首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This study examined the novel ring‐shaped structures found in the apical surface of individual cells of the scale epidermis of koi Cyprinus carpio. These apical rings are highly dynamic structures with lifetimes ranging from a few to several minutes. While several ring forms were observed, the predominant ring morphology is circular or oval. Two distinct ring forms were identified and designated type I and type II. Type I rings have a well‐defined outer border that encircles the surface microridges. Type II rings are smooth‐surfaced, dinner‐plate‐like structures with membranous folds or compressed microridges in the centre. Type II rings appear less frequently than type I rings. Type I rings form spontaneously, arising from swollen or physically interrupted microridges but without initially perturbing the encircled microridges. After persisting for up to several minutes the ring closes in a centripetal movement to form a circular or irregular‐shaped structure, the terminal disc. The terminal disc eventually disappears, leaving behind a submembranous vesicle‐like structure, the terminal body. Type I rings can undergo multiple cycles of formation and closing. Recycling epidermal apical rings form through centrifugal expansion from the terminal disc followed by apparent contraction back to the disc structure, whereupon the cycle may repeat or cease. The findings demonstrate a novel skin surface structure in fishes and are discussed with respect to communication with the external aqueous environment.  相似文献   

2.
Microridges are F-actin-based surface protrusions of the superficial layer cells of fish epidermis. Microridge patterns progress in complexity during fish embryogenesis, often transitioning from abundant surface microvilli to the classical fingerprint arrangement. This progression suggests pattern changes may also occur during later stages of fish development. Fluorescent labelling of F-actin and morphometric analysis were therefore used to assess changes in epidermal microridge patterns in juvenile and adult sunfish (Lepomis gibbosus). The microridge patterns found in adult pumpkinseed were similar to that described for many fishes, consisting of whorls or complex multi-branched ridges. The microridge patterns of the scales from three different-sized groups of juvenile pumpkinseed were distinctly different from that of adult, however, and were present mainly as unbranched concentric or nearly concentric rings in the two larger juvenile groups. In the smallest juveniles, microridges were often apparent as fragmented ridges with abundant actin puncta. Larger juveniles sometimes displayed mixed patterns, with some microridges similar to that of both adult and juvenile patterns. The results show a transition from simple microridge patterns in juvenile pumpkinseeds to distinctly different, diverse and more complex patterns in adults. The different pattern types may reflect particular microridge functions relevant to fish size and age.  相似文献   

3.
The plant cytoskeleton plays a crucial role in the cells’ growth and development during different developmental stages and it undergoes many rearrangements. In order to describe the arrangements of the F-actin cytoskeleton in root epidermal cells of Arabidopsis thaliana, the recently developed software MicroFilament Analyzer (MFA) was exploited. This software enables high-throughput identification and quantification of the orientation of filamentous structures on digital images in a highly standardized and fast way. Using confocal microscopy and transgenic GFP-FABD2-GFP plants the actin cytoskeleton was visualized in the root epidermis. MFA analysis revealed that during the early stages of cell development F-actin is organized in a mainly random pattern. As the cells grow, they preferentially adopt a longitudinal organization, a pattern that is also preserved in the largest cells. In the evolution from young to old cells, an approximately even distribution of transverse, oblique or combined orientations is always present besides the switch from random to a longitudinal oriented actin cytoskeleton.  相似文献   

4.
Actin microridges form labyrinth like patterns on superficial epithelial cells across animal species. This highly organized assembly has been implicated in mucus retention and in the mechanical structure of mucosal surfaces, however the mechanisms that regulate actin microridges remain largely unknown. Here we characterize the composition and dynamics of actin microridges on the surface of zebrafish larvae using live imaging. Microridges contain phospho-tyrosine, cortactin and VASP, but not focal adhesion kinase. Time-lapse imaging reveals dynamic changes in the length and branching of microridges in intact animals. Transient perturbation of the microridge pattern occurs before cell division with rapid re-assembly during and after cytokinesis. Microridge assembly is maintained with constitutive activation of Rho or inhibition of myosin II activity. However, expression of dominant negative RhoA or Rac alters microridge organization, with an increase in distance between microridges. Latrunculin A treatment and photoconversion experiments suggest that the F-actin filaments are actively treadmilling in microridges. Accordingly, inhibition of Arp2/3 or PI3K signaling impairs microridge structure and length. Taken together, actin microridges in zebrafish represent a tractable in vivo model to probe pattern formation and dissect Arp2/3-mediated actin dynamics in vivo.  相似文献   

