首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: To investigate the relationship between soil water holding capacity (WHC) and biodegradation of polyester polyurethane (PU) and to quantify and identify the predominant degrading micro-organisms in the biofilms on plastic buried in soil. METHODS AND RESULTS: High numbers of both fungi and bacteria were recovered from biofilms on soil-buried dumb-bell-shaped pieces of polyester PU after 44 days at 15-100% WHC. The tensile strength of the polyester PU was reduced by up to 60% over 20-80% soil WHC, but no reduction occurred at 15, 90 or 100% soil WHC. A PU agar clearance assay indicated that fungi, but not bacteria were, the major degrading organisms in the biofilms on polyester PU and 10-30% of all the isolated fungi were able to degrade polyester PU in this assay. A 5.8S rDNA sequencing identified 13 strains of fungi representing the three major colony morphology types responsible for PU degradation. Sequence homology matches identified these strains as Nectria gliocladioides (five strains), Penicillium ochrochloron (one strain) and Geomyces pannorum (seven strains). Geomyces pannorum was the predominant organism in the biofilms comprising 22-100% of the viable polyester PU degrading fungi. CONCLUSIONS: Polyester PU degradation was optimum under a wide range of soil WHC and the predominant degrading organisms were fungi. SIGNIFICANCE AND IMPACT OF THE STUDY: By identifying the predominant degrading fungi in soil and studying the optimum WHC conditions for degradation of PU it allows us to better understand how plastics are broken down in the environment such as in landfill sites.  相似文献   

2.
The biodegradation of six surface active agents tested. The biochemical characteristics of the aerobic heterotrophic bacteria present in Montpellier waste waters and in Rhône water, before and after degradation, were studied by a standardized microbiological method. Four hundred strains isolated from these populations were compared to 29 reference strains by computer analysis. The reference strains were first grouped in classes (single linkage). Then the strains were compared first to these classes, and then to each reference strain. Whereas the bacterial populations were widely distributed before biodegradation, after degradation they were restricted to a few prevailing genera:Pseudomonas, Alcaligenes, andKlebsiella.  相似文献   

3.
Since polymeric materials do not decompose easily, disposal of waste polymers is a serious environmental concern. Widespread studies on the biodegradation of rubbers have been carried out in order to overcome the environmental problems associated with rubber waste. This report provides an overview on the microbial degradation of natural and synthetic rubbers. Rubber degrading microbes, bacteria and fungi, are ubiquitous in the environment especially soil. The qualitative data like plate assay, scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and Sturm test indicated that both natural and synthetic rubbers can be degraded by microorganisms. It has confirmed that the enzymes latex clearing protein (Lcp) and rubber oxygenase A (RoxA) are responsible for the degradation of natural and synthetic rubbers. Lcp was obtained from Gram-positive bacterium Streptomyces sp. strain K30 and RoxA from Gram-negative bacterium Xanthomonas sp. strain 35Y. Analysis of degradation products of natural and synthetic rubbers indicated the oxidative cleavage of double bonds in polymer backbone. Aldehydes, ketones and other carbonyl groups were detected as degradation products from cultures of various rubber degrading strains. This review emphasizes the importance of biodegradation in environmental biotechnology for waste rubber disposal.  相似文献   

4.
We report here the degradation of a pesticide, malathion, by Brevibacillus sp. strain KB2 and Bacillus cereus strain PU, isolated from soil samples collected from malathion contaminated field and an army firing range respectively. Both the strains were cultured in the presence of malathion under aerobic and energy-limiting conditions. Both strains grew well in the medium having malathion concentration up to 0.15%. Reverse phase HPLC–UV analysis indicated that Strain KB2 was able to degrade 72.20% of malaoxon (an analogue of malathion) and 36.22% of malathion, while strain PU degraded 87.40% of malaoxon and 49.31% of malathion, after 7 days of incubation. The metabolites mal-monocarboxylic acid and mal-dicarboxylic acid were identified by Gas chromatography/mass spectrometry. The factors affecting biodegradation efficiency were investigated and effect of malathion concentration on degradation rate was also determined. The strain was analyzed for carboxylesterase activity and maximum activity 210 ± 2.5 U ml−1 and 270 U ± 2.7 ml−1 was observed for strains KB2 and PU, respectively. Cloning and sequencing of putative malathion degrading carboxylesterase gene was done using primers based PCR approach.  相似文献   

