首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 329 毫秒
1.
The kinetics of the light-driven Cl? uptake pump of Synechococcus R-2 (PCC 7942) were investigated. The kinetics of Cl? uptake were measured in BG-11 medium (pHo, 7·5; [K+]o, 0·35 mol m?3; [Na+]o, 18 mol m?3; [Cl?]o, 0·508 mol m?3) or modified media based on the above. Net36Cl? fluxes (?Cl?o,i) followed Michaelis-Menten kinetics and were stimulated by Na+ [18 mol m?3 Na+ BG-11 ?Cl?max= 3·29±0·60 (49) nmol m?2 s?1 versus Na+-free BG-11 ?Cl?max= 1·02±0·13 (54) nmol m?2 s?1] but the Km was not significantly different in the presence or absence of Na+ at pHo 10; the Km was lower, but not affected by the presence or absence of Na+ [Km = 22·3±3·54 (20) mmol m?3]. Na+ is a non-competitive activator of net ?Cl?o,i. High [K+]o (18 mol m?3) did not stimulate net ?Cl?o,i or change the Km in Na+-free medium. High [K+]o (18 mol m?3) added to Na+ BG-11 medium decreased net ?Cl?o,i [18 mol m?3K+ BG-11; ?Cl?max= 2·50±0·32 (20) nmol m?2 s?1 versus BG-11 medium; ?Cl?max= 3·35±0·56 (20) nmol m?2 s?1] but did not affect the Km 55·8±8·100 (40) mmol m?3]. Na+-stimulation of net ?Cl?o,i followed Michaelis-Menten kinetics up to 2–5 mol m?3 [Na+]o but higher concentrations were inhibitory. The Km for Na+-stimulation of net ?Cl?o,i [K1/2(Na+)] was different at 47 mmol m?3 [Cl?]o (K1/2[Na+] = 123±27 (37) mmol m?3]. Li+ was only about one-third as effective as Na+ in stimulating Cl? uptake but the activation constant was similar [K1/2(Li+) = 88±46 (16) mmol m?3]. Br? was a competitive inhibitor of Cl? uptake. The inhibition constant (Ki) was not significantly different in the presence and absence of Na+. The overall Ki was 297±23 (45) mmol m?3. The discrimination ratio of Cl? over Br? (δCl?/δBr?) was 6·38±0·92 (df = 147). Synechococcus has a single Na+-stimulated Cl? pump because the Km of the Cl? transporter and its discrimination between Cl? and Br? are not significantly different in the presence and absence of Na+. The Cl? pump is probably driven by ATP.  相似文献   

2.
3.
《FEBS letters》1997,400(2-3):191-195
The different murine D2-type dopamine receptors (D2L, D2S, D3L, D3S, and D4) were expressed in Xenopus laevis oocytes. The D2-type receptors were all similarly and efficiently expressed in Xenopus oocytes and were shown to bind the D2 antagonist [125I]sulpride. They were all shown to activate Cl influx upon agonist stimulation. Using the diagnostic inhibitor bumetanide, we were able to separate the Na+/K+/2Cl cotransporter component of the Cl influx from the total unidirectional Cl influx. The D3L subtype was found to operate exclusively through the bumetanide-insensitive Cl influx whereas the other D2-type receptors acted on the Na+/K+/2Cl cotransporter as well. The pertussis toxin sensitivity of the receptor-activated chloride influx via the Na+/K+/2Cl cotransporter varied between the various D2-type receptors showing that they may couple to different G proteins, and activate different second messenger systems.  相似文献   

