首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  1. Elevated levels of anthropogenic noise, especially those observed through boating activity, can negatively impact fish species, but it remains unclear which species are most affected and which behavioural metrics are best used in assessing fish responses to underwater noise. The effects of boat sounds on freshwater species are of particular interest because freshwater environments are less studied than the marine realm despite comparably high levels of biodiversity.
  2. In the current study, we examine the behavioural responses to boat noise in two freshwater species that differ in their hypothesised response to sound inputs: the spottail shiner (Notropis hudsonius), a species with known hearing specialisations, and the bluegill sunfish (Lepomis macrochirus), a species with more generalised hearing capabilities. Fish were presented with boat noise in a laboratory setting, and their swimming, escape and foraging behaviours were assessed to examine differential responses in relation to hypothesised hearing abilities.
  3. Both species showed a decrease in general swimming behaviours but an increase in erratic movements in response to boat noise, indicative of stress responses for both species. Despite the similarities in response based on swimming behaviours however, only spottail shiners exhibited true escape responses to the onset of the noise stimulus, suggesting a more extreme reaction in the species with a more refined hearing ability.
  4. Taken together, these results show that freshwater fish can respond to increased levels of anthropogenic noise, but that the severity of the response may differ based on auditory structures and therefore presumed hearing ability. The differences seen between behavioural metrics used (swimming vs. escape responses) also demonstrate how care must be taken in choosing a metric when developing exposure guidelines for underwater sound exposures, as different metrics could lead to differential impact assessments.
  相似文献   

2.
This study investigated immediate effects of intense sound exposure associated with low‐frequency (170–320 Hz) or with mid‐frequency (2·8–3·8 kHz) sonars on caged rainbow trout Oncorhynchus mykiss, channel catfish Ictalurus punctatus and hybrid sunfish Lepomis sp. in Seneca Lake, New York, U.S.A. This study focused on potential effects on inner ear tissues using scanning electron microscopy and on non‐auditory tissues using gross and histopathology. Fishes were exposed to low‐frequency sounds for 324 or 628 s with a received peak signal level of 193 dB re 1 µPa (root mean square, rms) or to mid‐frequency sounds for 15 s with a received peak signal level of 210 dB re 1 µPa (rms). Although a variety of clinical observations from various tissues and organ systems were described, no exposure‐related pathologies were observed. This study represents the first investigation of the effects of high‐intensity sonar on fish tissues in vivo. Data from this study indicate that exposure to low and midfrequency sonars, as described in this report, might not have acute effects on fish tissues.  相似文献   

3.
Environmental assessments of underwater noise on marine species must be based on species-specific hearing abilities. This study was to assess the potential impact of underwater noise from the East China Sea Bridge wind farm on the acoustic communication of the marbled rockfish. Here, the 1/3 octave frequency band of underwater noise was 125 Hz with the level range of 78–96 dB re 1 μPa, recorded at distances between 15-20m from the foundation at wind speed of 3–5 m/s. Auditory evoked potential (AEP) and passive acoustic techniques were used to determine the hearing abilities and sound production of the fish. The resultes showed the lowest auditory threshold of Sebastiscus marmoratus was 70 dB at 150 Hz matching the disturbance sound ranging 140–180 Hz, which indicating the acoustic communication used in this species. However, the frequency and level of turbine underwater noise overlapped the auditory sensitivity and vocalization of Sebastiscus marmoratus. The wind turbine noise could be detected by fish and may have a masking effect on their acoustic communication. This result can be applied for further to the assessent of fish species released into offshore wind farm marine ranch.  相似文献   