5.
Elongation of the epidermis of the nematode Caenorhabditis elegans involves both actomyosin-mediated changes in lateral epidermal cell shape and body muscle attachment to dorsal and ventral epidermal cells via intermediate-filament/hemidesmosome structures. vab-19 mutants are defective in epidermal elongation and muscle attachment to the epidermis. VAB-19 is a member of a conserved family of ankyrin repeat-containing proteins that includes the human tumor suppressor Kank. In epidermal cells, VAB-19::GFP localizes with components of epidermal attachment structures. In vab-19 mutants, epidermal attachment structures form normally but do not remain localized to muscle-adjacent regions of the epidermis. VAB-19 localization requires function of the transmembrane attachment structure component Myotactin. vab-19 mutants also display aberrant actin organization in the epidermis. Loss of function in the spectrin SMA-1 partly bypasses the requirement for VAB-19 in elongation, suggesting that VAB-19 and SMA-1/spectrin might play antagonistic roles in regulation of the actin cytoskeleton.  相似文献   

6.
Koi scale epidermis contains large intra‐epidermal bodies (IEBs). IEBs are dynamic and circular structures that form in low frequency within the epidermis. During formation, an IEB pulls down the microridge‐laden surface layer, which takes on a creased or wrinkled appearance. After the IEB constricts, the microridge layer unfolds to its original state. The newly described IEBs are distinctly different from the recently reported apical rings which are situated on the surface of individual epidermal cells. While apical rings are directly exposed to the external environment where sampling can occur, IEBs appear to reflect intra‐epidermal events such as sequestering of dead cell remnants.  相似文献   

7.
Comparative studies on scale structure and development in bony fish have led to the hypothesis that elasmoid scales in teleosts could be dental in origin. The present work was undertaken to determine whether the scales in zebrafish (Danio rerio), a species widely used in genetics and developmental biology, would be an appropriate focus for further studies devoted to the immunodetection of dental components or to the detection of the expression of genes coding for various dental proteins in fish scales. The superficial region of mature and experimentally regenerated scales and its relationships to the epidermal cover were studied in adult zebrafish using scanning (SEM) and transmission (TEM) electron microscopy. The elasmoid scales are relatively large, thin, and are located in the upper region of the dermis, close to the epidermis. In adults, the surface of the posterior region appears smooth at the SEM level and is entirely covered by the epidermis. During regeneration, the relationship of the epidermal cover to the scale surface is established within 4 days. This interface is easier to study in regenerating than in mature scales because the former are poorly mineralized. TEM revealed that: (1) the epidermis is in direct contact with the scale surface, from which it is separated only by a basement membrane-like structure, (2) there are no dermal elements at the scale surface except at the level of grooves issuing from the focus and crossing the scale surface radially, (3) the mineral crystals located in this superficial region are perpendicular to the scale surface, whereas those located deeper within the collagenous scale matrix are randomly disposed, and (4) when decalcified, the matrix of the superficial region of the scale appears devoid of collagen fibrils but contains thin electron-dense granules, some of which are arranged into layers. The continuous epidermal covering, the absence of dermal elements, as well as the fine structure of the matrix and its type of mineralization, strongly suggest that epidermal products, possibly enamel-like proteins, are deposited at the scale surface and contribute to the thickening of the upper layer in zebrafish scales. J. Morphol. 231:161–174, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Fodil R  Laurent V  Planus E  Isabey D 《Biorheology》2003,40(1-3):241-245
Evaluation of the cytoskeleton mechanical properties requires specific micromanipulation techniques such as the magnetic twisting cytometry technique, in which microbeads are specifically linked to the cytoskeleton via transmembrane receptors. The aim of the study was to assess the structural relationship between the bead and the cytoskeleton structure. The spatial arrangement of the CSK network was therefore studied in fixed cells probed by beads and stained for F-actin by rhodamined phallo?dine. The spatial character of the actin CSK network, both in the bead neighborhood and at the cell scale, could then be studied for various degrees of fluorescent intensity from 3D-images of the actin structure, reconstructed from z-stack views obtained by confocal microscopy. Results show the feasibility of the staining/reconstruction technique which allows to reveal the three-dimensional organization of the cytoskeleton structure including an internal cytosolic structure with a high fluorescent F-actin intensity, and a sub-membranous cortical structure with a low fluorescent F-actin intensity.  相似文献   

