首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of anticoagulant EDTA and sodium heparin (SH) on stable carbon δ13C and nitrogen δ15N isotopic values of red blood cells (RBC) and blood plasma in juvenile blacktip reef sharks Carcharhinus melanopterus were analysed. Plasma preserved with anticoagulants was not isotopically distinct from plasma stored in no-additive control tubes but RBC δ15N values exhibited small enrichments when preserved with EDTA and SH. Results suggest EDTA and SH are viable anticoagulants for stable isotopic analyses of blood fractions but further studies are advised to validate results.  相似文献   

2.
Recent studies on shark assemblages on the northeast Florida and southeast Georgia coast (hereafter referred to collectively as the “First Coast”) have demonstrated differences in species and age-class composition of catch from previously characterized estuaries and newly surveyed area beaches, demonstrating that these regions may provide a critical habitat to different segments (i.e., life stages) of local shark populations. In this study, carbon and nitrogen stable isotopes (δ13C and δ15N) from muscle tissue and blood plasma were used to examine trophic dynamics (and temporal variability thereof) of the three dominant co-occurring species found along First Coast beaches (the Atlantic Sharpnose shark Rhizoprionodon terraenovae, Blacknose shark Carcharhinus acronotus and Blacktip shark Carcharhinus limbatus) to determine if they exhibit overlap in resource use along with spatial and temporal habitat use. Although considered spatially segregated from the beach species, a dominant, age-class species found in First Coast estuaries (juvenile Sandbar sharks Carcharhinus plumbeus) was also included in this analysis for comparison. Temporal variability of resource-use characteristics was detected at the species level. Resource-use overlap among species varied by tissue type and was generally higher for blood plasma, suggesting greater resource sharing over more recent time periods. Over longer time periods Atlantic Sharpnose and Blacktip sharks exhibited resource-use expansion, whereas Blacknose sharks exhibited a narrowing in resource use, suggesting a more specialized foraging strategy compared to the other species. The resource-use breadth of Sandbar sharks also expanded between blood plasma and muscle tissue. Significant size relationships were detected in Blacktip and Sandbar sharks, indicating ontogenetic resource shifts for both species. A diversity of highly productive resource pools likely support shark populations along the First Coast such that resource-use differentiation is not required to facilitate species co-occurrence. This work may shed light on understanding patterns of species co-occurrence as well as aid in future conservation efforts.  相似文献   

3.
Great hammerhead sharks Sphyrna mokarran are the largest member of Sphyrnidae, yet the roles of these large sharks in the food webs of coastal ecosystems are still poorly understood. Here we obtained samples of muscle, liver and vertebrae from large S. mokarran (234–383 cm total length; LT) caught as by-catch off eastern Australia and used stable-isotope analyses of δ15N, δ13C and δ34S to infer their resource use and any associated ontogenetic patterns. The results indicated large S. mokarran are apex predators primarily relying on other sharks and rays for their diet, with a preference for benthic resources such as Australian cownose rays Rhinoperon neglecta during the austral summer. Teleosts, cephalopods and crustaceans were not significant components of S. mokarran diets, though some conspecifics appeared to rely on more diverse resources over the austral summer. Ontogenetic shifts in resource use were detected but trajectories of the increases in trophic level varied among individuals. Most S. mokarran had non-linear trajectories in ontogenetic resource-use shifts implying size was not the main explanatory factor. Stable isotope values of δ13C and δ34S in muscle suggest S. mokarran span coastal, pelagic and benthic food webs in eastern Australia.  相似文献   

4.
The aim of this study was to determine whether juvenile scalloped hammerhead sharks (Sphyrna lewini) use the south-eastern Gulf of California as a nursery and feeding area. This information could help lay the groundwork required for the conservation of this endangered species. To address this, we carried out stable isotope (δ15N and δ13C) and stomach content analyses of sharks caught between 2000 and 2004 in Mazatlan, Mexico. Stomach contents and δ13C values indicated that S. lewini is a predator that feeds on benthic prey near the coast. Differences in δ15N average values between sizes classes (<100 vs. >100 cm) suggest that there was an ontogenetic change in this shark’s feeding habits and also in their living environment (from benthic areas to pelagic areas). The trophic position indicated that S. lewini is a tertiary consumer, but with a high degree of trophic plasticity, and thus, different trophic roles, highlighting the importance of this predator as a regulator of prey populations. Finally, the linear isotopic relationship between S. lewini and its prey indicates a long residency within the Mazatlan area. Our results demonstrate that the south-eastern Gulf of California is a nursery area that offers abundant food for juvenile scalloped hammerhead sharks.  相似文献   