5.
茶叶中富含单宁化合物。从分离自黑茶的真菌菌株中,筛选高产单宁酶的菌株;进而分离纯化单宁酶,分析单宁酶对茶汤的转溶效果。从不同产地的3个黑茶样品中,共分离获得44个真菌分离物;经初步鉴定,这些真菌分离物以曲霉属(Aspergillus)、青霉属(Penicillium)和散囊菌属(Eurotium)的真菌居多。以单宁酸为底物的鉴别培养基初筛表明,其中26个真菌分离物在鉴别平板上产生透明圈,显示单宁水解酶活性;通过固体发酵复筛,筛选到1株产单宁酶活性较高的菌株,初步鉴定为青霉属(Penicillium)菌株,命名为青霉MP-24菌株。青霉MP-24可以以茶叶、茶梗和麸皮等农副产品作为原料固体发酵产生单宁酶。以麸皮为原料的发酵产物经过硫酸铵分级沉淀、DEAE阴离子交换层析和葡聚糖G-150凝胶层析等分离纯化步骤,得到分子量为70 kDa的单一蛋白质条带,单宁酶活力达到603.68 U/mg。纯化获得的单宁酶对茶汤有良好的转溶效果。研究结果表明,在黑茶相关微生物中含有丰富的产单宁酶菌株,是工业酶制剂的重要资源。  相似文献   

6.
The pulp and paper industry largely depends on the biodegradation activities of heterotrophic bacteria to remove organic contaminants in wastewater prior to discharge. Our recent discovery of extensive cyanobacterial communities in pulp and paper waste treatment systems led us to investigate the potential impacts of cyanobacterial exudates on growth and biodegradation efficiency of three bacterial heterotrophs. Each of the three assessed bacteria represented different taxa commonly found in pulp and paper waste treatment systems: a fluorescent Pseudomonad, an Ancylobacter aquaticus strain, and a Ralstonia eutropha strain. They were capable of utilizing phenol, dichloroacetate (DCA), or 2,4-dichlorophenoxyacetic acid (2,4-D), respectively. Exudates from all 12 cyanobacterial strains studied supported the growth of each bacterial strain to varying degrees. Maximum biomass of two bacterial strains positively correlated with the total organic carbon content of exudate treatments. The combined availability of exudate and a known growth substrate (i.e., phenol, DCA, or 2,4-D) generally had a synergistic affect on the growth of the Ancylobacter strain, whereas mixed effects were seen on the other two strains. Exudates from four representative cyanobacterial strains were assessed for their impacts on phenol and DCA biodegradation by the Pseudomonas and Ancylobacter strains, respectively. Exudates from three of the four cyanobacterial taxa repressed phenol biodegradation, but enhanced DCA biodegradation. These dissimilar impacts of cyanobacterial exudates on bacterial degradation of contaminants suggest a species-specific association, as well as a significant role for cyanobacteria during the biological treatment of wastewaters.  相似文献   