9.
The plasmatic membranes, the intercellular junctions and the intercellular spaces of the epidermis of the fish Pimelodus maculatus were studied by freeze-fracture and by lanthanum methods. The observations has confirmed the presence of desmosomes. Gap junctions were not found and the tight junctions can be seen very rarely, arranged to form small discrete maculae. The finger-print pattern due to the microridges of the apical plasma membrane of the superficial cells was studied by direct replicas. The tracer penetrates all the intercellular epidermal spaces but failed to penetrate the dermis, suggesting the presence of a barrier at the dermo-epidermal level.  相似文献   

10.
The biochemical mechanism by which the human tumorous imaginal disc1(S) (hTid-1(S)) interferes with actin cytoskeleton organization in keratinocytes of human skin epidermis was investigated. We found that hTid-1, specifically hTid-1(S), interacts with MK5, a p38-regulated/activated protein kinase, and inhibits the protein kinase activity of MK5 that phosphorylates heat shock protein HSP27 in cultured HeLa cells. Thus, hTid-1(S) expression inhibits the phosphorylation of HSP27 known to play important roles in F-actin polymerization and actin cytoskeleton organization. The interplay between MK5/HSP27 signaling and hTid-1(S) expression was supported by the inhibition of HSP27 phosphorylation and MK5 activity in HeLa cells in response to hypoxia during which hTid-1(S) expression was down-regulated. We also found that overexpression of hTid-1(S) results in the inhibition of HSP27 phosphorylation, F-actin polymerization, and actin cytoskeleton organization in transduced HaCaT keratinocytes. This study further proposes that the loss of hTid-1(S) expression in the basal layer of skin epidermis correlates with the enhanced HSP27 phosphorylation, keratinocyte hyperproliferation, and excess actin cytoskeleton organization in lesional psoriatic skin.  相似文献   

11.
The morphogenesis and ultrastructure of the epidermis of snake embryos were studied at progressive stages of development through hatching to determine the time and modality of differentiation of the shedding complex. Scales form as symmetric epidermal bumps that become slanted and eventually very overlapped. During the asymmetrization of the bumps, the basal cells of the forming outer surface of the scale become columnar, as in an epidermal placode, and accumulate glycogen. Small dermal condensations are sometimes seen and probably represent primordia of the axial dense dermis of the growing tip of scales. Deep, dense, and superficial loose dermal regions are formed when the epidermis is bilayered (periderm and basal epidermis) and undifferentiated. Glycogen and lipids decrease from basal cells to differentiating suprabasal cells. On the outer scale surface, beneath the peridermis, a layer containing dense granules and sparse 25-30-nm thick coarse filaments is formed. The underlying clear layer does not contain keratohyalin-like granules but has a rich cytoskeleton of intermediate filaments. Small denticles are formed and they interdigitate with the oberhautchen spinulae formed underneath. On the inner scale surface the clear layer contains dense granules, coarse filaments, and does not form denticles with the aspinulated oberhautchen. On the inner side surface the oberhautchen only forms occasional spinulae. The sloughing of the periderm and embryonic epidermis takes place in ovo 5-6 days before hatching. There follow beta-, mesos-, and alpha-layers, not yet mature before hatching. No resting period is present but a new generation is immediately produced so that at 6-10 h posthatching an inner generation and a new shedding complex are forming beneath the outer generation. The first shedding complex differentiates 10-11 days before hatching. In hatchlings 6-10 h old, tritiated histidine is taken up in the epidermis 4 h after injection and is found mainly in the shedding complex, especially in the apposed membranes of the clear layer and oberhautchen cells. This indicates that a histidine-rich protein is produced in preparation for shedding, as previously seen in lizard epidermis. The second shedding (first posthatching) takes place at 7-9 days posthatching. It is suggested that the shedding complex in lepidosaurian reptiles has evolved after the production of a histidine-rich protein and of a beta-keratin layer beneath the former alpha-layer.  相似文献   

12.
The actin cytoskeleton is involved in the transport and positioning of Golgi bodies, but the actin-based processes that determine the positioning and motility behavior of Golgi bodies are not well understood. In this work, we have studied the relationship between Golgi body motility behavior and actin organization in intercalary growing root epidermal cells during different developmental stages. We show that in these cells two distinct actin configurations are present, depending on the developmental stage. In small cells of the early root elongation zone, fine filamentous actin (F-actin) occupies the whole cell, including the cortex. In larger cells in the late elongation zone that have almost completed cell elongation, actin filament bundles are interspersed with areas containing this fine F-actin and areas without F-actin. Golgi bodies in areas with the fine F-actin exhibit a non-directional, wiggling type of motility. Golgi bodies in areas containing actin filament bundles move up to 7 μm s?1. Since the motility of Golgi bodies changes when they enter an area with a different actin configuration, we conclude that the type of movement depends on the actin organization and not on the individual organelle. Our results show that the positioning of Golgi bodies depends on the local actin organization.  相似文献   

