首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Earthworms are globally distributed and perform essential roles for soil health and microbial structure. We have investigated the effect of an anthropogenic contamination gradient on the bacterial community of the keystone ecological species Lumbricus rubellus through utilizing 16S rRNA pyrosequencing for the first time to establish the microbiome of the host and surrounding soil. The earthworm‐associated microbiome differs from the surrounding environment which appears to be a result of both filtering and stimulation likely linked to the altered environment associated with the gut micro‐habitat (neutral pH, anoxia and increased carbon substrates). We identified a core earthworm community comprising Proteobacteria (~50%) and Actinobacteria (~30%), with lower abundances of Bacteroidetes (~6%) and Acidobacteria (~3%). In addition to the known earthworm symbiont (Verminephrobacter sp.), we identified a potential host‐associated Gammaproteobacteria species (Serratia sp.) that was absent from soil yet observed in most earthworms. Although a distinct bacterial community defines these earthworms, clear family‐ and species‐level modification were observed along an arsenic and iron contamination gradient. Several taxa observed in uncontaminated control microbiomes are suppressed by metal/metalloid field exposure, including eradication of the hereto ubiquitously associated Verminephrobacter symbiont, which raises implications to its functional role in the earthworm microbiome.  相似文献   

2.
The commensal microbiota plays an important role in the well-being of the host organism, and it would be worthwhile to know the tenacious communities among them. Therefore, a study was undertaken to examine the changes in constitution of the intestinal microbiota of wild fish consequential to captivity. At first, the composition of intestinal microorganisms of Atlantic cod caught from the coastal area off Bod?, Norway, was examined. Thereafter, the changes in the bacterial community of the captive fish after offering them artificial feed or subjecting them to starvation were studied. The microbiota from the intestinal contents and wall segments were analyzed quantitatively by spread plate technique and DAPI staining and qualitatively by denaturing gradient gel electrophoresis. The study revealed that the counts of intestinal microbes in wild-caught Atlantic cod were not affected by captive rearing for 6?weeks, either when fed or when starved. However, the diversity of intestinal bacterial community was reduced in response to artificial feeding, whereas the change was restricted upon starvation.  相似文献   

3.
Studies on bacterial plant diseases have thus far been focused on the single bacterial species causing the disease, with very little attention given to the many other microorganisms present in the microbiome. This study intends to use pathobiome analysis of the rice foot rot disease, caused by Dickeya zeae, as a case study to investigate the effects of this bacterial pathogen to the total resident microbiome and to highlight possible interactions between the pathogen and the members of the community involved in the disease process. The microbiome of asymptomatic and the pathobiome of foot-rot symptomatic field-grown rice plants over two growing periods and belonging to two rice cultivars were determined via 16S rRNA gene amplicon sequencing. Results showed that the presence of D. zeae is associated with an alteration of the resident bacterial community in terms of species composition, abundance and richness, leading to the formation of microbial consortia linked to the disease state. Several bacterial species were significantly co-presented with the pathogen in the two growing periods suggesting that they could be involved in the disease process. Besides, culture-dependent isolation and in planta inoculation studies of a bacterial member of the pathobiome, identified as positive correlated with the pathogen in our in silico analysis, indicated that it benefits from the presence of D. zeae. A similar microbiome/pathobiome experiment was also performed in a symptomatically different rice disease evidencing that not all plant diseases have the same consequence/relationship with the plant microbiome. This study moves away from a pathogen-focused stance and goes towards a more ecological perception considering the effect of the entire microbial community which could be involved in the pathogenesis, persistence, transmission and evolution of plant pathogens.  相似文献   

