首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
2.
The Nes subgroup of the Gobiosomatini (Teleostei: Gobiiformes: Gobiidae) is an ecologically diverse clade of fishes endemic to the tropical western Atlantic and eastern Pacific oceans. It has been suggested that morphological characters in gobies tend to evolve via reduction and loss associated with miniaturization, and this, coupled with the parallel evolution of adaptations to similar microhabitats, may lead to homoplasy and ultimately obscure our ability to discern phylogenetic relationships using morphological characters alone. This may be particularly true for the Nes subgroup of gobies, where several genera that are diagnosed by ‘reductive characters’ have been shown to be polyphyletic. Here we present the most comprehensive phylogeny to date of the Nes subgroup using mitochondrial and nuclear sequence data. We then evaluate the congruence between the distribution of morphological characters and our molecular tree using maximum‐likelihood ancestral state reconstruction, and test for phylogenetic signal in characters using Pagel's λ tree transformations (Nature, 401 , 1999 and 877). Our results indicate that all of the characters previously used to diagnose genera of the Nes subgroup display some degree of homoplasy with respect to our molecular tree; however, many characters display considerable phylogenetic signal and thus may be useful in diagnosing genera when used in combination with other characters. We present a new classification for the group in which all genera are monophyletic and in most cases diagnosed by combinations of morphological characters. The new classification includes four new genera and nine new species described here, many of which were collected from rarely sampled deep Caribbean reefs using manned submersibles. The group now contains 38 species in the genera Carrigobius gen. nov., Chriolepis, Eleotrica, Gobulus, Gymneleotris, Nes, Paedovaricus gen. nov., Pinnichthys gen. nov., Psilotris, and Varicus. Lastly, we provide a key to all named species of the Nes subgroup along with photographs and illustrations to aid in identification.  相似文献   

3.
Kinorhyncha is a group of benthic, microscopic animals distributed worldwide in marine sediments. The phylum is divided into two classes, Cyclorhagida and Allomalorhagida, congruent with the two major clades recovered in recent phylogenetic analyses. Allomalorhagida accommodates more than one‐third of the described species, most of them assigned to the family Pycnophyidae. All previous phylogenetic analyses of the phylum recovered the two genera within Pycnophyidae, Pycnophyes and Kinorhynchus, as paraphyletic and polyphyletic. A major problem in these studies was the lack of molecular data of most pycnophyids, due to the limited and highly localized distribution of most species, often in the Arctic and the deep‐sea. We here overcame the problem by adding a morphological partition with data for 79 Pycnophyidae species, 15 of them also represented by molecular data. Model‐based analyses yielded seven clades, which each was supported by several morphological apomorphies. Accordingly, Kinorhynchus is synonymized with Pycnophyes and six new genera are described for the remaining recovered clades: Leiocanthus gen. nov., Cristaphyes gen. nov., Higginsium gen. nov., Krakenella gen. nov., Setaphyes gen. nov. and Fujuriphyes gen. nov.  相似文献   

4.
Acontia—nematocyst‐dense, thread‐like extensions of the mesenterial filaments―are the characteristic feature of the actiniarian group Acontiaria. Phylogenetic analyses have shown that acontiate taxa form a clade that also includes some taxa without acontia. We analyse five molecular markers from 85 actiniarians to explore the phylogenetic relationships among families in Acontiaria, including acontiate species assigned to other higher taxa and species without acontia that have been allied to Acontiaria. Based on our results, we redefine the group to accommodate those lineages that have lost acontia, and formalize it as superfamily Metridioidea. Based on stable and well supported clades, we resurrect Phelliidae and Amphianthidae, redefine Kadosactinidae and Actinoscyphiidae, and move two species to new genera: that previously termed Sagartiogeton erythraios belongs in Jasonactis gen. nov.; and that previously termed Anthosactis pearseae belongs in Ostiactis gen. nov., type genus of Ostiactinidae fam. nov. We also synonymized Halcampoididae and Halcampidae (as Halcampidae) and Andvakiidae and Isophelliidae (as Andvakiidae). The results of our phylogenetic analyses indicate that the diagnostic morphological characters used in the family‐level taxonomy of acontiate actiniarians such as the nematocysts of the acontia, the marginal sphincter muscle, and mesenteries divisible into macro‐ and micro‐cnemes, have to be revisited, as these features are highly homoplasious.  相似文献   