13.
14.
Cells in vascular and other tubular networks require apical polarity in order to contact each other properly and to form lumen. As tracheal branches join together in Drosophila melanogaster embryos, specialized cells at the junction form a new E-cadherin-based contact and assemble an associated track of F-actin and the plakin Short Stop (shot). In these fusion cells, the apical surface determinant Discs Lost (Dlt) is subsequently deposited and new lumen forms along the track. In shot mutant embryos, the fusion cells fail to remodel the initial E-cadherin contact, to make an associated F-actin structure and to form lumenal connections between tracheal branches. Shot binding to F-actin and microtubules is required to rescue these defects. This finding has led us to investigate whether other regulators of the F-actin cytoskeleton similarly affect apical cell surface remodeling and lumen formation. Expression of constitutively active RhoA in all tracheal cells mimics the shot phenotype and affects Shot localization in fusion cells. The dominant negative RhoA phenotype suggests that RhoA controls apical surface formation throughout the trachea. We therefore propose that in fusion cells, Shot may function downstream of RhoA to form E-cadherin-associated cytoskeletal structures that are necessary for apical determinant localization.  相似文献   

15.
Fetal development of the unique papillary body and its localized peculiarities in the equine hoof are described based on the study of 51 fetuses, nine newborn foals, and five adult horses. The shape and dimensions of the dermal papillae and lamellae have a formative influence on the structure and physical quality of the corneous hoof capsule with its horn tubules and lamellae. The size and arrangement of these horn structures determine the mechanical quality of hoof horn. Proper horn quality is a prerequisite for the various functions of the hoof capsule, such as protecting the living dermis supporting the hoof capsule, shock absorption, and formation of the suspensory apparatus of the distal phalanx. Development of the segment-specific papillary body is initiated by the increasing mitotic activity of the epidermal cells invaginating the dermal surface, thus forming dermal microridges. These microridges are transformed into single dermal papillae, which are arranged in rows, or enlarged to become primary and secondary dermal lamellae. The formation of a segment-specific papillary body enables the increasing keratinization ratio in the hoof epidermis and the formation of the characteristic tubular and lamellar horn responsible for the special mechanical properties of hoof horn.  相似文献   

16.
Plant cell shapes are defined by their surrounding walls, but microtubules and F-actin both play critical roles in cell morphogenesis by guiding the deposition of wall materials in expanding cells. Leaf epidermal cells have lobed shapes, which are thought to arise through a microtubule-dependent pattern of locally polarized growth. We have isolated a recessive mutation, brk1, which blocks the formation of epidermal cell lobes in the maize leaf. Mutant epidermal cells expand to the same extent as wild-type cells but fail to establish polar growth sites from which lobes arise. In expanding brk1 epidermal cells, microtubule organization differs little from that in wild-type, but localized enrichments of cortical F-actin seen at the tips of emerging lobes in wild-type cells fail to form. These observations suggest a critical role for F-actin in lobe formation and together with additional effects of brk1 on the morphogenesis of stomata and hairs suggest that Brk1 promotes multiple, actin-dependent cell polarization events in the developing leaf epidermis. The Brk1 gene encodes a novel, 8 kD protein that is highly conserved in plants and animals, suggesting that BRK1-related proteins may function in actin-dependent aspects of cell polarization in a wide spectrum of eukaryotic organisms.  相似文献   

17.
Sire JY 《Tissue & cell》1989,21(3):447-462
The elasmoid scales of the cichlid fish, Hemichromis bimaculatus, are localized within dermal pockets, the floors of which are separated from the stratum compactum by uninterrupted cellular sheets, the scale-pocket linings (SPL). TEM study of the fry skin shows that the SPL cells originate from the cell population constituting the dermal papilla of the scale. The upper-layer cells of the papilla, close to the epidermal-dermal junction, differentiate into scleroblasts that, subsequently, form the scale-bag, while the inner-layer cells, close to the stratum compactum, constitute a bi-layered sheet, the SPL. The SPL cells are joined one to another by numerous desmosomes and their cytoplasm is filled principally by microfilaments and free ribosomes. The SPL is also characterized by the presence of a basement membrane on its two faces. When a scale is experimentally pulled off, the scale-forming cells are removed with the dermis and the epidermis covering the free region of the scale, but the SPL is not damaged and epidermal fragments remain at the posterior edge of each scale-pocket. The epithelial cells migrate, from the epidermal fragments, on an extracellular matrix situated on the surface of the SPL, and the wound is closed from 3 to 6 h after scale removal. The scale-regenerating cells differentiate from the upper-layer cells of the SPL, initially in the central region of the scale-pocket where epithelial cells first contacted the SPL surface. Consequently, it is shown that scale-forming cells and scale-regenerating cells are derived from the same ontogenetic population, the dermal papilla.  相似文献   