4.
Anthropogenic noise is a pollutant of global concern that has been shown to have a wide range of detrimental effects on multiple taxa. However, most noise studies to-date consider only overall population means, ignoring the potential for intraspecific variation in responses. Here, we used field experiments on Australia''s Great Barrier Reef to assess condition-dependent responses of blue-green damselfish (Chromis viridis) to real motorboats. Despite finding no effect of motorboats on a physiological measure (opercular beat rate; OBR), we found a condition-dependent effect on anti-predator behaviour. In ambient conditions, startle responses to a looming stimulus were equivalent for relatively poor- and good-condition fish, but when motorboats were passing, poorer-condition fish startled at significantly shorter distances to the looming stimulus than better-condition fish. This greater susceptibility to motorboats in poorer-condition fish may be the result of generally more elevated stress levels, as poorer-condition fish had a higher pre-testing OBR than those in better condition. Considering intraspecific variation in responses is important to avoid misrepresenting potential effects of anthropogenic noise and to ensure the best management and mitigation of this pervasive pollutant.  相似文献   

5.
  1. Understanding how collective behaviour of animals is influenced by anthropogenic activity is important for their conservation in an increasingly urbanised world. River infrastructure, e.g. for transport and electricity generation, and associated construction and operation, produces sound that can disrupt ecological processes.
  2. Adopting a reductionist manipulative experimental approach using Eurasian minnow (Phoxinus phoxinus) as a model shoaling species, we compared the response of individuals and groups of five fish to a broadband acoustic stimulus in a tank containing still water.
  3. Four metrics were calculated 10 min immediately before (control–sound stimulus absent) and during the acoustic treatment: (1) swimming speed, (2) persistence of swim paths, (3) cohesion of the group, and (4) orientation of group members.
  4. On presentation of the stimulus, groups exhibited a consistent escape response compared to individuals for which behaviour was more variable. Thereafter, individuals swam faster and their swim paths were less persistent than during the control; no difference was observed for groups. Conversely, group integrity became more cohesive and members were more likely to orient in a common direction during the treatment compared to the control.
  5. This study provides insight into the importance of collective behaviour of fish in relation to antipredator-like response to anthropogenic noise. Short-term shifts in behaviour are context specific and depend on whether fish are members of a shoal or solitary. The results indicate the potential for negative impacts of unnatural sound on the ecology of shoaling species that inhabit engineered freshwater environments.
  相似文献   

6.
The characteristics of sounds produced by fishes are influenced by several factors such as size. The current study analyses factors affecting structural properties of acoustic signals produced by female croaking gouramis Trichopsis vittata during agonistic interactions. Female sounds (although seldom analysed separately from male sounds) can equally be used to investigate factors affecting the sound characteristics in fish. Sound structure, dominant frequency and sound pressure levels (SPL) were determined and correlated to body size and the order in which sounds were emitted. Croaking sounds consisted of series of single-pulsed or double-pulsed bursts, each burst produced by one pectoral fin. Main energies were concentrated between 1.3 and 1.5 kHz. The dominant frequency decreased with size, as did the percentage of single-pulsed bursts within croaking sounds. The SPL and the number of bursts within a sound were independent of size but decreased significantly with the order of their production. Thus, acoustic signals produced at the beginning of agonistic interactions were louder and consisted of more bursts than subsequent ones. Our data indicate that body size affects the dominant frequency and structure of sounds. The increase in the percentage of double-pulsed bursts with size may be due to stronger pectoral muscles in larger fish. In contrast, ongoing fights apparently result in muscle fatigue and subsequently in a decline in the number of bursts and SPL. The factor ‘order of sound production’ points to an intra-individual variability of sounds and should be considered in future studies.  相似文献   

7.
The New Zealand bigeye, Pempheris adspersa, is a nocturnal planktivore and has recently been found to be an active sound producer. The rostral end of the swim bladder lies adjacent to Baudelot''s ligament which spans between the bulla and the cleithrum bone of the pectoral girdle. The aim of this study was to use the auditory evoked potential technique to physiologically test the possibility that this structure provides an enhanced sensitivity to sound pressure in the bigeye. At 100 Hz, bigeye had hearing sensitivity similar to that of goldfish (species with a mechanical connection between the swim bladder and the inner ear mediated by the Weberian ossicles) and were much more sensitive than other teleosts without ancillary hearing structures. Severing Baudelot''s ligament bilaterally resulted in a marked decrease in hearing sensitivity, as did swim bladder puncture or lateral line blockage. These results show that bigeye have an enhanced sensitivity to sound pressure and provide experimental evidence that the functional basis of this sensitivity represents a novel hearing specialization in fish involving the swim bladder, Baudelot''s ligament and the lateral line.  相似文献   