7.
Soil fungal communities involved in the biodegradation of polyester polyurethane (PU) were investigated. PU coupons were buried in two sandy loam soils with different levels of organic carbon: one was acidic (pH 5.5), and the other was more neutral (pH 6.7). After 5 months of burial, the fungal communities on the surface of the PU were compared with the native soil communities using culture-based and molecular techniques. Putative PU-degrading fungi were common in both soils, as <45% of the fungal colonies cleared the colloidal PU dispersion Impranil on solid medium. Denaturing gradient gel electrophoresis showed that fungal communities on the PU were less diverse than in the soil, and only a few species in the PU communities were detectable in the soil, indicating that only a small subset of the soil fungal communities colonized the PU. Soil type influenced the composition of the PU fungal communities. Geomyces pannorum and a Phoma sp. were the dominant species recovered by culturing from the PU buried in the acidic and neutral soils, respectively. Both fungi degraded Impranil and represented >80% of cultivable colonies from each plastic. However, PU was highly susceptible to degradation in both soils, losing up to 95% of its tensile strength. Therefore, different fungi are associated with PU degradation in different soils but the physical process is independent of soil type.  相似文献   

8.
[背景]广陈皮为药食同源中药材,在高温、高湿且贮存不当的条件下容易发霉,从而产生毒素,严重威胁陈皮的质量安全.[目的]分析广陈皮表面外源真菌的组成及其产生毒素的真菌.[方法]采用平板稀释法分离广陈皮表面外源真菌,利用分生孢子形态特征及DNA序列分析进行真菌鉴定,采用高效液相色谱-三重串联四极杆质谱联用技术对青霉属和曲霉...  相似文献   

9.
This work investigated biostimulation and bioaugmentation as strategies for removing polyurethane (PU) waste in soil. Soil microcosms were biostimulated with the PU dispersion agent “Impranil” and/or yeast extract or were bioaugmented with PU-degrading fungi, and the degradation of subsequently buried PU was determined. Fungal communities in the soil and colonizing buried PU were enumerated on solid media and were analyzed using denaturing gradient gel electrophoresis (DGGE). Biostimulation with yeast extract alone or in conjunction with Impranil increased PU degradation 62% compared to the degradation in untreated control soil and was associated with a 45% increase in putative PU degraders colonizing PU. Specific fungi were enriched in soil following biostimulation; however, few of these fungi colonized the surface of buried PU. Fungi used for soil bioaugmentation were cultivated on the surface of sterile wheat to form a mycelium-rich inoculum. Wheat, when added alone to soil, increased PU degradation by 28%, suggesting that wheat biomass had a biostimulating effect. Addition of wheat colonized with Nectria haematococca, Penicillium viridicatum, Penicillium ochrochloron, or an unidentified Mucormycotina sp. increased PU degradation a further 30 to 70%, suggesting that biostimulation and bioaugmentation were operating in concert to enhance PU degradation. Interestingly, few of the inoculated fungi could be detected by DGGE in the soil or on the surface of the PU 4 weeks after inoculation. Bioaugmentation did, however, increase the numbers of indigenous PU-degrading fungi and caused an inoculum-dependent change in the composition of the native fungal populations, which may explain the increased degradation observed. These results demonstrate that both biostimulation and bioaugmentation may be viable tools for the remediation of environments contaminated with polyurethane waste.The polyester polyurethanes (PU) are a diverse group of synthetic polymers with many industrial and commercial applications, including insulating and packaging foams, fibers, fabrics, and synthetic leather goods (20). These polymers contain intramolecular bonds analogous to those found in biological macromolecules (such as ester and urethane linkages), making them susceptible to enzymatic degradation and assimilation by environmental microbial communities (17, 42). The susceptibility of plastics to biodegradation is of increasing importance as the generation of plastic waste material continues to increase and plastics now comprise more than 30% of household waste in the United States (32). By exploiting the biodegradability of plastics such as PU, bioremediation by microorganisms in the environment shows great potential for reducing the burden of plastic waste.Although the diversity of natural microbial populations often means that the potential for waste remediation exists at polluted sites, factors such as absence of electron acceptors or donors, low nitrogen or phosphorus availability, or a lack of induction of the metabolic pathways responsible for degradation can inhibit waste remediation. In these cases, addition of exogenous nutrients can enhance the degradation of waste, a process known as biostimulation. Biostimulation of in situ microbial communities has been used to enhance the degradation of crude oil (22, 29), tetrachloroethene (19), diesel fuel (24, 28), and polyaromatic hydrocarbons (41).If communities native to polluted sites lack significant populations of waste degraders, microbes with the desired phenotypes can be added exogenously in a process known as bioaugmentation. This approach has been successfully used to remediate a wide range of waste products, from hydrocarbons (8, 34) to heavy metals (15, 16). Numerous PU-degrading organisms have been isolated from a range of environments (6, 9, 26, 30), and this has provided a large reservoir of organisms for potential bioaugmentation of PU waste.This study was the first study to assess the potential of biostimulation and bioaugmentation as methods for accelerating the degradation of PU waste in the environment. The response of fungal communities in soil microcosms to (i) addition of nutrients or (ii) a large influx of PU-degrading fungi was investigated using culture-based and molecular techniques, and the effect of these treatments on the degradation of PU coupons buried in these microcosms was determined.  相似文献   