4.
5.
Synechococcus R-2 (PCC 7942) actively accumulated Cl? in the light and dark, under control conditions (BG-11 media: pHo, 7·5; [Na+]o, 18 mol m?3; [Cl?]o, 0·508 molm?3). In BG-11 medium [Cl?], was 17·2±0·848 mol m?3 (light), electrochemical potential of Cl? (ΔμCl?i,o) =+211±2mV; [Cl?]i= 1·24±0·11 mol m?3(dark), ΔμCl?i,o=+133±4mV. Cl? fluxes, but not permeabilities, were much higher in the light: ?Cl?i,o= 4·01±5·4 nmol m?2 s?1, PCl?i,o= 47±5pm s?1 (light); ?Cl?i,o= 0·395±0·071 nmol m?2 s?1, PCl?i,o= 69±14 pm s?1 (dark). Chloride fluxes are inhibited by acid pHo (pHo 5; ?Cl?i,o= 0·14±0·04 nmol m?2 s?1); optimal at pHo 7·5 and not strongly inhibited by alkaline pHo (pHo 10; ?Cl?1i,o= 1·7±0·14 nmol m?2 s?1). A Cl?in/2H+in coporter could not account for the accumulation of Cl? alkaline pHo. Permeability of Cl? is very low, below 100pm s?1 under all conditions used, and appears to be maximal at pHo 7·5 (50–70 pm s?1) and minimal in acid pHo (20pm s?1). DCCD (dicyclohexyl-carbodiimide) inhibited ?Cl?i,o in the light about 75% and [Cl?]i fell to 2·2±0·26 (4) mol m?3. Valinomycin had no effect but monensin severely inhibited Cl? uptake ([Cl?]i= 1·02±0·32 mol m?3; ?Cl?i,o= 0·20±0·1 nmol m?2 s?1). Vanadate (200 mmol m?3) accelerated the Cl? flux (?Cl?i,o= 5·28±0·64 nmol m?2 s?1) but slightly decreased accumulation of Cl? ([Cl?], = 13·9±1·3 mol m?3) in BG-11 medium but had no significant effect in Na+-free media. DCMU (dichlorophenyldimethylurea) did not reduce [Cl?], or ?Cl?i,o to that found in the dark ([Cl?]i= 8·41±0·76 mol m?3; ?Cl?i,o= 2·06±0·36 nmol m?2 s?1). Synechococcus also actively accumulated Cl? in Na+-free media, [Cl?]i was lower but ΔΨi,o hyperpolarized in Na+-free media and so the ΔμCl?i,o was little changed ([Cl?]i= 7·98±0·698 mol m?3; ΔμCl?i,o=+203±3 mV). Net Cl? uptake was stimulated by Na+; Li+ acted as a partial analogue for Na+. Synechococcus has a Na+ activated Cl? transporter which is probably a primary 2Cl?/ATP pump. The Cl? pump is voltage sensitive. ΔμCl?i,o is directly proportional to ΔΨi,o(P»0·01%): ΔμCl?i,o= -1·487 (±0·102) ×ΔΨi,o, r= -0·983, n= 31. The ΔμCl?i,o increased (more positive) as the Δμi,o became more negative. The ΔμCl?i,o has no known function, but might provide a driving force for the uptake of micronutrients.  相似文献   

6.
To assess how the quality and properties of the natural dissolved organic carbon (DOC) could drive different effects on gill physiology, we analysed the ionoregulatory responses of a native Amazonian fish species, the tambaqui Colossoma macropomum, to the presence of dissolved organic carbon (DOC; 10 mg l−1) at both pH 7.0 and pH 4.0 in ion-poor water. The DOC was isolated from black water from São Gabriel da Cachoeira (SGC) in the upper Rio Negro of the Amazon (Brazil) that earlier been shown to protect a non-native species, zebrafish Danio rerio against low pH under similar conditions. Transepithelial potential (TEP), net flux rates of Na+, Cl and ammonia and their concentrations in plasma and Na+, K+ ATPase; v-type H+ ATPase and carbonic anhydrase activities in gills were measured. The presence of DOC had negligible effects at pH 7.0 apart from lowering the TEP, but it prevented the depolarization of TEP that occurred at pH 4.0 in the absence of DOC. However, contrary to our initial hypothesis, SGC DOC was not protective against the effects of low pH. Colossoma macropomum exposed to SGC DOC at pH 4.0 experienced greater net Na+ and Cl losses, decreases of Na+ and Cl concentrations in plasma and elevated plasma ammonia levels and excretion rates, relative to those exposed in the absence of DOC. Species-specific differences and changes in DOC properties during storage are discussed as possible factors influencing the effectiveness of SGC DOC in ameliorating the effects of the acid exposure.  相似文献   

