an arsenic efflux deletion E. coli strain to achieve an arsenic accumulation level of 16.8 µmol/g DCW, a 80‐fold improvement when compared to a control strain not producing phytochelatins. Biotechnol. Bioeng. 2010. 105: 780–785. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
Abstract

The emergence of drug resistance in Streptococcus pneumoniae (Spn) is a global health threat and necessitates discovery of novel therapeutics. The serine acetyltransferase (also known as CysE) is an enzyme of cysteine biosynthesis pathway and is reported to be essential for the survival of several pathogenic bacteria. Therefore, it appears to be a very attractive target for structure–function understanding and inhibitor design. This study describes the molecular cloning of cysE from Spn in the pET21c vector and efforts carried out for expression and purification of active recombinant CysE. Significant expression of recombinant Spn cysE could be achieved in codon optimized BL21(DE3)-RIL strain as opposed to conventional BL21(DE3) strain. Analysis of codon adaptation index (CAI) with levels of eukaryotic genes and prokaryotic cysEs expressed in heterologous E. coli host suggests that codon optimized E. coli BL21(DE3)-RIL may be a better host for expressing genes with low CAI. Here, an efficient protocol has been developed for recovery of recombinant Spn CysE in soluble and biologically active form by the usage of nonionic detergent Triton X-100 at a concentration as low as 1%. Altogether, this study reports a simple strategy for producing functionally active Spn CysE in E. coli.  相似文献   

8.
Current pathway synthesis tools identify possible pathways that can be added to a host to produce the desired target molecule through the exploration of abstract metabolic and reaction network space. However, not many of these tools explore gene-level information required to physically realize the identified synthesis pathways, and none explore enzyme-host compatibility. Developing tools that address this disconnect between abstract reactions/metabolic design space and physical genetic sequence design space will enable expedited experimental efforts that avoid exploring unprofitable synthesis pathways. This work describes a workflow, termed Probabilistic Pathway Assembly with Solubility Confidence Scores (ProPASS), which links synthesis pathway construction with the exploration of the physical design space as imposed by the availability of enzymes with predicted characterized activities within the host. Predicted protein solubility propensity scores are used as a confidence level to quantify the compatibility of each pathway enzyme with the host Escherichia coli (E. coli). This study also presents a database, termed Protein Solubility Database (ProSol DB), which provides solubility confidence scores in E. coli for 240,016 characterized enzymes obtained from UniProtKB/Swiss-Prot. The utility of ProPASS is demonstrated by generating genetic implementations of heterologous synthesis pathways in E. coli that target several commercially useful biomolecules.  相似文献   

9.
Cytochromes P450 are useful biocatalysts in synthetic chemistry and important bio-bricks in synthetic biology. Almost all bacterial P450s require separate redox partners for their activity, which are often expressed in recombinant Escherichia coli using multiple plasmids. However, the application of CRISPR/Cas recombineering facilitated chromosomal integration of heterologous genes which enables more stable and tunable expression of multi-component P450 systems for whole-cell biotransformations. Herein, we compared three E. coli strains W3110, JM109, and BL21(DE3) harboring three heterologous genes encoding a P450 and two redox partners either on plasmids or after chromosomal integration in two genomic loci. Both loci proved to be reliable and comparable for the model regio- and stereoselective two-step oxidation of (S)-ketamine. Furthermore, the CRISPR/Cas-assisted integration of the T7 RNA polymerase gene enabled an easy extension of T7 expression strains. Higher titers of soluble active P450 were achieved in E. coli harboring a single chromosomal copy of the P450 gene compared to E. coli carrying a medium copy pET plasmid. In addition, improved expression of both redox partners after chromosomal integration resulted in up to 80% higher (S)-ketamine conversion and more than fourfold increase in total turnover numbers.  相似文献   

10.
流产布氏杆菌烯脂酰ACP还原酶的鉴定   总被引:1,自引:0,他引:1  
烯脂酰ACP还原酶是细菌脂肪酸合成的关键酶之一.流产布氏杆菌基因组有2个注释为烯脂酰ACP还原酶基因fabI的同源基因:fabI1fabI2.由这2个fabI同源基因编码的蛋白质分别与大肠杆菌FabI有50%和51%的同源性,且都拥有与大肠杆菌FabI一样的催化中心Tyr-(Xaa)6-Lys序列.分别用携带这2个同源基因的质粒载体转化大肠杆菌fabI温度敏感突变菌株JP1111.转化子能在42℃生长,表明这2个基因均能遗传互补大肠杆菌fabI突变,并使此菌株恢复脂肪酸的合成.另外,体外酶学分析显示,由这2个同源基因编码的蛋白质都拥有烯脂酰ACP还原酶活性,均能参与细菌脂肪酸合成.上述结果证实,流产布氏杆菌同时拥有2个同种类型的烯脂酰ACP还原酶,是一种新的烯脂酰ACP多样性的表现.  相似文献   

