首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aquatic viruses play important roles in the biogeochemistry and ecology of lacustrine ecosystems; however, their composition, dynamics, and interactions with viruses of terrestrial origin are less extensively studied. We used a viral shotgun metagenomic approach to elucidate candidate autochthonous (i.e., produced within the lake) and allochthonous (i.e., washed in from other habitats) viral genotypes for a comparative study of their dynamics in lake waters. Based on shotgun metagenomes prepared from catchment soil and freshwater samples from two contrasting lakes (Cayuga Lake and Fayetteville Green Lake), we selected two putatively autochthonous viral genotypes (phycodnaviruses likely infecting algae and cyanomyoviruses likely infecting picocyanobacteria) and two putatively allochthonous viral genotypes (geminiviruses likely infecting terrestrial plants and circoviruses infecting unknown hosts but common in soil libraries) for analysis by genotype-specific quantitative PCR (TaqMan) applied to DNAs from viruses in the viral size fraction of lake plankton, i.e., 0.2 μm > virus > 0.02 μm. The abundance of autochthonous genotypes largely reflected expected host abundance, while the abundance of allochthonous genotypes corresponded with rainfall and storm events in the respective catchments, suggesting that viruses with these genotypes may have been transported to the lake in runoff. The decay rates of allochthonous and autochthonous genotypes, assessed in incubations where all potential hosts were killed, were generally lower (0.13 to 1.50% h(-1)) than those reported for marine virioplankton but similar to those for freshwater virioplankton. Both allochthonous and autochthonous viral genotypes were detected at higher concentrations in subsurface sediments than at the water-sediment interface. Our data indicate that putatively allochthonous viruses are present in lake plankton and sediments, where their temporal dynamics reflect active transport to the lake during hydrological events and then decay once there.  相似文献   

2.
3.
Double-stranded DNA viruses infecting eukaryotic algae (e.g., phycodnaviruses) and cyanobacteria (e.g., cyanophages) are now recognized as widespread and ubiquitous in aquatic environments. However, both the diversity and functional roles of these viruses in fresh waters are still poorly understood. We conducted a year-long study in 2011 of the community structure of planktonic virus groups in the upper lit layer of two important freshwater natural ecosystems in France, Lake Annecy (oligotrophic) and Lake Bourget (oligo-mesotrophic). Using PCR-DGGE to target a number of different structural and functional signature genes, i.e.,g20, g23, psbA, polB, and mcp, the phytoplankton viruses were shown to display temporal and spatial variability. There were marked seasonal changes in community structure for all viral groups in Lake Bourget, but only for T4-like myoviruses and psbA-containing cyanophages in Lake Annecy. The multivariate statistical analyses revealed that (1) various environmental factors can directly or indirectly explain the community structure observed for each phytoplankton viral group, and (2) temporal patterns of T4-like myovirus community structure were similar between the two lakes. In general, our results (1) suggest that the observed algal virus patterns were associated with significant shifts in phytoplankton biomass and/or structure, which in turn were shaped by the abiotic environment, and (2) support the Bank model proposed by Breitbart and Rohwer (Trends Microbiol 13:278–284, 2005). This study provides new evidence that freshwater lakes contain a significant diversity of algal viruses, and that the distribution of these viruses strongly mirrors that of their hosts.  相似文献   

4.
Our current knowledge of the virosphere in deep-sea sediments remains rudimentary. Here we investigated viral diversity at both gene and genomic levels in deep-sea sediments of Southwest Indian Ocean. Analysis of 19 676 106 non-redundant genes from the metagenomic DNA sequences revealed a large number of unclassified viral groups in these samples. A total of 1106 high-confidence viral contigs were obtained after two runs of assemblies, and 217 of these contigs with sizes up to ~120 kb were shown to represent complete viral genomes. These contigs are clustered with no known viral genomes, and over 2/3 of the ORFs on the viral contigs encode no known functions. Furthermore, most of the complete viral contigs show limited similarity to known viral genomes in genome organization. Most of the classified viral contigs are derived from dsDNA viruses belonging to the order Caudovirales, including primarily members of the families Myoviridae, Podoviridae and Siphoviridae. Most of these viruses infect Proteobacteria and, less frequently, Planctomycetes, Firmicutes, Chloroflexi, etc. Auxiliary metabolic genes (AMGs), present in abundance on the viral contigs, appear to function in modulating the host ability to sense environmental gradients and community changes, and to uptake and metabolize nutrients.  相似文献   