8.
Abstract.  1. Auditory sensitivities and ultrasound avoidance behaviour of two exclusively diurnal moths were examined to test the prediction that total isolation from the predatory effects of echolocating bats will result in the regression of these sensory systems and/or the defences they evoke.
2. The silent geometrid, Trichodezia albovittata , possessed large ears with auditory neural thresholds similar to or better than those of a sympatric, exclusively nocturnal geometrid moth. Trichodezia albovittata readily responded with evasive flight to ultrasound and it is suggested that if this moth has become completely isolated from bats its ears are functionally vestigial, at least in the population studied here.
3. In contrast, while the sound-producing arctiid, Lycomorpha pholus , had low auditory sensitivity based on neural thresholds, it still responded with flight changes to ultrasound. It did not, however, produce sounds when stimulated ultrasonically. It is suggested that the ears of this moth are functionally vestigial for bat-detection purposes but may be used for short-distance social communication.  相似文献   

9.
10.
为了解胶州湾海域鱼类群落结构特征,根据2016—2017年间对胶州湾海域进行的4个航次底拖网调查数据,采用相对重要性指数、生态多样性指数和典范对应分析(canonical correspondence analysis,CCA)、非线性多维标度排序(non-metric multidimensional scaling,NMDS)等方法分析了胶州湾海域鱼类群落的种类组成和多样性特征。结果表明:调查共采集到鱼类46种,隶属2纲10目30科41属,以硬骨鱼纲鱼类为主(45种,97.83%)。其中,鲈形目(Perciformes)最多(22种,47.83%),其次是鲉形目(Scorpaeniformes),占15.22%。种类数季节变化明显,以夏季最高,23种;秋季最低,16种。优势种组成以赤鼻棱鳀(Thryssa kammalensis)、褐菖鲉(Sebastiscus marmoratus)、褐牙鲆(Paralichthys olivaceus)、大泷六线鱼(Hexagrammos otakii)、许氏平鮋(Sebastes schlegeli)和矛尾鰕虎鱼(Chaeturichthys stigmatias)等鱼类为主。多样性分析显示,鱼类物种多样性存在明显的季节差异。多样性指数(H′)季节变化范围为1.668—2.453,以夏季最高,春季最低;均匀度指数(J′)季节变化范围为0.577—0.808,以秋季最高,春季最低;丰富度指数(D′)季节变化范围为2.431—3.123,以冬季最高,秋季最低。典范对应分析表明,水温、盐度、水深和pH是影响胶州湾海域鱼类群落物种组成的主要环境因子,且水温和pH是影响鱼类群落结构及多样性时空变化的主要因子。与历史调查资料相比,由于人类活动对胶州湾生态系统的干扰,鱼类群落结构发生了较大变化,优势种组成更替明显,多样性水平降低,鱼类群落结构趋向简单化。  相似文献   

11.
Acoustic behaviour of Abudefduf luridus   总被引:2,自引:0,他引:2  
Adult males Abudefduf luridus produced sounds during aggressive interactions, although not all aggressive interactions were associated with sounds. Such sounds were always related to characteristic swimming movements during an aggressive display or territorial defence. The sound was a combination of several sonic pulses, with most energy concentrated towards the low end of the spectrum (from <50 to 800 Hz), and was most frequently groups of two pulses. Analysis of the pulse structure suggested that these sounds are produced by muscles acting on the swimbladder. However, the mechanism of sound production has yet to be demonstrated. Sounds were emitted throughout the 24-h period with increased activity at sunrise and sunset.  相似文献   