5.
The trophic ecology of epibenthic mesopredators is not well understood in terms of prey partitioning with sympatric elasmobranchs or their effects on prey communities, yet the importance of omnivores in community trophic dynamics is being increasingly realised. This study used stable isotope analysis of 15N and 13C to model diet composition of wild southern stingrays Dasyatis americana and compare trophic niche space to nurse sharks Ginglymostoma cirratum and Caribbean reef sharks Carcharhinus perezi on Glovers Reef Atoll, Belize. Bayesian stable isotope mixing models were used to investigate prey choice as well as viable Diet-Tissue Discrimination Factors for use with stingrays. Stingray δ15N values showed the greatest variation and a positive relationship with size, with an isotopic niche width approximately twice that of sympatric species. Shark species exhibited comparatively restricted δ15N values and greater δ13C variation, with very little overlap of stingray niche space. Mixing models suggest bivalves and annelids are proportionally more important prey in the stingray diet than crustaceans and teleosts at Glovers Reef, in contrast to all but one published diet study using stomach contents from other locations. Incorporating gut contents information from the literature, we suggest diet-tissue discrimination factors values of Δ15N ≊ 2.7‰ and Δ13C ≊ 0.9‰ for stingrays in the absence of validation experiments. The wide trophic niche and lower trophic level exhibited by stingrays compared to sympatric sharks supports their putative role as important base stabilisers in benthic systems, with the potential to absorb trophic perturbations through numerous opportunistic prey interactions.  相似文献   

6.
Stable-isotope analysis (SIA) provides a valuable tool to address complex questions pertaining to elasmobranch ecology. Liver, a metabolically active, high turnover tissue (~166 days for 95% turnover), has the potential to reveal novel insights into recent feeding/movement behaviours of this diverse group. To date, limited work has used this tissue, but ecological application of SIA in liver requires consideration of tissue preparation techniques given the potential for high concentrations of urea and lipid that could bias δ13C and δ15N values (i.e., result in artificially lower δ13C and δ15N values). Here we investigated the effectiveness of (a) deionized water washing (WW) for urea removal from liver tissue and (b) chloroform-methanol for extraction of lipids from this lipid rich tissue. We then (a) established C:N thresholds for deriving ecologically relevant liver isotopic values given complications of removing all lipid and (b) undertook a preliminary comparison of δ13C values between tissue pairs (muscle and liver) to test if observed isotopic differences correlated with known movement behaviour. Tests were conducted on four large shark species: the dusky (DUS, Carcharhinus obscurus), sand tiger (RAG, Carcharias taurus), scalloped hammerhead (SCA, Sphyrna lewini) and white shark (GRE, Carcharodon carcharias). There was no significant difference in δ15N values between lipid-extracted (LE) liver and lipid-extracted/water washed (WW) treatments, however, WW resulted in significant increases in %N, δ13C and %C. Following lipid extraction (repeated three times), some samples were still biased by lipids. Our species-specific “C:N thresholds” provide a method to derive ecologically viable isotope data given the complexities of this lipid rich tissue (C:N thresholds of 4.0, 3.6, 4.7 and 3.9 for DUS, RAG, SCA and GRE liverLEWW tissue, respectively). The preliminary comparison of C:N threshold corrected liver and muscle δ13C values corresponded with movement/habitat behaviours for each shark; minor differences in δ13C values were observed for known regional movements of DUS and RAG (δ13CDiffs = 0.24 ± 0.99‰ and 0.57 ± 0.38‰, respectively), while SCA and GRE showed greater differences (1.24 ± 0.63‰ and 1.08 ± 0.71‰, respectively) correlated to large-scale movements between temperate/tropical and pelagic/coastal environments. These data provide an approach for the successful application of liver δ13C and δ15N values to examine elasmobranch ecology.  相似文献   