11.
Trichloroethylene (TCE) degradation by the recombinant E. coli JM109 harboring a TCE-degradative plasmid (pIO720 or pIO72K) in continuous culture was studied. The ampicillin-resistant plasmid, pIO720, contained the cumene dioxygenase genes and the dimethyl sulfide monooxygenase genes. pIO72K was constructed according to replacement of an ampicillin resistance gene on pIO720 by a kanamycin resistance gene. In the case of E. coli JM109 (pIO720) in continuous culture, TCE degradation activity decreased rapidly after continuous culture started, and the remaining number of host cells harboring pIO720 also decreased rapidly. In the case of E. coli JM109 (pIO72K) in continuous culture, TCE degradation activity was stable during continuous culture for at least 300 h and the number of the host cells harboring pIO72K did not decrease. TCE degradation activity of E. coli JM109 (pIO72K) was the highest at a dilution rate of 0.2 h–1.  相似文献   

12.
Aims: Escherichia coli has emerged as a viable heterologous host for the production of complex, polyketide natural compounds. In this study, polyketide biosynthesis was compared between different E. coli strains for the purpose of better understanding and improving heterologous production. Methods and Results: Both B and K‐12 E. coli strains were genetically modified to support heterologous polyketide biosynthesis [specifically, 6‐deoxyerythronolide B (6dEB)]. Polyketide production was analysed using a helper plasmid designed to overcome rare codon usage within E. coli. Each strain was analysed for recombinant protein production, precursor consumption, by‐product production, and 6dEB biosynthesis. Of the strains tested for biosynthesis, 6dEB production was greatest for E. coli B strains. When comparing biosynthetic improvements as a function of mRNA stability vs codon bias, increased 6dEB titres were observed when additional rare codon tRNA molecules were provided. Conclusions: Escherichia coli B strains and the use of tRNA supplementation led to improved 6dEB polyketide titres. Significance and Impact of the Study: Given the medicinal potential and growing field of polyketide heterologous biosynthesis, the current study provides insight into host‐specific genetic backgrounds and gene expression parameters aiding polyketide production through E. coli.  相似文献   

13.
The genetic code is universal, but recombinant protein expression in heterologous systems is often hampered by divergent codon usage. Here, we demonstrate that reprogramming by standardized multi‐parameter gene optimization software and de novo gene synthesis is a suitable general strategy to improve heterologous protein expression. This study compares expression levels of 94 full‐length human wt and sequence‐optimized genes coding for pharmaceutically important proteins such as kinases and membrane proteins in E. coli. Fluorescence‐based quantification revealed increased protein yields for 70% of in vivo expressed optimized genes compared to the wt DNA sequences and also resulted in increased amounts of protein that can be purified. The improvement in transgene expression correlated with higher mRNA levels in our analyzed examples. In all cases tested, expression levels using wt genes in tRNA‐supplemented bacterial strains were outperformed by optimized genes expressed in non‐supplemented host cells.  相似文献   

14.
15.
The genes encoding thioredoxin and thioredoxin reductase of Clostridium litorale were cloned and sequenced. The thioredoxin reductase gene (trxB) encoded a protein of 33.9 kDa, and the deduced amino acid sequence showed 44% identity to the corresponding protein from Escherichia coli. The gene encoding thioredoxin (trxA) was located immediately downstream of trxB. TrxA and TrxB were each encoded by two gene copies, both copies presumably located on the chromosome. Like other thioredoxins from anaerobic, amino-acid-degrading bacteria investigated to date by N-terminal amino acid sequencing, thioredoxin from C. litorale exhibited characteristic deviations from the consensus sequence, e.g., GCVPC instead of WCGPC at the redox-active center. Using heterologous enzyme assays, neither thioredoxin nor thioredoxin reductase were interchangeable with the corresponding proteins of the thioredoxin system from E. coli. To elucidate the molecular basis of that incompatibility, Gly-31 in C. litorale thioredoxin was substituted with Trp (the W in the consensus sequence) by site-directed mutagenesis. The mutant protein was expressed in E. coli and was purified to homogeneity. Enzyme assays using the G31W thioredoxin revealed that Gly-31 was not responsible for the observed incompatibility with the E. coli thioredoxin reductase, but it was essential for activity of the thioredoxin system in C. litorale. Received: 19 September 1996 / Accepted: 21 May 1997  相似文献   