5.
During the past decade, metagenomics became a method of choice for the discovery of novel viruses. However, host assignment for uncultured viruses remains challenging, especially for archaeal viruses, which are grossly undersampled compared to viruses of bacteria and eukaryotes. Here, we assessed the utility of CRISPR spacer targeting, tRNA gene matching and homology searches for viral signature proteins, such as major capsid proteins, for the assignment of archaeal hosts and validated these approaches on metaviromes from Yangshan Harbor (YSH). We report 35 new genomes of viruses which could be confidently assigned to hosts representing diverse lineages of marine archaea. We show that the archaeal YSH virome is highly diverse, with some viruses enriching the previously described virus groups, such as magroviruses of Marine Group II Archaea (Poseidoniales), and others representing novel groups of marine archaeal viruses. Metagenomic recruitment of Tara Oceans datasets on the YSH viral genomes demonstrated the presence of YSH Poseidoniales and Nitrososphaeria viruses in the global oceans, but also revealed the endemic YSH-specific viral lineages. Furthermore, our results highlight the relationship between the soil and marine thaumarchaeal viruses. We propose three new families within the class Caudoviricetes for the classification of the five complete viral genomes predicted to replicate in marine Poseidoniales and Nitrososphaeria, two ecologically important and widespread archaeal groups. This study illustrates the utility of viral metagenomics in exploring the archaeal virome and provides new insights into the diversity, distribution and evolution of marine archaeal viruses.  相似文献   

6.
Viruses are the most numerous biological entity, existing in all environments and infecting all cellular organisms. Compared with cellular life, the evolution and origin of viruses are poorly understood; viruses are enormously diverse, and most lack sequence similarity to cellular genes. To uncover viral sequences without relying on either reference viral sequences from databases or marker genes that characterize specific viral taxa, we developed an analysis pipeline for virus inference based on clustered regularly interspaced short palindromic repeats (CRISPR). CRISPR is a prokaryotic nucleic acid restriction system that stores the memory of previous exposure. Our protocol can infer CRISPR-targeted sequences, including viruses, plasmids, and previously uncharacterized elements, and predict their hosts using unassembled short-read metagenomic sequencing data. By analyzing human gut metagenomic data, we extracted 11,391 terminally redundant CRISPR-targeted sequences, which are likely complete circular genomes. The sequences included 2,154 tailed-phage genomes, together with 257 complete crAssphage genomes, 11 genomes larger than 200 kilobases, 766 genomes of Microviridae species, 56 genomes of Inoviridae species, and 95 previously uncharacterized circular small genomes that have no reliably predicted protein-coding gene. We predicted the host(s) of approximately 70% of the discovered genomes at the taxonomic level of phylum by linking protospacers to taxonomically assigned CRISPR direct repeats. These results demonstrate that our protocol is efficient for de novo inference of CRISPR-targeted sequences and their host prediction.  相似文献   

7.
Recent advances in sequencing technology and bioinformatic pipelines have allowed unprecedented access to the genomes of yet-uncultivated microorganisms from diverse environments. However, the catalogue of freshwater genomes remains limited, and most genome recovery attempts in freshwater ecosystems have only targeted specific taxa. Here, we present a genome recovery pipeline incorporating iterative subtractive binning, and apply it to a time series of 100 metagenomic datasets from seven connected lakes and estuaries along the Chattahoochee River (Southeastern USA). Our set of metagenome-assembled genomes (MAGs) represents >400 yet-unnamed genomospecies, substantially increasing the number of high-quality MAGs from freshwater lakes. We propose names for two novel species: ‘Candidatus Elulimicrobium humile’ (‘Ca. Elulimicrobiota’, ‘Patescibacteria’) and ‘Candidatus Aquidulcis frankliniae’ (‘Chloroflexi’). Collectively, our MAGs represented about half of the total microbial community at any sampling point. To evaluate the prevalence of these genomospecies in the chronoseries, we introduce methodologies to estimate relative abundance and habitat preference that control for uneven genome quality and sample representation. We demonstrate high degrees of habitat-specialization and endemicity for most genomospecies in the Chattahoochee lakes. Wider ecological ranges characterized smaller genomes with higher coding densities, indicating an overall advantage of smaller, more compact genomes for cosmopolitan distributions.  相似文献   