7.
To quantitatively understand intracellular Na+ and Cl homeostasis as well as roles of Na+/K+ pump and cystic fibrosis transmembrane conductance regulator Cl channel (ICFTR) during the β1-adrenergic stimulation in cardiac myocyte, we constructed a computer model of β1-adrenergic signaling and implemented it into an excitation-contraction coupling model of the guinea-pig ventricular cell, which can reproduce membrane excitation, intracellular ion changes (Na+, K+, Ca2+ and Cl), contraction, cell volume, and oxidative phosphorylation. An application of isoproterenol to the model cell resulted in the shortening of action potential duration (APD) after a transient prolongation, the increases in both Ca2+ transient and cell shortening, and the decreases in both Cl concentration and cell volume. These results are consistent with experimental data. Increasing the density of ICFTR shortened APD and augmented the peak amplitudes of the L-type Ca2+ current (ICaL) and the Ca2+ transient during the β1-adrenergic stimulation. This indirect inotropic effect was elucidated by the increase in the driving force of ICaL via a decrease in plateau potential. Our model reproduced the experimental data demonstrating the decrease in intracellular Na+ during the β-adrenergic stimulation at 0 or 0.5 Hz electrical stimulation. The decrease is attributable to the increase in Na+ affinity of Na+/K+ pump by protein kinase A. However it was predicted that Na+ increases at higher beating rate because of larger Na+ influx through forward Na+/Ca2+ exchange. It was demonstrated that dynamic changes in Na+ and Cl fluxes remarkably affect the inotropic action of isoproterenol in the ventricular myocytes.  相似文献   

8.
A high renal oxygen (O2) need is primarily associated with the renal tubular O2 consumption (VO2) necessary for a high rate of sodium (Na+) transport. Limited O2 availability leads to increased levels of adenosine, which regulates the kidney via activation of both A1 and A2A adenosine receptors (A1R and A2AR, respectively). The relative contributions of A1R and A2AR to the regulation of renal Na+ transport and VO2 have not been determined. We demonstrated that A1R activation has a dose-dependent biphasic effect on both renal Na+/H+ exchanger-3 (NHE3), a major player in Na+ transport, and VO2. Here, we report concentration-dependent effects of adenosine: less than 5 × 10−7 M adenosine-stimulated NHE3 activity; between 5 × 10−7 M and 10−5 M adenosine-inhibited NHE3 activity; and greater than 10−5 M adenosine reversed the change in NHE3 activity (returned to baseline). A1R activation mediated the activation and inhibition of NHE3 activity, whereas 10−4 M adenosine had no effect on the NHE3 activity due to A2AR activation. The following occurred when A1R and A2AR were activated: (a) Blockade of the A2AR receptor restored the NHE3 inhibition mediated by A1R activation, (b) the NHE-dependent effect on VO2 mediated by A1R activation became NHE independent, and (c) A2AR bound to A1R. In summary, A1R affects VO2 via NHE-dependent mechanisms, whereas A2AR acts via NHE-independent mechanisms. When both A1R and A2AR are activated, the A2AR effect on NHE3 and VO2 predominates, possibly via an A1R–A2AR protein interaction. A2AR–A1R heterodimerization is proposed as the molecular mechanism enabling the NHE-independent control of renal VO2.  相似文献   

9.
A suspension‐cultured cell strain of the mangrove plant (Bruguiera sexangula) was established from a callus culture and maintained in an amino acid medium in the absence of NaCl. NaCl non‐adapted cells were transferred to media containing 0–200 mm NaCl. The initial growth rate decreased gradually with increasing salt concentrations. However, at up to 150 mm NaCl, cell number growth at the highest point was almost the same as that at lower salt concentrations. Cells even continued to grow in the presence of 200 mm NaCl. Cells incubated in a medium containing 50 mm NaCl for 3 weeks accumulated Na+, while those incubated in 150 mm NaCl for 2 d showed only a transient increase in Na+ and Cl concentrations. In the latter treatment, the intracellular concentration of Na+ returned to the original low level within 2 weeks. It took a longer time for Cl to return to its original level. As a result, the Na+ and Cl concentrations in cells cultured with 50 mm NaCl were much larger than those in cells cultured with 150 mm NaCl. The intracellular distribution of ions after transfer to the medium containing 150 mm NaCl was analysed by isolating the vacuoles. Treatment with amiloride, an inhibitor of the Na+/H+ antiporter, suppressed the recovery of Na+ to the original level in the cells. Treatment with 150 mm NaCl for 3 d stimulated the activities of both the vanadate‐dependent H+‐ATPase and the Na+/H+ antiporter in the plasma membrane fraction.  相似文献   