16.
17.
Taxol (paclitaxel) is a diterpenoid compound with significant and extensive applications in the treatment of cancer. The production of Taxol and relevant intermediates by engineered microbes is an attractive alternative to the semichemical synthesis of Taxol. In this study, based on a previously developed platform, the authors first established taxadiene production in mutant E. coli T2 and T4 by engineering of the mevalonate (MVA) pathway. The authors then developed an Agrobacterium tumefaciens‐mediated transformation (ATMT) method and verified the strength of heterologous promoters in Alternaria alternata TPF6. The authors next transformed the taxadiene‐producing platform into A. alternata TPF6, and the MVA pathway was engineered, with introduction of the plant taxadiene‐forming gene. Notably, by co‐overexpression of isopentenyl diphosphate isomerase (Idi), a truncated version of 3‐hydroxy‐3‐methylglutaryl‐CoA reductase (tHMG1), and taxadiene synthase (TS), the authors could detect 61.9 ± 6.3 μg/L taxadiene in the engineered strain GB127. This is the first demonstration of taxadiene production in filamentous fungi, and the approach presented in this study provides a new method for microbial production of Taxol. The well‐established ATMT method and the known promoter strengths facilitated further engineering of taxaenes in this fungus.  相似文献   

18.
Currently, microbial conversion of lignocellulose‐derived glucose and xylose to biofuels is hindered by the fact that most microbes (including Escherichia coli [E. coli], Saccharomyces cerevisiae, and Zymomonas mobilis) preferentially consume glucose first and consume xylose slowly after glucose is depleted in lignocellulosic hydrolysates. In this study, E. coli strains are developed that simultaneously utilize glucose and xylose in lignocellulosic biomass hydrolysate using genome‐scale models and adaptive laboratory evolution. E. coli strains are designed and constructed that coutilize glucose and xylose and adaptively evolve them to improve glucose and xylose utilization. Whole‐genome resequencing of the evolved strains find relevant mutations in metabolic and regulatory genes and the mutations’ involvement in sugar coutilization is investigated. The developed strains show significantly improved coconversion of sugars in lignocellulosic biomass hydrolysates and provide a promising platform for producing next‐generation biofuels.  相似文献   

19.
Arsenic hyperaccumulator Pteris vittata L. (Chinese brake fern) grows well in arsenic-contaminated media, with an extraordinary ability to tolerate high levels of arsenic. An expression cloning strategy was employed to identify cDNAs for the genes involved in arsenic resistance in P. vittata. Excised plasmids from the cDNA library of P. vittata fronds were introduced into Escherichia coli XL-1 Blue and plated on medium containing 4 mM of arsenate, a common form of arsenic in the environment. The deduced amino acid sequence of an arsenate-resistant clone, PV4-8, had cDNA highly homologous to plant cytosolic triosephosphate isomerases (cTPI). Cell-free extracts of PV4-8 had 3-fold higher level of triosephosphate isomerase (TPI) specific activities than that found in E. coli XL-1 Blue and had a 42 kD fusion protein immunoreactive to polyclonal antibodies raised against recombinant Solanum chacoense cTPI. The PV4-8 cDNA complemented a TPI-deficient E. coli mutant. PV4-8 expression improved arsenate resistance in E. coli WC3110, a strain deficient in arsenate reductase but not in AW3110 deficient for the whole ars operon. This is consistent with the hypothesis that PV4-8 TPI increased arsenate resistance in E. coli by directly or indirectly functioning as an arsenate reductase. When E. coli tpi gene was expressed in the same vector, bacterial arsenate resistance was not altered, indicating that arsenate tolerance was specific to P. vittata TPI. Paradoxically, P. vittata TPI activity was not more resistant to inhibition by arsenate in vitro than its bacterial counterpart suggesting that arsenate resistance of conventional TPI reaction was not the basis for the cellular arsenate resistance. P. vittata TPI activity was inhibited by incubation with reduced glutathione while bacterial TPI was unaffected. Consistent with cTPI’s role in arsenate reduction, bacterial cells expressing fern TPI had significantly greater per cent of cellular arsenic as arsenite compared to cells expressing E. coli TPI. Excised frond tissue infiltrated with arsenate reduced arsenate significantly more under light than dark. This research highlights a novel role for P. vittata cTPI in arsenate reduction.  相似文献   

20.
The heterologous synthesis of lycopene in non-carotenogenic Escherichia coli required the introduction of the biosynthesis genes crtE, crtB, and crtI. Recombinant E. coli strains, expressing each lycopene biosynthesis gene from Pantoea ananatis using multi-copy plasmid or single-copies after stable chromosomal integration, were cultivated and the formation of lycopene was investigated. The different expression conditions significantly influenced the lycopene formation as well as the growth behaviour. High plasmid expression levels of crtI with a single copy background of crtE and crtB in E. coli led to a predominate synthesis of tetradehydrolycopene at 253 μg g−1 (cdw).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号