7.
As apex predators, sharks play an important role shaping their respective marine communities through predation and associated risk effects. Understanding the predatory dynamics of sharks within communities is, therefore, necessary to establish effective ecologically based conservation strategies. We employed non-lethal sampling methods to investigate the feeding ecology of bull sharks (Carcharhinus leucas) using stable isotope analysis within a subtropical marine community in the southwest Indian Ocean. The main objectives of this study were to investigate and compare the predatory role that sub-adult and adult bull sharks play within a top predatory teleost fish community. Bull sharks had significantly broader niche widths compared to top predatory teleost assemblages with a wide and relatively enriched range of δ13C values relative to the local marine community. This suggests that bull sharks forage from a more diverse range of δ13C sources over a wider geographical range than the predatory teleost community. Adult bull sharks appeared to exhibit a shift towards consistently higher trophic level prey from an expanded foraging range compared to sub-adults, possibly due to increased mobility linked with size. Although predatory teleost fish are also capable of substantial migrations, bull sharks may have the ability to exploit a more diverse range of habitats and appeared to prey on a wider diversity of larger prey. This suggests that bull sharks play an important predatory role within their respective marine communities and adult sharks in particular may shape and link ecological processes of a variety of marine communities over a broad range.  相似文献   

8.
Across existing fish host–parasite literature, endoparasites were depleted in δ15N compared to their hosts, while ectoparasitic values demonstrated enrichment, depletion and equivalence relative to their hosts. δ13C enrichment varied extensively for both endo- and ectoparasites across taxa and host tissues. In our case study, sea lice (Lepeophtheirus salmonis) were enriched in δ15N relative to their farmed Atlantic salmon (Salmo salar) hosts, although the value contradicted the average that is currently assumed across the animal kingdom. Common fish lice (Argulus foliaceus) did not show a consistent trend in δ15N compared to their wild S. salar hosts. Both parasitic species had a range of δ13C enrichment patterns relative to their hosts. Farmed and wild S. salar had contrasting δ13C and δ15N, and signals varied across muscle, fin and skin within both groups. L. salmonis and A. foliaceus subsequently had unique δ13C and δ15N, and L. salmonis from opposite US coasts differed in δ15N. Given the range of enrichment patterns that were exhibited across the literature and in our study system, trophic dynamics from host to parasite do not conform to traditional prey to predator standards. Furthermore, there does not appear to be a universal enrichment pathway for δ13C nor δ15N in parasitic relationships, which emphasizes the need to investigate host–parasite linkages across species.  相似文献   

9.
As environmental change persists, understanding resource use patterns is of value to predict the consequences of shifting trophic structures. While many sharks are opportunistic predators, some exhibit prey selectivity, putting them at higher risk compared to species with greater trophic plasticity. In the Gulf of Mexico (GOM), Clupeids and Sciaenids comprise 69% of blacktip shark (Carcharhinus limbatus) diets, which is consequential considering potential responses of these prey groups to disturbance and over harvesting. We assessed if blacktips exhibit selectivity for Clupeids and Sciaenids in the western GOM based on stomach contents from sharks in coastal Texas. Clupeids comprised <2% of diets, while striped mullet (Mugil cephalus) and red drum (Sciaenops ocellatus) comprised >70% of identifiable prey. Ontogenetic shifts from smaller (Clupeids, small Sciaenids) to larger, higher trophic level (Ariidae, Elasmobranchii) prey fits our understanding of foraging among coastal sharks, and suggests our regional understanding of blacktip trophic ecology may be limited by the sizes of sampled sharks. Observed increases in blacktip densities coupled with declines in prey (Mugilids, Sciaenids) is concerning if blacktips have limited diet plasticity. Yet GOM blacktips may be more generalized than previously thought, which is promising for conservation and management.  相似文献   

10.
This study reports the discovery of the exclusive predation of sea turtle hatchlings by several juvenile blacktip reef sharks (Carcharhinus melanopterus) in Chagar Hutang bay on Redang Island, Malaysia, in the South China Sea. Three dead specimens of C. melanopterus were retrieved from ghost nets, and the entire digestive tracts of these sharks solely contained the partially digested bodies of sea turtle hatchlings, with no evidence of the remains of any other prey. Thus, juvenile C. melanopterus may opportunistically feed primarily on turtle hatchlings during times when hatchling abundance is high.  相似文献   