10.
Cl absorption across isolated, perfused gills of freshwater adapted Chinese crabs (Eriocheir sinensis) was analysed by measuring transepithelial potential differences (PDte) and radioactive tracer fluxes across isolated, perfused posterior gills. Applying hemolymph-like NaCl salines on both sides of the epithelium PDte amounted to −30±1 mV (n=14). Undirectional Cl influxes of 470±38 and effluxes of 245±27 μmol·hr−1·g−1 wet weight (ww) (n=14) resulted in a Cl net influx of 226±31 μmol·hr−1·g−1 ww. Symmetrical substitution of Na+ by choline resulted in a substantial hyperpolarisation of the gill. Cl influx was unchanged under these conditions. However, net influx of Cl decreased by 40%, due to an increase of the Cl efflux.Nevertheless, a significant Cl net influx remained which was independent of the presence of Na+. When 2 mmol/l ouabain were added to the internal perfusion medium, PDte increased, although the fluxes remained unchanged. Following external application of 1μmol/l of the V-type H+-ATPase inhibitor bafilomycin, Al PDte and Cl effluxes were not significantly affected. However, Cl influxes decreased. These findings suggest that Cl can be taken up independently of Na+ and that active Na+ independent Cl uptake across the posterior gill of Eriocheir sinensis is probably driven by a V-type H+-ATPase localized in the apical membrane.  相似文献   

11.
Abstract: The effect of endothelins (ET-1 and ET-3) on 86Rb+ uptake as a measure of K+ uptake was investigated in cultured rat brain capillary endothelium. ET-1 or ET-3 dose-dependently enhanced K+ uptake (EC50 = 0.60 ± 0.15 and 21.5 ± 4.1 nM, respectively), which was inhibited by the selective ETA receptor antagonist BQ 123 (cyclo-d -Trp-d -Asp-Pro-d -Val-Leu). Neither the selective ETB agonists IRL 1620 [N-succinyl-(Glu9,-Ala11,15)-ET-1] and sarafotoxin S6c, nor the ETB receptor antagonist IRL 1038 [(Cys11,Cys15)-ET-1] had any effect on K+ uptake. Ouabain (inhibitor of Na+,K+-ATPase) and bumetanide (inhibitor of Na+-K+-Cl? cotransport) reduced (up to 40% and up to 70%, respectively) the ET-1-stimulated K+ uptake. Complete inhibition was seen with both agents. Phorbol 12-myristate 13-acetate (PMA), activator of protein kinase C (PKC), stimulated Na+,K+-ATPase and Na+-K+-Cl? cotransport. ET-1-but not PMA-stimulated K+ uptake was inhibited by 5-(N-ethyl-N-isopropyl)amiloride (inhibitor of Na+/H+ exchange system), suggesting a linkage of Na+/H+ exchange with ET-1-stimulated Na+,K+-ATPase and Na+-K+-Cl? cotransport activity that is not mediated by PKC.  相似文献   

12.
This study investigated endocrine control of branchial ionoregulatory function in Nile tilapia (Oreochromis niloticus) by prolactin (Prl188 and Prl177), growth hormone (Gh) and cortisol. Branchial expression of Na+/Cl? cotransporter (ncc) and Na+/K+/2Cl? cotransporter (nkcc) genes were employed as specific markers for freshwater- and seawater-type ionocytes, respectively. We further investigated whether Prl, Gh and cortisol direct expression of two Na+, K+-ATPase (nka)-α1 subunit genes, denoted nka-α1a and nka-α1b. Tilapia transferred to fresh water following hypophysectomy failed to adequately activate gill ncc expression; ncc expression was subsequently restored by Prl replacement. Prl188 and Prl177 stimulated ncc expression in cultured gill filaments in a concentration-related manner, suggesting that ncc is regulated by Prl in a gill-autonomous fashion. Tilapia transferred to brackish water (23 ‰) following hypophysectomy exhibited a reduced capacity to up-regulate nka-α1b expression. However, Gh and cortisol failed to affect nka-α1b expression in vivo. Similarly, we found no clear effects of Gh or cortisol on nkcc expression both in vivo and in vitro. When considered with patterns previously described in euryhaline Mozambique tilapia (O. mossambicus), the current study suggests that ncc is a conserved target of Prl in tilapiine cichlids. In addition, we revealed contrasting dependencies upon the pituitary to direct nka-α1b expression in hyperosmotic environments between Nile and Mozambique tilapia.  相似文献   