4.
Milk is inhabited by a community of bacteria and is one of the first postnatal sources of microbial exposure for mammalian young. Bacteria in breast milk may enhance immune development, improve intestinal health, and stimulate the gut‐brain axis for infants. Variation in milk microbiome structure (e.g., operational taxonomic unit [OTU] diversity, community composition) may lead to different infant developmental outcomes. Milk microbiome structure may depend on evolutionary processes acting at the host species level and ecological processes occurring over lactation time, among others. We quantified milk microbiomes using 16S rRNA high‐throughput sequencing for nine primate species and for six primate mothers sampled over lactation. Our data set included humans (Homo sapiens, Philippines and USA) and eight nonhuman primate species living in captivity (bonobo [Pan paniscus], chimpanzee [Pan troglodytes], western lowland gorilla [Gorilla gorilla gorilla], Bornean orangutan [Pongo pygmaeus], Sumatran orangutan [Pongo abelii], rhesus macaque [Macaca mulatta], owl monkey [Aotus nancymaae]) and in the wild (mantled howler monkey [Alouatta palliata]). For a subset of the data, we paired microbiome data with nutrient and hormone assay results to quantify the effect of milk chemistry on milk microbiomes. We detected a core primate milk microbiome of seven bacterial OTUs indicating a robust relationship between these bacteria and primate species. Milk microbiomes differed among primate species with rhesus macaques, humans and mantled howler monkeys having notably distinct milk microbiomes. Gross energy in milk from protein and fat explained some of the variations in microbiome composition among species. Microbiome composition changed in a predictable manner for three primate mothers over lactation time, suggesting that different bacterial communities may be selected for as the infant ages. Our results contribute to understanding ecological and evolutionary relationships between bacteria and primate hosts, which can have applied benefits for humans and endangered primates in our care.  相似文献   

5.
Intraspecific diversity is central to the management and conservation of exploited species, yet knowledge of how this diversity is distributed and maintained in the genome of many marine species is lacking. Recent advances in genomic analyses allow for genome‐wide surveys of intraspecific diversity and offer new opportunities for exploring genomic patterns of divergence. Here, we analysed genome‐wide polymorphisms to measure genetic differentiation between an offshore migratory and a nonmigratory population and to define conservation units of Atlantic Cod (Gadus morhua) in coastal Labrador. A total of 141 individuals, collected from offshore sites and from a coastal site within Gilbert Bay, Labrador, were genotyped using an ~11k single nucleotide polymorphism array. Analyses of population structure revealed strong genetic differentiation between migratory offshore cod and nonmigratory Gilbert Bay cod. Genetic differentiation was elevated for loci within a chromosomal rearrangement found on linkage group 1 (LG1) that coincides with a previously found double inversion associated with migratory and nonmigratory ecotype divergence of cod in the northeast Atlantic. This inverted region includes several genes potentially associated with adaptation to differences in salinity and temperature, as well as influencing migratory behaviour. Our work provides evidence that a chromosomal rearrangement on LG1 is associated with parallel patterns of divergence between migratory and nonmigratory ecotypes on both sides of the Atlantic Ocean.  相似文献   

6.
Microbial communities, associated with almost all metazoans, can be inherited from the environment. Although the honeybee (Apis mellifera L.) gut microbiome is well documented, studies of the gut focus on just a small component of the bee microbiome. Other key areas such as the comb, propolis, honey, and stored pollen (bee bread) are poorly understood. Furthermore, little is known about the relationship between the pollinator microbiome and its environment. Here we present a study of the bee bread microbiome and its relationship with land use. We estimated bacterial community composition using both Illumina MiSeq DNA sequencing and denaturing gradient gel electrophoresis (DGGE). Illumina was used to gain a deeper understanding of precise species diversity across samples. DGGE was used on a larger number of samples where the costs of MiSeq had become prohibitive and therefore allowed us to study a greater number of bee breads across broader geographical axes. The former demonstrates bee bread comprises, on average, 13 distinct bacterial phyla; Bacteroidetes, Firmicutes, Alpha‐proteobacteria, Beta‐proteobacteria, and Gamma‐proteobacteria were the five most abundant. The most common genera were Pseudomonas, Arsenophonus, Lactobacillus, Erwinia, and Acinetobacter. DGGE data show bacterial community composition and diversity varied spatially and temporally both within and between hives. Land use data were obtained from the 2007 Countryside Survey. Certain habitats, such as improved grasslands, are associated with low diversity bee breads, meaning that these environments may be poor sources of bee‐associated bacteria. Decreased bee bread bacterial diversity may result in reduced function within hives. Although the dispersal of microbes is ubiquitous, this study has demonstrated landscape‐level effects on microbial community composition.  相似文献   