5.
A chlorarachniophycean alga, Lotharella amoebiformis, which has been classified in the genus Lotharella is placed into a new genus Amorphochlora gen. nov., based on its phylogenetic position, which has been clarified by the recently accumulated molecular phylogenetic information, and the morphological difference between the vegetative cells of the Lotharella species. Following this taxonomic treatment, a new combination Amorphochlora amoebiformis comb. nov., is proposed.  相似文献   

6.
Two populations of Rivularia‐like cyanobacteria were isolated from ecologically distinct and biogeographically distant sites. One population was from an unpolluted stream in the Kola Peninsula of Russia, whereas the other was from a wet wall in the Grand Staircase‐Escalante National Monument, a desert park‐land in Utah. Though both were virtually indistinguishable from Rivularia in field and cultured material, they were both phylogenetically distant from Rivularia and the Rivulariaceae based on both 16S rRNA and rbcLX phylogenies. We here name the new cryptic genus Cyanomargarita gen. nov., with type species C. melechinii sp. nov., and additional species C. calcarea sp. nov. We also name a new family for these taxa, the Cyanomargaritaceae.  相似文献   

7.
8.
Lobophylliidae is a family‐level clade of corals within the ‘robust’ lineage of Scleractinia. It comprises species traditionally classified as Indo‐Pacific ‘mussids’, ‘faviids’, and ‘pectiniids’. Following detailed revisions of the closely related families Merulinidae, Mussidae, Montastraeidae, and Diploastraeidae, this monograph focuses on the taxonomy of Lobophylliidae. Specifically, we studied 44 of a total of 54 living lobophylliid species from all 11 genera based on an integrative analysis of colony, corallite, and subcorallite morphology with molecular sequence data. By examining coral skeletal features at three distinct levels – macromorphology, micromorphology, and microstructure – we built a morphological matrix comprising 46 characters. Data were analysed via maximum parsimony and transformed onto a robust molecular phylogeny inferred using two nuclear (histone H3 and internal transcribed spacers) and one mitochondrial (cytochrome c oxidase subunit I) DNA loci. The results suggest that micromorphological characters exhibit the lowest level of homoplasy within Lobophylliidae. Molecular and morphological trees show that Symphyllia, Parascolymia, and Australomussa should be considered junior synonyms of Lobophyllia, whereas Lobophyllia pachysepta needs to be transferred to Acanthastrea. Our analyses also lend strong support to recent revisions of Acanthastrea, which has been reorganized into five separate genera (Lobophyllia, Acanthastrea, Homophyllia, Sclerophyllia, and Micromussa), and to the establishment of Australophyllia. Cynarina and the monotypic Moseleya remain unchanged, and there are insufficient data to redefine Oxypora, Echinophyllia, and Echinomorpha. Finally, all lobophylliid genera are diagnosed under the phylogenetic classification system proposed here, which will facilitate the placement of extinct taxa on the scleractinian tree of life.  相似文献   

9.
Chlamydomonas (Cd.) is one of the largest but most polyphyletic genera of freshwater unicellular green algae. It consists of 400–600 morphological species and requires taxonomic revision. Toward reclassification, each morphologically defined classical subgenus (or subgroup) should be examined using culture strains. Chlamydomonas subg. Amphichloris is characterized by a central nucleus between two axial pyrenoids, however, the phylogenetic structure of this subgenus has yet to be examined using molecular data. Here, we examined 12 strains including six newly isolated strains, morphologically identified as Chlamydomonas subg. Amphichloris, using 18S rRNA gene phylogeny, light microscopy, and mitochondria fluorescent microscopy. Molecular phylogenetic analyses revealed three independent lineages of the subgenus, separated from the type species of Chlamydomonas, Cd. reinhardtii. These three lineages were further distinguished from each other by light and fluorescent microscopy—in particular by the morphology of the papillae, chloroplast surface, stigmata, and mitochondria—and are here assigned to three genera: Dangeardinia emend., Ixipapillifera gen. nov., and Rhysamphichloris gen. nov. Based on the molecular and morphological data, two to three species were recognized in each genus, including one new species, I. pauromitos. In addition, Cd. deasonii, which was previously assigned to subgroup “Pleiochloris,” was included in the genus Ixipapillifera as I. deasonii comb. nov.  相似文献   