12.
Fishes use a variety of sensory systems to learn about their environments and to communicate. Of the various senses, hearing plays a particularly important role for fishes in providing information, often from great distances, from all around these animals. This information is in all three spatial dimensions, often overcoming the limitations of other senses such as vision, touch, taste and smell. Sound is used for communication between fishes, mating behaviour, the detection of prey and predators, orientation and migration and habitat selection. Thus, anything that interferes with the ability of a fish to detect and respond to biologically relevant sounds can decrease survival and fitness of individuals and populations. Since the onset of the Industrial Revolution, there has been a growing increase in the noise that humans put into the water. These anthropogenic sounds are from a wide range of sources that include shipping, sonars, construction activities (e.g., wind farms, harbours), trawling, dredging and exploration for oil and gas. Anthropogenic sounds may be sufficiently intense to result in death or mortal injury. However, anthropogenic sounds at lower levels may result in temporary hearing impairment, physiological changes including stress effects, changes in behaviour or the masking of biologically important sounds. The intent of this paper is to review the potential effects of anthropogenic sounds upon fishes, the potential consequences for populations and ecosystems and the need to develop sound exposure criteria and relevant regulations. However, assuming that many readers may not have a background in fish bioacoustics, the paper first provides information on underwater acoustics, with a focus on introducing the very important concept of particle motion, the primary acoustic stimulus for all fishes, including elasmobranchs. The paper then provides background material on fish hearing, sound production and acoustic behaviour. This is followed by an overview of what is known about effects of anthropogenic sounds on fishes and considers the current guidelines and criteria being used world-wide to assess potential effects on fishes. Most importantly, the paper provides the most complete summary of the effects of anthropogenic noise on fishes to date. It is also made clear that there are currently so many information gaps that it is almost impossible to reach clear conclusions on the nature and levels of anthropogenic sounds that have potential to cause changes in animal behaviour, or even result in physical harm. Further research is required on the responses of a range of fish species to different sound sources, under different conditions. There is a need both to examine the immediate effects of sound exposure and the longer-term effects, in terms of fitness and likely impacts upon populations.  相似文献   

13.
Anthropogenic noise impacts behaviour and physiology in many species, but responses could change with repeat exposures. As repeat exposures can vary in regularity, identifying regimes with less impact is important for regulation. We use a 16-day split-brood experiment to compare effects of regular and random acoustic noise (playbacks of recordings of ships), relative to ambient-noise controls, on behaviour, growth and development of larval Atlantic cod (Gadus morhua). Short-term noise caused startle responses in newly hatched fish, irrespective of rearing noise. Two days of both regular and random noise regimes reduced growth, while regular noise led to faster yolk sac use. After 16 days, growth in all three sound treatments converged, although fish exposed to regular noise had lower body width–length ratios. Larvae with lower body width–length ratios were easier to catch in a predator-avoidance experiment. Our results demonstrate that the timing of acoustic disturbances can impact survival-related measures during development. Much current work focuses on sound levels, but future studies should consider the role of noise regularity and its importance for noise management and mitigation measures.  相似文献   

14.
15.
Fourteen individuals of the skunk clownfish Amphiprion akallopisos of different sizes and of different sexual status (non-breeder, male or female) were analysed for four acoustic features. Dominant frequency and pulse duration were highly correlated with standard length ( r = 0·97), and were not related to sex. Both the dominant frequency and pulse duration were signals conveying information related to the size of the emitter, which implies that these sound characteristics could be useful in assessing size of conspecifics.  相似文献   