7.
The Atlantic cod (Gadus morhua) is economically one of the world's most important marine species--a species presently suffering from heavy overexploitation throughout its range of distribution. Although not fully understood, the Atlantic cod is believed to be structured into populations in a rather complex manner, whereby both highly migratory and more confined ocean-spawning stocks coexist with stationary coastal populations. Owing to the complex population structure, little is presently known about how overexploitation of offshore stocks may affect other segments of the species. Here, we use microsatellite DNA analyses of coastal and offshore cod in combination with oceanographic modelling to investigate the population structure of Atlantic cod in the North Sea-Skagerrak area and evaluate the potential for larval transport into coastal populations. Our results suggest an extensive but temporally variable drift of offshore cod larvae into coastal populations. In a year (2001) with high inflow of North Sea waters into the Skagerrak we find that juvenile cod caught along the Skagerrak coast are predominantly of North Sea origin, whereas in a year (2000) with low inflow juveniles appear to be of local origin. These findings indicate that offshore cod may influence coastal cod populations over large distances.  相似文献   

8.
Five isolates from marine fish (W3T, WM, W1S, S2 and S3) and three isolates misclassified as Photobacterium phosphoreum, originating from spoiled modified atmosphere packed stored cod (NCIMB 13482 and NCIMB 13483) and the intestine of skate (NCIMB 192), were subjected to a polyphasic taxonomic study. Phylogenetic analysis of 16S rRNA gene sequences showed that the isolates were members of the genus Photobacterium. Sequence analysis using the gapA, gyrB, pyrH, recA and rpoA loci showed that these isolates formed a distinct branch in the genus Photobacterium, and were most closely related to Photobacterium aquimaris, Photobacterium kishitanii, Photobacterium phosphoreum and Photobacterium iliopiscarium. The luxA gene was present in isolates W3T, WM, W1S, S2 and S3 but not in NCIMB 13482, NCIMB 13483 and NCIMB 192. AFLP and (GTG)5-PCR fingerprinting indicated that the eight isolates represented at least five distinct genotypes. DNA–DNA hybridizations revealed 89% relatedness between isolate W3T and NCIMB 192, and values below 70% with the type strains of the phylogenetically closest species, P. iliopiscarium LMG 19543T, P. kishitanii LMG 23890T, P. aquimaris LMG 26951T and P. phosphoreum LMG4233T. The strains of this new taxon could also be distinguished from the latter species by phenotypic characteristics. Therefore, we propose to classify this new taxon as Photobacterium piscicola sp. nov., with W3T (=NCCB 100098T = LMG 27681T) as the type strain.  相似文献   

9.
An allozyme investigation of 41 protein-coding loci in two morphologically similar fishes, Atlantic and Pacific cod, indicates that Pacific cod experienced a severe population bottleneck that led to the loss of gene diversity and gene expression. Pacific cod possesses a significantly lesser amount of gene diversity (H = 0.032) than Atlantic cod (H = 0.125) and lacks gene expression for Me-3. Allele-frequency distributions differ between species as predicted by neutral theory: Atlantic cod has a U-shaped distribution, which is expected for populations in drift-mutation equilibrium, whereas Pacific cod has a J-shaped distribution with an excess of low-frequency alleles. This excess may be explained by the appearance of new alleles through mutation which have not yet reached intermediate frequencies through drift. The population bottleneck in Pacific cod was most likely associated with founder populations that dispersed into the Pacific Ocean after the Bering Strait opened. Under the molecular-clock hypothesis a Nei genetic distance of 0.415 (based on 41 loci) suggests that Pacific cod dispersed into the Pacific Ocean soon after the Bering Strait opened in the mid-Pliocene, 3.0 to 3.5 million years ago.  相似文献   