10.
A correlation was established between species specificity and synthesis of specific secondary metabolites by the Penicillium fungi. Strains of the subgenus Aspergilloides usually synthesize metabolites of polyketide nature. Most strains of the subgenus Furcatum produce clavine ergot alkaloids and metabolites of diketopiperazine nature. The only clavine ergot alkaloids and diketopiperazine alkaloids produced by strains of the subgenus Biverticillium are rugulovasines and rugulosuvines, respectively. Species designations of the strains of the subgenus Penicillium isolated from permafrost soil, the Mir orbital complex, and sites undergoing anthropogenic load were refined based on the marker secondary metabolites. Changes in the taxonomic position of some strains in the genus Penicillium are suggested.  相似文献   

11.
Soil fungal communities involved in the biodegradation of polyester polyurethane (PU) were investigated. PU coupons were buried in two sandy loam soils with different levels of organic carbon: one was acidic (pH 5.5), and the other was more neutral (pH 6.7). After 5 months of burial, the fungal communities on the surface of the PU were compared with the native soil communities using culture-based and molecular techniques. Putative PU-degrading fungi were common in both soils, as <45% of the fungal colonies cleared the colloidal PU dispersion Impranil on solid medium. Denaturing gradient gel electrophoresis showed that fungal communities on the PU were less diverse than in the soil, and only a few species in the PU communities were detectable in the soil, indicating that only a small subset of the soil fungal communities colonized the PU. Soil type influenced the composition of the PU fungal communities. Geomyces pannorum and a Phoma sp. were the dominant species recovered by culturing from the PU buried in the acidic and neutral soils, respectively. Both fungi degraded Impranil and represented >80% of cultivable colonies from each plastic. However, PU was highly susceptible to degradation in both soils, losing up to 95% of its tensile strength. Therefore, different fungi are associated with PU degradation in different soils but the physical process is independent of soil type.  相似文献   

12.
Plastics play an essential role in the modern world due to their low cost and durability. However, accumulation of plastic waste in the environment causes wide-scale pollution with long-lasting effects, making plastic waste management expensive and problematic. Polyurethanes (PUs) are heteropolymers that made up ca. 7% of the total plastic production in Europe in 2011. Polyester PUs in particular have been extensively reported as susceptible to microbial biodegradation in the environment, particularly by fungi. In this study, we investigated the impact of composting on PUs, as composting is a microbially rich process that is increasingly being used for the processing of green waste and food waste as an economically viable alternative to landfill disposal. PU coupons were incubated for 12 weeks in fresh compost at 25°C, 45°C, and 50°C to emulate the thermophilic and maturation stages of the composting process. Incubation at all temperatures caused significant physical deterioration of the polyester PU coupons and was associated with extensive fungal colonization. Terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of the fungal communities on the PU surface and in the surrounding compost revealed that the population on the surface of PU was different from the surrounding compost community, suggesting enrichment and selection. The most dominant fungi identified from the surfaces of PU coupons by pyrosequencing was Fusarium solani at 25°C, while at both 45°C and 50°C, Candida ethanolica was the dominant species. The results of this preliminary study suggest that the composting process has the potential to biodegrade PU waste if optimized further in the future.  相似文献   