18.
《Journal of morphology》2017,278(12):1726-1738
In viviparous, teleost fish, with postfertilization maternal nutrient provisioning, embryonic structures that facilitate maternal‐fetal nutrient transfer are predicted to be present. For the family Poeciliidae, only a handful of morphological studies have explored these embryonic specializations. Here, we present a comparative morphological study in the viviparous poeciliid genus, Poeciliopsis . Using microscopy techniques, we examine the embryonic surface epidermis of Poeciliopsis species that vary in their level of postfertilization maternal nutrient provisioning and placentation across two phylogenetic clades and three independent evolutionary origins of placentation. We focus on surface features of the embryo that may facilitate maternal‐fetal nutrient transfer. Specifically, we studied cell apical‐surface morphology associated with the superficial epithelium that covers the body and sac (yolk and pericardial) of embryos at different developmental stages. Scanning electron microscopy revealed common surface epithelial cells across species, including pavement cells with apical‐surface microridges or microvilli and presumed ionocytes and/or mucus‐secreting cells. For three species, in the mid‐stage embryos, the surface of the body and sac were covered in microvillus epithelium. The remaining species did not display microvillus epithelium at any of the stages examined. Instead, their epithelium of the body and sac were composed of cells with apical‐surface microridges. For all species, in the late stage embryos, the surface of the body proper was composed of apical‐surface microridges in a “fingerprint‐like arrangement.” Despite the differences in the surface epithelium of embryos across Poeciliopsis species and embryonic developmental stages, this variation was not associated with the level of postfertilization maternal nutrient provisioning. We discuss these results in light of previous morphological studies of matrotrophic, teleost fish, phylogenetic relationships of Poeciliopsis species, and our earlier comparative microscopy work on the maternal tissue of the Poeciliopsis placenta.  相似文献   

19.
The anatomy and fine structure of the young primary haustorium of Phthirusa pyrifolia (H.B.K.) Eichl. were studied before penetration into the host. The simple internal organization (epidermis, hypodermis, and core parenchyma) which characterizes the radicular disc at germination becomes extremely complex, especially at the distal end of the disc during haustorial development. The epidermis in the area of contact with the host surface develops into an intricate cell zone consisting of lobed and tubular portions. The tubular portions consist of finger-like projections that entwine and form bulbous tips at the contact surface. The tubular portions have unusual wall thickenings while the bulbous tips have exceedingly thin distal walls which possibly break, releasing their contents onto the host's surface. The collapsed layers characteristic of Santalalean haustoria seem to be a result of internal pressures caused by division and expansion of epidermal cells and core parenchyma. Various unusual ultrastructural features are described from the hypodermis, core parenchyma, and contact zone. Particularly striking, but yet unidentified, is a fibrillar material which often completely fills the cells of the core parenchyma in later stages of development.  相似文献   

20.
洋葱鳞茎内表皮细胞经Triton X-100处理和多聚甲醛固定之后用Rh-Ph(Rhodamine-Phalloidin)染色,细胞质内可见较丰富的、直径为100—300nm的F-actin束。较粗的F-actin束沿细胞的长轴平行排列,并纵裂成较细的“分枝”,纵裂成的分枝又纵裂成更细的“分枝”。各种大小的F-actin束相互交织在一起构成一个三维的纤丝网络,并且与细胞膜、细胞核和其它细胞器相连。经同样方法处理和固定的细胞用考马斯亮兰R_(250)(Coomassie brilliant blue R_(250))染色之后,细胞质内可见直径为200—300nm的纤丝,形态特征和排列方式和上述在荧光显微镜下看到的F-actin束相同。本研究结果表明洋葱鳞茎内表皮的细胞骨架包含较丰富的F-actin系统;Pena的考马斯亮兰染色法(1980)所显示的结构主要代表F-actin束。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号