10.
Microorganisms provide many physiological functions to herbivorous hosts. Spider mites (genus Tetranychus) are important agricultural pests throughout the world; however, the composition of the spider mite microbial community, especially gut microbiome, remains unclear. Here, we investigated the bacterial community in five spider mite species and their associated feces by deep sequencing of the 16S rRNA gene. The composition of the bacterial community was significantly different among the five prevalent spider mite species, and some bacterial symbionts showed host‐species specificity. Moreover, the abundance of the bacterial community in spider mite feces was significantly higher than that in the corresponding spider mite samples. However, Flavobacterium was detected in all samples, and represent a “core microbiome”. Remarkably, the maternally inherited endosymbiont Wolbachia was detected in both spider mite and feces. Overall, these results offer insight into the complex community of symbionts in spider mites, and give a new direction for future studies.  相似文献   

11.
The Atlantic cod (Gadus morhua) is an important natural resource for northern societies and is now also considered to be a promising candidate for aquaculture. In recent years, much effort has been directed towards the development of genomic tools, and genome initiatives for Atlantic cod have been established. Despite the growing attention devoted to the Atlantic cod genomics, basic aspects of its genome structure and organization remain unknown. Thus, the present work aims to study cytogenetic features of the Atlantic cod as a contribution to the knowledge of this species' genome. The Atlantic cod displays a diploid number of 46 chromosomes, with a karyotypic formula 16 m/sm + 30 st/t. Conventional karyotyping was improved by chromosomal mapping of two classes of repetitive sequences. 18S rDNA clusters were assigned to pairs 2 and 4; small amounts of 18S rDNA clusters were occasionally detected on pair 5. These findings could not be related to the geographical origin of the specimens, but were consistent with the variability of these repeated genes in fish in general. 5S ribosomal gene clusters, apparently corresponding to a single 5S rDNA class, were detected on twelve chromosomes (pairs 11, 12, 14, 17, 20 and 21). The present update of the existing but meagre information on the karyotype of Atlantic cod, plus the first physical mapping of repetitive genes in this species herein, opens the way for an integrated approach that combines genetic and physical mapping with the assembly of the genome of this commercially important species.  相似文献   

12.
During a recent period of increased influx of warm Atlantic water to the western coast of Svalbard, we have observed a northward expansion of boreal Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) into areas dominated by the native polar cod (Boreogadus saida). To determine the potential impact of new ecological interactions, we studied the diet of co-occurring juvenile gadoids in fjords, open water, and sea ice around Svalbard. We also reviewed the available literature on polar cod feeding in different habitats across the Arctic to determine whether region, habitat, or fish size may influence diet. Feeding by polar cod in the pelagic zone was size dependent, with small fish primarily consuming Calanus spp. and smaller copepods, with an increasing ration of Themisto spp. at larger sizes. In benthic habitats, diets were more varied and included considerably more unidentified material and sediment. Less than 40% dietary overlap was detected among the three species when they were found together. Stable isotope analyses indicated these patterns were representative of longer-term assimilation. The low interspecific dietary overlap suggests little direct competition. Future increases in abundance and the high predation potential of the boreal taxa, however, may impact the persistence of polar cod on some Arctic shelves.  相似文献   

13.
Different cold-water coral (CWC) species harbour distinct microbial communities and the community composition is thought to be linked to the ecological strategies of the host. Here we test whether diet shapes the composition of bacterial communities associated with CWC. We compared the microbiomes of two common CWC species in aquaria, Lophelia pertusa and Madrepora oculata, when they were either starved, or fed respectively with a carnivorous diet, two different herbivorous diets, or a mix of the 3. We targeted both the standing stock (16S rDNA) and the active fraction (16S rRNA) of the bacterial communities and showed that in both species, the corals' microbiome was specific to the given diet. A part of the microbiome remained, however, species-specific, which indicates that the microbiome's plasticity is framed by the identity of the host. In addition, the storage lipid content of the coral tissue showed that different diets had different effects on the corals' metabolisms. The combined results suggest that L. pertusa may be preying preferentially on zooplankton while M. oculata may in addition use phytoplankton and detritus. The results cast a new light on coral microbiomes as they indicate that a portion of the CWC's bacterial community could represent a food influenced microbiome.  相似文献   