13.
As a part of a series of studies regarding the microbial biota in manned space environments, fungi were isolated from six pieces of equipment recovered from the Japanese Experimental Module “KIBO” of the International Space Station and from a space shuttle. Thirty‐seven strains of fungi were isolated, identified and investigated with regard to morphological phenotypes and antifungal susceptibilities. The variety of fungi isolated in this study was similar to that of several previous reports. The dominant species belonged to the genera Penicillium, Aspergillus and Cladosporium, which are potential causative agents of allergy and opportunistic infections. The morphological phenotypes and antifungal susceptibilities of the strains isolated from space environments were not significantly different from those of reference strains on Earth.  相似文献   

14.
An in vitro study of different strains isolated from composting piles in relation to their capacity to biodegrade lignocellulose was achieved. Thirteen microorganisms (five bacteria, one actinomycete, and seven fungi) isolated from compost windrows were grown on agricultural wastes and analyzed for cellulose, hemicellulose, and lignin degradation. Hemicellulose fraction was degraded to a lesser extent because only two of the isolates, B122 and B541, identified as Bacillus licheniformis and Brevibacillus parabrevis, respectively, were able to decrease the concentration of this polymer. On the contrary, most of the isolates were capable of reducing cellulose and lignin concentrations; strain B541 was the most active cellulose degrader (51%), while isolate B122 showed higher lignin degradation activity (68%). Consequently, an increase in humification indices was detected, especially with respect to humification index (HI) for both bacteria and CAH/AF in the case of strain B122. According to these data, the use of microbial inoculants as a tool to improve organic matter biodegradation processes (i.e., composting) may become important if microorganisms’ capabilities are in accordance with the final characteristics required in the product (high humic content, lignin content decrease, cellulose concentration decrease, etc.).  相似文献   

15.
In this report, a polyester polyurethane (PU) degrading bacterium, designated as strain MZA-85, was isolated from soil through enrichment. The bacterium was identified through 16S rRNA gene sequencing; it was completely matched with Pseudomonas aeruginosa type strain. The degradation of PU film pieces by P. aeruginosa strain MZA-85 was investigated by scanning electron microscopy (SEM), Fourier transformed infra-red spectroscopy (FT-IR) and gel permeation chromatography (GPC). SEM micrographs of PU film pieces, treated with strain MZA-85, revealed changes in the surface morphology. FTIR spectrum showed increase in organic acid functionality and corresponding decrease in ester functional group. GPC results revealed increase in polydispersity, which shows that long chains of polyurethane polymer are cleaved into shorter chains by microbial action. The bacterium was found to produce cell associated esterases based on p-Nitrophenyl acetate (pNPA) hydrolysis assay. 1,4-Butanediol and adipic acid monomers were detected by gas chromatography–mass spectrometry (GC–MS), which were produced as a result of hydrolysis of ester linkages in PU by cell bound esterases. Strain MZA-85 not only depolymerized PU but also mineralized it into CO2 and H2O, as indicated by increase in cells growth in the presence of degradation products as well as detection of CO2 evolution through Sturm test. From the results presented above, it is finally concluded that P. aeruginosa strain MZA-85, as well as its enzymes, can be applied in the process of biochemical monomerization for the pure monomers recycling.  相似文献   