16.
  1. Anthropogenic noise can affect animals physically, physiologically, and behaviourally. Although individual responses to noise are well documented, the consequences in terms of community structure, species coexistence, and ecosystem functioning remain fairly unknown.
  2. The impact of noise on predation has received a growing interest and alterations in trophic links are observed when animals shift from foraging to stress-related behaviours, are distracted by noise, or because of acoustic masking. However, the experimental procedures classically used to quantify predation do not inform on the potential demographic impact on prey.
  3. We derived the relationship between resource use and availability (the functional response) for European minnows (Phoxinus phoxinus) feeding on dipteran larvae (Chaoborus sp.) under two noise conditions: ambient noise and ambient noise supplemented with motorboat noise. The shape and magnitude of the functional response are powerful indicators of population outcomes and predator–prey dynamics. We also recorded fish behaviour to explore some proximate determinants of altered predation.
  4. For both noise conditions, fish displayed a saturating (type II) functional response whose shape depends on two parameters: attack rate and handling time. Boat noise did not affect handling time but significantly reduced attack rate, resulting in a functional response curve of the same height but with a less steep initial slope. Fish exhibited a stress-related response to noise including increased swimming distance, more social interactions, and altered spatial distribution.
  5. Our study shows the usefulness of the functional response approach to study the ecological impacts of noise and illustrates how the behavioural responses of predators to noise can modify the demographic pressure on prey. It also suggests that prey availability might mediate the negative effect of noise on predation. Community outcomes are expected if the reduced consumption of the main food sources goes with the overconsumption of alternative food sources, changing the distribution pattern of interaction strengths. Predation release could also trigger a trophic cascade, propagating the effect of noise to lower trophic levels.
  相似文献   

17.
18.
The auditory abilities of the round goby Neogobius melanostomus were quantified using auditory evoked potential recordings, using tone bursts and conspecific call stimuli. Fish were tested over a range of sizes to assess effects of growth on hearing ability. Tests were also run with and without background noise to assess the potential effects of masking in a natural setting. Neogobius melanostomus detected tone bursts from 100 to 600 Hz with no clear best frequency in the pressure domain but were most sensitive to 100 Hz tone stimuli when examined in terms of particle acceleration. Responses to a portion of the N. melanostomus call occurred at a significantly lower threshold than responses to pure tone stimulation. There was no effect of size on N. melanostomus hearing ability, perhaps due to growth of the otolith keeping pace with growth of the auditory epithelium. Neogobius melanostomus were masked by both ambient noise and white noise, but not until sound pressure levels were relatively high, having a 5-10 dB threshold shift at noise levels of 150 dB re 1 μPa and higher but not at lower noise levels.  相似文献   

19.
This study reports the use of a long‐term acoustic recording system (LARS) to remotely monitor white seabass Atractoscion nobilis spawning sounds at three sites along the southern California coastline, adjacent to Camp Pendleton. On the basis of previous studies of A. nobilis sound production relative to periods of known spawning activity, LARS were set to continuously record ambient sounds for a 2 h period around sunset from April to June 2009. Acoustic analyses identified A. nobilis courtship sounds on 89, 28 and 45% of the days at the three locations, respectively. From 474 h of acoustic data, spawning‐related sounds (chants) were detected on 19 occasions in 2009 with an additional 11 spawning chants recorded during a 2007 validation period. Most spawning chants occurred within 30 min of sunset during the months of May and June at a mean ±s.d . surface temperature of 18·2 ± 1·2° C. Consecutive daily spawning activity was not apparent at any sites in 2009. Atractoscion nobilis spawning chants were recorded at all three sites, suggesting that shallow rocky reefs which support kelp forests provide suitable A. nobilis spawning habitat. Results confirm the utility of passive acoustic recorders for identifying A. nobilis spawning periods and locations.  相似文献   

20.
Telesh  Irena V. 《Hydrobiologia》1993,255(1):289-296
The dynamics, community structure, and productivity of planktonic rotifers were studied during 3 years in two lakes near St. Petersburg (Russia). One lake was repeatedly stocked with larvae of the fish Coregonus peled; the other contained no fish. Fish addition led to a shift in plankton community structure. Population densities of some rotifer species (Keratella cochlearis, K. irregularis, Asplanchna priodonta) increased as a result of the elimination of large crustaceans by fishes during summer and autumn. An inverse relationship was found between the biomass of rotifers and Daphnia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号