14.
Planktonic cyanobacteria belonging to the genus Synechococcus are ubiquitously distributed in marine and fresh waters, substantially contributing to total carbon fixation on a global scale. While their ecological relevance is acknowledged, increasing resolution in molecular techniques allows disentangling cyanobacteria's role at the micro‐scale, where complex microbial interactions may drive the overall community assembly. The interplay between phylogenetically different Synechococcus clades and their associated bacterial communities can affect their ecological fate and susceptibility to protistan predation. In this study, we experimentally promoted different levels of ecological interaction by mixing two Synechococcus ribotypes (MW101C3 and LL) and their associated bacteria, with and without a nanoflagellate grazer (Poterioochromonas sp.) in laboratory cultures. The beta‐diversity of the Synechococcus‐associated microbiome in laboratory cultures indicated that the presence of the LL ribotype was the main factor determining community composition changes (41% of total variance), and prevailed over the effect of protistan predation (18% of total variance). Our outcomes also showed that species coexistence and predation may promote microbial diversity, thus highlighting the underrated ecological relevance of such micro‐scale factors.  相似文献   

15.
16.
Standard metabolic rate of Greenland cod or uvak, Gadus ogac, polar cod, Boreogadus saida, Atlantic cod, Gadus morhua, and sculpin, Myxocephalus scorpius, caught in the same geographical area on the west coast of Greenland was measured at 4.5°C, the temperature at which the fish were caught. The present data does not support the Metabolic Cold Adaptation theory in the traditional sense of the standard metabolic rate being 2–4 times higher for Arctic fishes than for temperate species. The standard metabolic rate of the two exclusively Arctic species of teleosts was only 10% and 26% higher, respectively, than the two species that occur in temperate as well as Arctic areas. The critical oxygen tension, with respect to oxygen consumption, of resting uvak was between 50 and 60 mmHg, and the lethal oxygen tension 20–25 mmHg at 4.5°C, which is considerably higher than for Atlantic cod from a temperate area measured at the same temperature.  相似文献   

17.
The composition and diversity of bacteria forming the microbiome of parasitic organisms have implications for differential host pathogenicity and host–parasite co‐evolutionary interactions. The microbiome of pathogens can therefore have consequences that are relevant for managing disease prevalence and impact on affected hosts. Here, we investigate the microbiome of an invasive parasitic fly Philornis downsi, recently introduced to the Galápagos Islands, where it poses extinction threat to Darwin's finches and other land birds. Larvae infest nests of Darwin's finches and consume blood and tissue of developing nestlings, and have severe mortality impacts. Using 16s rRNA sequencing data, we characterize the bacterial microbiota associated with P. downsi adults and larvae sourced from four finch host species, inhabiting two islands and representing two ecologically distinct groups. We show that larval and adult microbiomes are dominated by the phyla Proteobacteria and Firmicutes, which significantly differ between life stages in their distributions. Additionally, bacterial community structure significantly differed between larvae retrieved from strictly insectivorous warbler finches (Certhidea olivacea) and those parasitizing hosts with broader dietary preferences (ground and tree finches, Geospiza and Camarhynchus spp., respectively). Finally, we found no spatial effects on the larval microbiome, as larvae feeding on the same host (ground finches) harboured similar microbiomes across islands. Our results suggest that the microbiome of P. downsi changes during its development, according to dietary composition or nutritional needs, and is significantly affected by host‐related factors during the larval stage. Unravelling the ecological significance of bacteria for this parasite will contribute to the development of novel, effective control strategies.  相似文献   