11.
Diving with sharks, often in combination with food baiting/provisioning, has become an important product of today’s recreational dive industry. Whereas the effects baiting/provisioning has on the behaviour and abundance of individual shark species are starting to become known, there is an almost complete lack of equivalent data from multi-species shark diving sites. In this study, changes in species composition and relative abundances were determined at the Shark Reef Marine Reserve, a multi-species shark feeding site in Fiji. Using direct observation sampling methods, eight species of sharks (bull shark Carcharhinus leucas, grey reef shark Carcharhinus amblyrhynchos, whitetip reef shark Triaenodon obesus, blacktip reef shark Carcharhinus melanopterus, tawny nurse shark Nebrius ferrugineus, silvertip shark Carcharhinus albimarginatus, sicklefin lemon shark Negaprion acutidens, and tiger shark Galeocerdo cuvier) displayed inter-annual site fidelity between 2003 and 2012. Encounter rates and/or relative abundances of some species changed over time, overall resulting in more individuals (mostly C. leucas) of fewer species being encountered on average on shark feeding dives at the end of the study period. Differences in shark community composition between the years 2004–2006 and 2007–2012 were evident, mostly because N. ferrugineus, C. albimarginatus and N. acutidens were much more abundant in 2004–2006 and very rare in the period of 2007–2012. Two explanations are offered for the observed changes in relative abundances over time, namely inter-specific interactions and operator-specific feeding protocols. Both, possibly in combination, are suggested to be important determinants of species composition and encounter rates, and relative abundances at this shark provisioning site in Fiji. This study, which includes the most species from a spatially confined shark provisioning site to date, suggests that long-term provisioning may result in competitive exclusion among shark species.  相似文献   

12.
Changes in the proportions of river- and lake-produced eggs of a landlocked amphidromous fish, ayu (Plecoglossus altivelis altivelis) in the Lake Biwa water system, Japan, were monitored by stable isotope analysis, based on different δ15N and δ13C values of prey organisms between the lake and its tributaries. During the 3 month reproduction season, the δ15N values of spawned eggs decreased with time. This result implies that there was a shift from lake-produced eggs to river-produced eggs within a reproductive season, based on the observation that adult fish in the lake had previously been shown to have eggs with distinctly higher δ15N values in their ovaries than those in the tributaries. This explanation was also supported by the change in δ13C values of the spawned eggs. Furthermore, eggs with lower δ15N and higher δ13C values tended to be spawned at less variable depths, suggesting that females spawning river-produced eggs selected the spawning sites from a narrower range. We conclude that stable isotope ratios of spawned eggs can be indicators of the relative contributions of different food chains and can enable comparisons of reproductive characteristics between types of egg.  相似文献   

13.
Longnose gar Lepisosteus osseus were collected from May 2012 to July 2013 in the Charleston Harbor and Winyah Bay estuaries (SC, U.S.A.). This study examined trends in stomach fullness, described major prey components and their importance in the diet of L. osseus, compared stomach content‐based trophic level estimates with the stable‐isotope‐based proxy: δ15N and tested for the occurrence of an ontogenetic diet shift using stomach content analysis and stable C and N isotopes (δ13C and δ15N). Dominant prey families were Clupeidae, Sciaenidae, Penaeidae, Fundulidae and Mugilidae, with the highest consumption rates in autumn. Trophic levels calculated using stomach contents did not correspond to δ15N (P > 0·05). Stomach contents and stable‐isotope signatures indicate ontogenetic prey composition shifts from low trophic level benthic prey (fundulids) to higher trophic level pelagic prey (clupeids) as the fish grow between 400 and 600 mm in standard length. Due to their biomass, abundance and top predator status, L. osseus play a significant ecological role in the estuarine community composition, although this effect has often been overlooked by past researchers and should be considered in future estuarine community studies.  相似文献   