13.
There is a need for information about the response of Populus genotypes to repeated application of high-salinity water and nutrient sources throughout an entire rotation. We have combined establishment biomass and uptake data with mid- and full-rotation growth data to project potential chloride (Cl?) and sodium (Na+) uptake for 2- to 11-year-old Populus in the north central United States. Our objectives were to identify potential levels of uptake as the trees developed and stages of plantation development that are conducive to variable application rates of high-salinity irrigation. The projected cumulative uptake of Cl? and Na+ during mid-rotation plantation development was stable 2 to 3 years after planting but increased steadily from year 3 to 6. Year six cumulative uptake ranged from 22 to 175 kg Cl? ha?1 and 8 to 74 kg Na+ ha?1, while annual uptake ranged from 8 to 54 kg Cl? ha?1 yr?1 and 3 to 23 kg Na+ ha?1 yr?1. Full-rotation uptake was greatest from 4 to 9 years (Cl?) and 4 to 8 years (Na+), with maximum levels of Cl? (32 kg ha?1 yr?1) and Na+ (13 kg ha?1 yr?1) occurring in year six. The relative uptake potential of Cl? and Na+ at peak accumulation (year six) was 2.7 times greater than at the end of the rotation.  相似文献   

14.
In order to identify physiological components that contribute to salinity tolerance, we compared the effects of Na+, Mg2+ and K+ salts (NaCl, Na2SO4, MgCl2, MgSO4, KCl and K2SO4), Ca2+ (CaSO4), mannitol and melibiose on the wild type and the single-gene NaCl-tolerant mutants stl1 and stl2 of Ceratopteris richardii. Compared with gametophytic growth of the wild type, stl2 showed a low level of tolerance that was restricted to Na+ salts and osmotic stress. stl2 exhibited high tolerance to both Na+ and Mg2+ salts, as well as to osmotic stress. In response to short-term exposure (3 d) to NaCl, accumulation of K+ and Na+ was similar in the wild type and stl1. In contrast, stl2 accumulated higher levels of K+ and lower levels of Na+. Ca2+ supplementation (1.0 mol m?3) ameliorated growth inhibition by Na+ and Mg2+ stress in wild type and stll, but not in stl2. In addition, under Na+ stress (175 mol m?3) wild-type, stll and stl2 gametopbytes maintained higher tissue levels of K+ and lower levels of Na+ when supplemented with Ca2+ (1.0 mol m?3). stl2 gametophytes were extremely sensitive to K+ supplementation. Growth of stl2 was greater than or equal to that of the wild type at trace concentrations of K+ but decreased substantially with increasing K+ concentration. Supplementation with K+ from 0 to 1.85 mol m?3 alleviated some of the inhibition by 75 mol m?3 NaCl in the wild type and in stl1. In stl2, growth at 75 mol m?3 NaCl was similar at 0 and 1.85 mol m?3 K+ supplementation. Although K+ supplementation above 1.85 mol m?3 did not alleviate inhibition of growth by Na+ in any genotype, stl2 maintained greater relative tolerance to NaCl at all K+ concentrations tested.  相似文献   

15.
The sodium cation (Na+) is the predominant cation with deleterious effects on crops in salt-affected agricultural areas. Salt tolerance of crop can be improved by increasing shoot Na+ exclusion. Therefore, it is crucial to identify and use genetic variants of various crops that promote shoot Na+ exclusion. Here, we show that a HKT1 family gene ZmNC3 (Zea mays L. Na+ Content 3; designated ZmHKT1;2) confers natural variability in shoot-Na+ accumulation and salt tolerance in maize. ZmHKT1;2 encodes a Na+-preferential transporter localized in the plasma membrane, which mediates shoot Na+ exclusion, likely by withdrawing Na+ from the root xylem flow. A naturally occurring nonsynonymous SNP (SNP947-G) increases the Na+ transport activity of ZmHKT1;2, promoting shoot Na+ exclusion and salt tolerance in maize. SNP947-G first occurred in the wild grass teosinte (at a allele frequency of 43%) and has become a minor allele in the maize population (allele frequency 6.1%), suggesting that SNP947-G is derived from teosinte and that the genomic region flanking SNP947 likely has undergone selection during domestication or post-domestication dispersal of maize. Moreover, we demonstrate that introgression of the SNP947-G ZmHKT1;2 allele into elite maize germplasms reduces shoot Na+ content by up to 80% and promotes salt tolerance. Taken together, ZmNC3/ZmHKT1;2 was identified as an important QTL promoting shoot Na+ exclusion, and its favourable allele provides an effective tool for developing salt-tolerant maize varieties.  相似文献   