18.
The maintenance of the beneficial plant microbiome to control plant pathogens is an emerging concept of disease management, and necessitates a clear understanding of these microbial communities and the environmental factors that affect their diversity and compositional structure. As such, studies investigating the microbiome of economically significant cultivars within each growing region are necessary to develop adequate disease management strategies. Here, we assessed the relative impacts of growing season, management strategy, and geographical location on the fungal microbiome of ‘Honeycrisp’ apples from seven different orchard locations in the Atlantic Maritime Ecozone for two consecutive growing years. Though apple fruit tissue was dominated by relatively few fungal genera, significant changes in their fungal communities were observed as a result of environmental factors, including shifts in genera with plant-associated lifestyles (symbionts and pathogens), such as Aureobasidium, Alternaria, Penicillium, Diplodia, and Mycosphaerella. Variation in fungal composition between different tissues of fruit was also observed. We demonstrate that growing season is the most significant factor affecting fungal community structure and diversity of apple fruit, suggesting that future microbiome studies should take place for multiple growing seasons to better represent the host–microbiome of perennial crops under different environmental conditions.  相似文献   

19.
The gut microbiomes of birds and other animals are increasingly being studied in ecological and evolutionary contexts. Numerous studies on birds and reptiles have made inferences about gut microbiota using cloacal sampling; however, it is not known whether the bacterial community of the cloaca provides an accurate representation of the gut microbiome. We examined the accuracy with which cloacal swabs and faecal samples measure the microbiota in three different parts of the gastrointestinal tract (ileum, caecum, and colon) using a case study on juvenile ostriches, Struthio camelus, and high‐throughput 16S rRNA sequencing. We found that faeces were significantly better than cloacal swabs in representing the bacterial community of the colon. Cloacal samples had a higher abundance of Gammaproteobacteria and fewer Clostridia relative to the gut and faecal samples. However, both faecal and cloacal samples were poor representatives of the microbial communities in the caecum and ileum. Furthermore, the accuracy of each sampling method in measuring the abundance of different bacterial taxa was highly variable: Bacteroidetes was the most highly correlated phylum between all three gut sections and both methods, whereas Actinobacteria, for example, was only strongly correlated between faecal and colon samples. Based on our results, we recommend sampling faeces, whenever possible, as this sample type provides the most accurate assessment of the colon microbiome. The fact that neither sampling technique accurately portrayed the bacterial community of the ileum nor the caecum illustrates the difficulty in noninvasively monitoring gut bacteria located further up in the gastrointestinal tract. These results have important implications for the interpretation of avian gut microbiome studies.  相似文献   

20.
A growing body of knowledge on the diversity and evolution of intertidal isopods across different regions worldwide has enhanced our understanding on biological diversification at the poorly studied, yet vast, sea–land interface. High genetic divergences among numerous allopatric lineages have been identified within presumed single broadly distributed species. Excirolana mayana is an intertidal isopod that is commonly found in sandy beaches throughout the Gulf of California. Its distribution in the Pacific extends from this basin to Colombia and in the Atlantic from Florida to Venezuela. Despite its broad distribution and ecological importance, its evolutionary history has been largely neglected. Herein, we examined phylogeographic patterns of E. mayana in the Gulf of California and the Caribbean, based on maximum‐likelihood and Bayesian phylogenetic analyses of DNA sequences from four mitochondrial genes (16S rDNA, 12S rDNA, cytochrome oxidase I gene, and cytochrome b gene). We compared the phylogeographic patterns of E. mayana with those of the coastal isopods Ligia and Excirolana braziliensis (Gulf of California and Caribbean) and Tylos (Gulf of California). We found highly divergent lineages in both, the Gulf of California and Caribbean, suggesting the presence of multiple species. We identified two instances of Atlantic–Pacific divergences. Some geographical structuring among the major clades found in the Caribbean is observed. Haplotypes from the Gulf of California form a monophyletic group sister to a lineage found in Venezuela. Phylogeographic patterns of E. mayana in the Gulf of California differ from those observed in Ligia and Tylos in this region. Nonetheless, several clades of E. mayana have similar distributions to clades of these two other isopod taxa. The high levels of cryptic diversity detected in E. mayana also pose challenges for the conservation of this isopod and its fragile environment, the sandy shores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号