14.
The understanding of trophic relationships is vital for correctly modeling ecosystems and ecosystem effects of fisheries removals. The pelagic stingray is found in epipelagic sub‐tropical and tropical waters worldwide and is a common bycatch in pelagic longline fisheries. Between August 2008 and November 2011, 156 specimens (81 males; 75 females) were collected during pelagic longline fishing operations in the US South Atlantic Bight and Gulf of Mexico. Stomach content analyses found that the major prey items were cephalopod molluscs (59.18%), followed by actinopterygiian fishes (37.75%), and decapod crustaceans (35.71%). These concentrations of prey items found in the stomachs coincide with previous studies done in the Pacific Ocean. In contrast to previous studies that found high percentages of empty stomachs (63%), the current percentage of empty stomachs was much lower (25.6%), likely due to shorter times between collection and inspection. Stable isotope analysis (δ13C and δ15N) was performed on white muscle in order to correlate the trophic position with gut‐content analysis. The δ13C values ranged from ‐18.81‰ to ‐16.70‰, while the δ15N ranged from 6.11‰ to 11.88‰. Modeling of stable isotope data suggest that while squid are occasionally an important part of the pelagic stingray diet, prey usually consist of shrimp and other pelagic crustaceans. Pelagic stingrays fed within two trophic levels, but their prey appeared to feed on different carbon sources than those found in other pelagic elasmobranchs. A deeper understanding of the pelagic stingray diet sources can help fisheries management as it begins to transition into ecosystem‐based management.  相似文献   

15.
Deep-water sharks are among the most vulnerable deep-water taxa because of their extremely conservative life-history strategies (i.e., late maturation, slow growth, and reproductive rates), yet little is known about their biology and ecology. Thus, this study aimed at investigating the trophic ecology of five deep-water shark species, the birdbeak dogfish (Deania calcea), the arrowhead (D. profundorum), the smooth lanternshark (Etmopterus pusillus), the blackmouth catshark (Galeus melastomus) and the knifetooth dogfish (Scymnodon ringens) sampled onboard a crustacean bottom-trawler off the south-west coast of Portugal. We combined carbon and nitrogen stable isotopes with RNA and DNA (RD) ratios to investigate the main groups of prey assimilated by these species and their nutritional condition, respectively. Stable isotopes revealed overall small interspecific variability in the contribution of different taxonomic groups to sharks' tissues, as well as in the origin of their prey. S. ringens presented higher δ15N and δ13C values than the other species, suggesting reliance on bathyal cephalopods, crustaceans and teleosts; the remaining species likely assimilated bathy-mesopelagic prey. The RD ratios indicated that most of the individuals had an overall adequate nutritional condition and had recently eaten. This information, combined with the fact that stable isotopes indicate that sharks assimilated prey from the local or nearby food webs (including commercially important shrimps), suggests a potential overlap between this fishing area and their foraging grounds, which requires further attention.  相似文献   

16.
Resource partitioning is an essential mechanism enabling species coexistence. The resources that are used by an animal are linked to its morphology and ecology. Therefore, similar species should use similar resources. The ecological niche of an individual summarizes all used resources and is therefore composed of several dimensions. Many methods are established to study different dimensions of an animal's niche. The aim of this study was to demonstrate that a combination of suitable methods is needed to study spatial and dietary resource partitioning of sympatric species in detail. We hypothesized that, while each individual method might identify differences between species, the combined results of several methods will lead to a more complete picture of spatial and dietary resource partitioning. As model organisms we chose the sympatric insectivorous bat species Myotis bechsteinii, M. nattereri, and P. auritus. We examined horizontal habitat use by telemetry, vertical habitat use by measuring δ13C, trophic position by measuring δ15N in wing membrane, and diet composition by molecular fecal analysis. Our results show that each method is able to provide information about spatial/dietary resource partitioning. However, considering further dimensions by combining several methods allows a more comprehensive assessment of dietary and spatial resource partitioning in bats.  相似文献   

17.
Ontogenetic diet shifts are a widespread phenomenon among vertebrates, although their relationships with life history traits are poorly known. We analyzed the relative importance of body size, age and maturity stage as determinants of the diet of a marine top predator, the copper shark, Carcharhinus brachyurus, by examining stomach contents using a multiple-hypothesis modeling approach. Copper sharks shifted their diet as size and age increased and as they became sexually mature, incorporated larger prey as they grew, and had a discrete shift in diet with body size, with only individuals larger than ≈200 cm total length able to prey on chondrichthyans. Body size was the most important trait explaining the consumption of chondrichthyans, while age determined the consumption of pelagic teleosts. Pelagic teleosts were consumed mostly by medium-aged sharks, a result, probably, of a risk-reducing feeding strategy at young ages coupled with either a senescence-related decline in performance or a change in sensory capabilities as sharks age. Copper sharks of all sizes were able to cut prey in pieces, implying that gape limitation (i.e., the impossibility of eating prey larger than a predator’s mouth) did not play a role in producing the diet shift. Our results suggest that, contrary to the current practice of setting minimum but not maximum size limits in catches, any plan to conserve or restore the ecological function of sharks, through their predatory control of large prey, should aim to maintain the largest individuals.  相似文献   