16.
To determine if calcium-dependent secretagogues directly act on epithelial cells to elicit CI secretion, their effects on CI transport and intracellular Ca2+ concentrations ([Ca2+]i) were determined in primary cultures of rabbit distal colonic crypt cells. The Cl sensitive fluorescent probe, 6-methoxyquinolyl acetoethyl ester, MQAE and the Ca2+-sensitive fluorescent probe, fura-2AM were used to assess Cl transport and [Ca2+]i, respectively. Basal Cl transport (0.274 ± 0.09 mM/sec) was inhibited significantly by the Cl channel blocker diphenylamine-2-carboxylate (DPC, 50 μM, 0.068 ± 0.02 mM/sec; P < 0.001) and the Na+/K+/2Cl cotransport inhibitor furosemide (1 μM, 0.137 ± 0.04 mM/sec; P < 0.01). Ion substitution studies using different halides revealed the basal influx to be I > F ≥ Cl > Br. DPC inhibited I influx by ∼50%, F influx by 80%, Cl influx by 85%, and Br influx by 90%. Furosemide significantly inhibited influx of Br (84%) and Cl (81%) but not of F and I. The effects of agents known to alter biological response by increasing [Ca2+]i in other epithelial systems were used to stimulate Cl transport. Cl influx in mM/second was stimulated by 1 μM histamine (0.58 ± 0.05), 10 μM neurotensin (2.07 ± 0.32), 1 μM serotonin (1.63 ± 0.28), and 0.1 μM of the Ca2+ ionophore A23187 (2.05 ± 0.40). The Cl permeability stimulated by neurotensin, serotonin, and A23187 was partially blocked by DPC or furosemide added alone or in combination. Histamine-induced Cl influx was significantly inhibited by only furosemide. Indomethacin blocked histamine-stimulated Cl permeability but had no effect on the actions of the other agents. These studies, focusing on isolated colonocytes without the contribution of submucosal elements, reveal that (1) histamine stimulates Cl transport by activating the Na+/K+/2Cl cotransporter via a cyclooxygenase-dependent pathway; (2) neurotensin, serotonin, and A23187 activate both Cl channels and the cotransporter, and their actions are cyclooxygenase-independent. © 1996 Wiley-Liss, Inc.  相似文献   

17.
This study addressed the hypothesis that cardiac Sirtuin 1 (Sirt1) deficiency alters cardiomyocyte Ca2+ and Na+ regulation, leading to cardiac dysfunction and arrhythmogenesis. We used mice with cardiac‐specific Sirt1 knockout (Sirt1?/?). Sirt1flox/flox mice were served as control. Sirt1?/? mice showed impaired cardiac ejection fraction with increased ventricular spontaneous activity and burst firing compared with those in control mice. The arrhythmic events were suppressed by KN93 and ranolazine. Reduction in Ca2+ transient amplitudes and sarcoplasmic reticulum (SR) Ca2+ stores, and increased SR Ca2+ leak were shown in the Sirt1?/? mice. Electrophysiological measurements were performed using patch‐clamp method. While L‐type Ca2+ current (ICa, L) was smaller in Sirt1?/? myocytes, reverse‐mode Na+/Ca2+ exchanger (NCX) current was larger compared with those in control myocytes. Late Na+ current (INa, L) was enhanced in the Sirt1?/? mice, alongside with elevated cytosolic Na+ level. Increased cytosolic and mitochondrial reactive oxygen species (ROS) were shown in Sirt1?/? mice. Sirt1?/? cardiomyocytes showed down‐regulation of L‐type Ca2+ channel α1c subunit (Cav1.2) and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a), but up‐regulation of Ca2+/calmodulin‐dependent protein kinase II and NCX. In conclusions, these findings suggest that deficiency of Sirt1 impairs the regulation of intracellular Ca2+ and Na+ in cardiomyocytes, thereby provoking cardiac dysfunction and arrhythmogenesis.  相似文献   