16.
Some strains of white rot fungi, non-lignolytic fungi and litter-decomposing basidiomycetes have been recognized as PAH degraders. The purpose of our research was to enlarge the scope of PAH-degrading fungi and explore the huge endophytic microorganism resource for bioremediation of PAHs. In this study, phenanthrene was used as a model PAHs compound. Nine strains of endophytic fungi isolated from four kinds of plant from Eupharbiaceae were screened for degradation of phenanthrene. The endophytic fungus Ceratobasidum stevensii (strain B6) isolated from Bischofia polycarpam showed high degradation efficiency and was selected for further studies. Into the fungal culture, 100 mg l−1 phenanthrene was added, and after 10 days of incubation, about 89.51% of the phenanthrene was removed by strain B6. Extracellular ligninolytic enzyme activities of strain B6 were tested. The results showed that manganese peroxidase [MnP] was the predominant ligninolytic enzyme and that its production was greatly induced by the presence of phenanthrene. To confirm the involvement of MnP in phenanthrene degradation, promotion and inhibition studies on MnP in different concentration level of Mn2+ and NaN3 were performed. Additionally, fungal mycelium-free and resuspended experiments were carried out. The results showed no apparent correlation between MnP activity and phenanthrene degradation. The mycelium and fresh medium were the crucial factors affecting the degradation of phenanthrene. To date, this is the first report on PAH degradation by Ceratobasidum stevensii. This study suggests that endophytic fungi might be a novel and important resource for microorganisms that have PAH-degrading capabilities.  相似文献   

17.
Among 67 endophytic fungi isolated from Quercus variabilis, 53.7% of endophytic fungal fermentation broths displayed growth inhibition on at least one test microorganism, such as pathogenic fungi (Trichophyton rubrum, Candida albicans, Aspergillus niger, Epidermophyton floccosum, Microsporum canis) and bacteria (Escherichia coli, Bacillus subtilis, Pseudomonas fluorescens). Moreover, 19.4% of strains showed a broader antimicrobial spectrum, such as Aspergillus sp., Penicillium sp., Alternaria sp., 20.9% of strains showed strong inhibition (+++) to pathogenic bacteria, while only 7.5% displayed that to test fungi. The most active antifungal strain I(R)9-2, Cladosporium sp. was selected and fermented. From the broth, a secondary metabolite, brefeldin A was obtained. This is the first report on the antimicrobial potentials of endophytic fungi residing in Q. variabilis and isolation of brefeldin A produced by Cladosporium sp.  相似文献   

18.
The genetic control of naphthalene, phenanthrene, and anthracene biodegradation was studied in three Pseudomonas putida strains isolated from coal tar- and oil-contaminated soils. These strains isolated from different geographical locations contained similar catabolic plasmids controlling the first steps of naphthalene conversion to salicylate (the nah1operon), functionally inoperative salicylate hydroxylase genes, and genes of the metha-pathway of catechol degradation (the nah2 operon). Salicylate oxidation in these strains is determined by genes located in trans-position relative to the nah1 operon: in strains BS202 and BS3701, they are located on the chromosome, and in the strain BS3790, on the second plasmid.  相似文献   

19.
Fungi have been only rarely isolated from glacial ice in extremely cold polar regions and were in these cases considered as random, long-term preserved Aeolian deposits. Fungal presence has so far not been investigated in polar subglacial ice, a recently discovered extreme habitat reported to be inhabited exclusively by heterotrophic bacteria. In this study we report on the very high occurrence (up to 9000 CFU L−1) and diversity of filamentous Penicillium spp. in the sediment-rich subglacial ice of three different polythermal Arctic glaciers (Svalbard, Norway). The dominant species was P. crustosum, representing on the average half of all isolated strains from all three glaciers. The other most frequently isolated species were P. bialowiezense, P. chrysogenum, P. thomii, P. solitum, P. palitans, P. echinulatum, P. polonicum, P. commune, P. discolor, P. expansum, and new Penicillium species (sp. 1). Twelve more Penicillium species were occasionally isolated. The fungi isolated produced consistent profiles of secondary metabolites, not different from the same Penicillium species from other habitats. This is the first report on the presence of large populations of Penicillium spp. in subglacial sediment-rich ice.  相似文献   

20.
Summary A Penicillium sp. and a Trichoderma sp. were isolated from a soil previously treated with alachlor which is commonly used as herbicide. These fungi were found to degrade alachlor and only one degradation product was observed after 15 days of incubation. Whereas two products were noticed after 30 days with both the test organisms. re]19740913  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号