18.
Upwelling regions where nutrients are transported from deep to surface waters are among the most productive in the oceans. Although it is well known that the upwelling affects fishery production through bottom-up trophic cascading, it remains unexplored how temporal variation in its intensity alters overall trophic energy flows within a focal food web. In the present study, we demonstrate that inter-annual variation in the intensity of upwelling-like bottom intrusion alters food web properties in coastal waters of the Uwa Sea by focusing on the levels of δ13C and δ15N for a demersal fish predator, Acropoma japonicum. This approach integrates information on prey–predator interactions. In the season following a stratification period when pelagic productivity is limited by nutrient availability, A. japonicum showed lower levels of δ13C in years with high bottom intrusion intensity than in those with low intensity. One possible cause for this isotopic depletion is that the bottom intrusion-induced nutrient supply enhances pelagic productivity and consequently facilitates a foraging shift by A. japonicum from ordinary benthic prey to supplementary pelagic prey with a lower δ13C. In conclusion, the increased intensity of bottom intrusion results in coupling of two major trophic energy flows, pelagic and benthic food chains, through the demersal predator’s foraging shift.  相似文献   

19.
李云凯  徐敏  贡艺 《生态学报》2022,42(13):5295-5302
物种对食物资源利用方式的差异,即营养生态位分化是物种共存的先决条件之一,对种间营养生态位的比较研究有助于了解同域分布物种的共存机制。脂肪酸组成可反映生物较长时间尺度的摄食信息,对探讨物种间营养生态位分化具有重要指示作用。热带东太平洋主要栖息有8种大型中上层鲨鱼,大青鲨(Prionace glauca)、大眼长尾鲨(Alopias superciliosus)、镰状真鲨(Carcharhinus falciformis)、长鳍真鲨(Carcharhinus longimanus)、浅海长尾鲨(Alopias pelagicus)、尖吻鲭鲨(Isurus oxyrinchus)、路氏双髻鲨(Sphyrna lewini)和锤头双髻鲨(Sphyrna zygaena),通过比较其肌肉脂肪酸组成,分析种间食性差异,营养关系及营养生态位分化。结果表明,尖吻鲭鲨营养级相对较高,大青鲨相对较低。3种鼠鲨与5种真鲨存在食性差异或栖息地隔离。浅海长尾鲨与大眼长尾鲨营养生态位重叠程度较高,存在激烈的资源竞争。大青鲨与镰状真鲨生态位宽度较大,表征其对环境的可塑性较强;尖吻鲭鲨和路氏双髻鲨生态位宽度较小,表现为其食性的特化。本研究解释了脂肪酸组成分析在鲨鱼摄食研究中的潜在应用,对分析大洋性鲨鱼的营养生态位分化,资源分配方式及同域共存机制有一定的应用价值。  相似文献   

20.
Tooth morphology is often used to inform the feeding ecology of an organism as these structures are important to procure and process dietary resources. In sharks, differences in morphology may facilitate the capture and handling of prey with different physical properties. However, few studies have investigated differences in tooth morphology over ontogeny, throughout the jaws of a single species, or among species at multiple tooth positions. Bull (Carcharhinus leucas), blacktip (Carcharhinus limbatus), and bonnethead sharks (Sphyrna tiburo) are coastal predators that exhibit ontogenetic dietary shifts, but differ in their feeding ecologies. This study measured tooth morphology at six positions along the upper and lower jaws of each species using elliptic Fourier analysis to make comparisons within and among species over their ontogeny. Significant ontogenetic differences were detected at four of the six tooth positions in bull sharks, but only the posterior position on the lower jaw appeared to exhibit a functionally relevant shift in morphology. No ontogenetic changes in morphology were detected in blacktip or bonnethead sharks. Intraspecific comparisons found that most tooth positions significantly differed from one another across all species, but heterodonty was greatest in bull sharks. Additionally, interspecific comparisons found differences among all species at each tooth position except between bull and blacktip sharks at two positions. These morphological patterns within and among species may have implications for prey handling efficiency, as well as in providing insight for paleoichthyology studies and reevaluating heterodonty in sharks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号