18.
《Life sciences》1993,52(24):PL273-PL278
3H-ouabain binding and ouabain-inhibitable 86Rb+ (K+) uptake were investigated as a means to identify a third isoform of Na+, K+-ATPase in crude synaptosome preparations. The specific binding of low concentrations (10 nM and 1 uM) of 3H-ouabain, in crude synaptosome preparations, was markedly inhibited by K+ (0.5–5 mM). Accordingly, 86Rb+ (K+) uptake, in the presence of 5 mM K+ was not sensitive to inhibition by low concentrations (10−11–10−7 M) of ouabain. Higher concentrations (10−6–10−2.6 M) of ouabain resulted in a biphasic inhibition of K+ uptake, which distinguished the activities of the presumed alpha 2 and alpha 1 isozymes of Na+, K+-ATPase. Reduction of K+ (1.25 mM and 0.5 mM) in the incubation, resulted in the observation of a third component of ouabain- sensitive K+ uptake. This Na+, K+-ATPase activity, which was defined, pharmacologically, as very sensitive (VS) to ouabain, exhibited IC50s of 3.6 nM and 92 nM at 1.25 mM K+ and 0.5 mM K+, respectively. Inhibition of ouabain binding and VS-dependent K+ uptake, at a high, physiological cocentration (5 mM) of K+, suggests that VS may be an inactive isoform of brain Na+, K+-ATPase under resting conditions.  相似文献   

19.
Poly(A)+ RNA isolated from rat jejunum was injected into Xenopus laevis oocytes and expression of Cl/HCO3 antiport was investigated by means of 36Cl uptake. Two days after injection of 50 ng of poly(A)+ RNA, Cl uptake was significantly increased with respect to water-injected oocytes. The expressed transport was inhibited by 0·2 mM DIDS, whereas endogenous Cl uptake was unaffected by this disulphonic stilbene. After sucrose density gradient fractionation, the highest expression of DIDS-sensitive Cl uptake was detected with mRNA size fraction of about 2–4 kb in length. The expressed Cl uptake can occur against a Cl concentration gradient and is unaffected by the known Cl channel blocker anthracene-9-carboxylic acid. Cl transport mechanism has properties similar to jejunal basolateral Cl/HCO3 exchange with regard to Na+ dependence. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Summary The effects of intracellular K+ and Na+ (K+ c, Na+ c) on the Na+,K+,Cl+– cotransport pathway of HeLa cells were studied by measuring ouabain-insensitive, furosemide-sensitive Rb+ influx (JRb) at various intracellular concentrations of K+ and Na+ ([K+]c, [Na+]c). When [K+]c was increased and [Na+]c was decreased, keeping the sums of their concentrations almost constant, JRb as a function of the extracellular Rb+ or Na+ concentration ([Rb+]e, [Na+]e) was stimulated. However, the apparent K 0.5 for Rb+ e or Na+ e remained unchanged and the ratio of the apparent K +0.5 for K+ c and the apparent K i for Na+ c was larger than 1. When JRb was increased by hypertonicity by addition of 200 mM mannitol, the apparent maximum JRb increased without change in the apparent K 0.5 for Rb+ e. These results show that K+ c stimulates and Na+ c inhibits JRb, without change in the affinities of the pathway for Rb+ e and Na+ e. The affinity for K+ c is slightly lower than that for Na+ c. Hypertonicity enhances JRb without any change in the affinity for Rb+ e. We derived a kinetic equation for JRb with respect to K+ c and Na+ c and proposed a general and a special model of the pathway. The special model suggests that, in HeLa cells, JRb takes place when Rb+ e binds to the external K+ binding site of the pathway after the binding of K+ c to the internal regulatory site.We thank Mr. T. Masuya for technical assistance. This study was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas (No. 03202136) from the Japanese Ministry of Education, Science and Culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号