10.
A new subfamily of predaceous diving beetles, Liadytiscinae subfam. nov., including two genera and four species, Liadytiscus gen. nov. (L. cretaceus sp. nov., L. longitibialis sp. nov., and L. latus sp. nov.) and Liadroporus gen. nov. (L. elegans sp. nov.), from the Late Tithonian-Berriasian (Huangbanjigou, Yixian Formation) of China is described. Two new genera, Mesoderus gen. nov. with two species, M. magnus sp. nov. and M. ventralis sp. nov., and Sinoporus gen. nov. with one species, S. lineatus sp. nov., are also described; their position in the system of Dytiscidae remains uncertain. Relationships of the taxa described with Recent and fossil taxa of the same rank and some presumable ecological features of the new taxa are discussed.  相似文献   

11.
Cryptomonads are a ubiquitous and diverse assemblage of aquatic flagellates. The relatively obscure genus Hemiselmis includes some of the smallest of these cells. This genus contained only two species until 1967, when Butcher described seven new marine species mainly on the basis of observations with the light microscope. However, from these seven taxa, only H. amylifera and H. oculata were validly published. Additionally, the features Butcher used to distinguish species have since been questioned, and the taxonomy within Hemiselmis has remained clouded due to the difficulty in unambiguously applying his classification and validating many of his species. As a result, marine strains are often placed into one of three species—H. rufescens Parke, H. virescens Droop, or the invalid H. brunnescens Butcher—based on cell color alone. Here we applied microscopic and molecular tools to 13 publicly available Hemiselmis strains in an effort to clarify species boundaries. SEM failed to provide sufficient morphological variation to distinguish species of Hemiselmis, and results from LM did not correlate with clades found using both molecular phylogenetic and nucleomorph genome karyotype analysis, indicating a high degree of morphological plasticity within species. On the basis of molecular characters and collection geography we recognize four new marine species of HemiselmisH. cryptochromatica sp. nov., H. andersenii sp. nov., H. pacifica sp. nov., and H. tepida sp. nov.—from the waters around North America.  相似文献   

12.
The current study focuses on four species from the primarily marine diatom genus Craspedostauros that were observed growing attached to numerous sea turtles and sea turtle‐associated barnacles from Croatia and South Africa. Three of the examined taxa, C. danayanus sp. nov., C. legouvelloanus sp. nov., and C. macewanii sp. nov., are described based on morphological and, whenever possible, molecular characteristics. The new taxa exhibit characters not previously observed in other members of the genus, such as the presence of more than two rows of cribrate areolae on the girdle bands, shallow perforated septa, and a complete reduction of the stauros. The fourth species, C. alatus, itself recently described from museum sea turtle specimens, is reported for the first time from loggerhead sea turtles rescued in Europe. A 3‐gene phylogenetic analysis including DNA sequence data for three sea turtle‐associated Craspedostauros species and other marine and epizoic diatom taxa indicated that Craspedostauros is monophyletic and sister to Achnanthes. This study, being based on a large number of samples and animal specimens analyzed and using different preservation and processing methods, provides new insights into the ecology and biogeography of the genus and sheds light on the level of intimacy and permanency in the host–epibiont interaction within the epizoic Craspedostauros species.  相似文献   

13.
14.
Members of Calamyzinae, a clade of free‐living and ectoparasitic chrysopetalids, are mainly associated with deep‐sea chemosynthetic environments. The three currently known free‐living calamyzin species are placed in Vigtorniella. A new free‐living calamyzin species similar to these is described here. Phylogenetic analyses of Calamyzinae using mitochondrial (cytochrome c oxidase subunit I and 16S rDNA) and nuclear (Histone H3 and 18S rDNA) loci showed that Vigtorniella and the new species form a grade with respect to an ectoparasitic clade, requiring two new genera to be erected. All free‐living calamyzins show a similar anterior end and chaetal morphology. Micospina auribohnorum gen. et sp. nov. is described for the small‐bodied new species from deep‐sea whale falls off California and methane seeps off Costa Rica. The maximum‐likelihood and Bayesian analyses show Micospina gen. nov. as sister to the ectoparasitic clade. Boudemos gen. nov. is named for the clade of two larger‐bodied species: Boudemos flokati gen. et comb. nov. and Boudemos ardabilia gen. et comb. nov., which is sister group to all other Calamyzinae. Vigtorniella is retained for the type species, Vigtorniella zaikai (Kiseleva, 1992), with the adults found amongst bacterial mats at the boundary of the hydrogen sulphide zone in the Black Sea. Micospina gen. nov., Boudemos gen. nov., and Vigtorniella form a grade of free‐living taxa that is associated with feeding on organic‐enriched sediments, and the latter two taxa display ontogenetic jaw change. Jaws are absent in Micospina auribohnorum gen. et sp. nov. and most of the calamyzin clade of parasitic forms.  相似文献   

15.
Specimens of the velvety shore bugs (Hemiptera: Ochtheridae) occur in the Early Cretaceous Yixian Formation in north‐eastern China. We describe two new genera and three new species –Pristinochterus ovatus Yao, Zhang & Ren sp. nov., Floricaudus multilocellus Yao, Ren & Shih gen.n. et sp.n. and Angulochterus quatrimaculatus Yao, Zhang & Ren gen.n. et sp.n. – from this deposit. A cladistic analysis based on a combination of fossil and extant taxa, and their morphological characters, clarifies the phylogenetic status of the new fossils and allows the reconstruction of relationships within the family Ochteridae. Two main clades within Ochteridae are recognized from the cladistic analysis: Pristinochterus Yao Cai & Ren and Floricaudus Yao, Ren & Shih gen.n. form a monophyletic lineage; and Angulochterus Yao, Zhang & Ren gen.n. emerges as a sister group to all extant velvety shore bugs. A key to all fossil and extant genera of Ochteridae is provided.  相似文献   

16.
17.
The majority of Euglyphida species are characterised by shells with imbricated silica scales. Environmental surveys indicate a large unexplored diversity and recent efforts hinted at a certain diversity of yet undescribed, inconspicuous, scale-lacking Euglyphida. Here we describe Phaeobola aeris gen. nov., sp. nov. that shows a variety of morphological characters typical for the Euglyphida but lacks silica scales-instead, this species bears an agglutinated test. Neither its morphology nor phylogenetic placement allows its assignment to any currently described family. We erected the yet monospecific genus Phaeobola gen. nov., which with yet available data remain Euglyphida incertae sedis.  相似文献   

18.
19.
Two monospecific genera of marine benthic dinoflagellates, Adenoides and Pseudadenoides, have unusual thecal tabulation patterns (lack of cingular plates in the former; and no precingular plates and a complete posterior intercalary plate series in the latter) and are thus difficult to place within a phylogenetic framework. Although both genera share morphological similarities, they have not formed sister taxa in previous molecular phylogenetic analyses. We discovered and characterized a new species of Pseudadenoides, P. polypyrenoides sp. nov., at both the ultrastructural and molecular phylogenetic levels. Molecular phylogenetic analyses of SSU and LSU rDNA sequences demonstrated a close relationship between P. polypyrenoides sp. nov. and Pseudadenoides kofoidii, and Adenoides and Pseudadenoides formed sister taxa in phylogenetic trees inferred from LSU rDNA sequences. Comparisons of morphological traits, such as the apical pore complex (APC), demonstrated similarities between Adenoides, Pseudadenoides and several planktonic genera (e.g. Heterocapsa, Azadinium and Amphidoma). Molecular phylogenetic analyses of SSU and LSU rDNA sequences also demonstrated an undescribed species within Adenoides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号