8.
The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts’ functional capabilities.  相似文献   

9.
Viral metagenomics   总被引:3,自引:0,他引:3  
Viruses, most of which infect microorganisms, are the most abundant biological entities on the planet. Identifying and measuring the community dynamics of viruses in the environment is complicated because less than one percent of microbial hosts have been cultivated. Also, there is no single gene that is common to all viral genomes, so total uncultured viral diversity cannot be monitored using approaches analogous to ribosomal DNA profiling. Metagenomic analyses of uncultured viral communities circumvent these limitations and can provide insights into the composition and structure of environmental viral communities.  相似文献   

10.
Viruses can play critical roles in symbioses by initiating horizontal gene transfer, affecting host phenotypes, or expanding their host's ecological niche. However, knowledge of viral diversity and distribution in symbiotic organisms remains elusive. Here we use deep-sequenced metagenomic DNA (PacBio Sequel II; two individuals), paired with a population genomics approach (Pool-seq; 11 populations, 550 individuals) to understand viral distributions in the lichen Umbilicaria phaea. We assess (i) viral diversity in lichen thalli, (ii) putative viral hosts (fungi, algae, bacteria) and (iii) viral distributions along two replicated elevation gradients. We identified five novel viruses, showing 28%–40% amino acid identity to known viruses. They tentatively belong to the families Caulimoviridae, Myoviridae, Podoviridae and Siphoviridae. Our analysis suggests that the Caulimovirus is associated with green algal photobionts (Trebouxia) of the lichen, and the remaining viruses with bacterial hosts. We did not detect viral sequences in the mycobiont. Caulimovirus abundance decreased with increasing elevation, a pattern reflected by a specific algal lineage hosting this virus. Bacteriophages showed population-specific patterns. Our work provides the first comprehensive insights into viruses associated with a lichen holobiont and suggests an interplay of viral hosts and environment in structuring viral distributions.  相似文献   

11.
Viruses cause significant mortality of marine microorganisms; however, their role in shaping the composition of microbial assemblages has not been fully elucidated. Because viruses may form lysogenic relationships with their hosts, temperate viruses may influence bacterial assemblage structures through direct lysis of hosts when induced by environmental stimuli or by homoimmunity (i.e., immunity to closely related viruses). We investigated the components of bacterioplankton assemblages that bore prophage using the lysogenic induction agent mitomycin C. Seawater was collected at two locations (the San Pedro Ocean Time Series Station and in the Santa Barbara Channel) in the Southern California Borderland and amended with mitomycin C. After 24-h incubation, the community structure of bacterioplankton was compared with unamended controls using automated rRNA intergenic spacer analysis. The addition of mitomycin C to seawater had effects on the community structure of bacterioplankton, stimulating detectable overall diversity and richness of fingerprints and causing the assemblages within incubations to become different to control assemblages. Most negatively impacted operational taxonomic units (OTU) in mitomycin C-amended incubations individually comprised a large fraction of total amplified DNA in initial seawater (5.3-23.3% of amplified DNA fluorescence) fingerprints, and data suggest that these include organisms putatively classified as members of the gamma-Proteobacteria, SAR11 cluster, and Synechococcus groups. The stimulation of assemblage richness by induction of lysogens, and the reduction in the contribution to total DNA of common OTU (and concomitant increase in rare OTU), suggests that temperate phage have the potential to strongly influence the diversity of bacterioplankton assemblages. Because lysogenic OTU may also be resistant to closely related lytic (i.e., free-living) viruses, the impact of lytic virioplankton on assemblages may only be pronounced transiently or when conditions causing lysogenic induction arise.  相似文献   

12.
Wastewater treatment plants (WWTPs) contain high density and diversity of viruses which can significantly impact microbial communities in aquatic systems. While previous studies have investigated viruses in WWTP samples that have been specifically concentrated for viruses and filtered to exclude bacteria, little is known about viral communities associated with bacterial communities throughout wastewater treatment systems. Additionally, differences in viral composition between attached and suspended growth wastewater treatment bioprocesses are not well characterized. Here, shotgun metagenomics was used to analyse wastewater and biomass from transects through two full-scale WWTPs for viral composition and associations with bacterial hosts. One WWTP used a suspended growth activated sludge bioreactor and the other used a biofilm reactor (trickling filter). Myoviridae, Podoviridae and Siphoviridae were the dominant viral families throughout both WWTPs, which are all from the order Caudovirales. Beta diversity analysis of viral sequences showed that samples clustered significantly both by plant and by specific sampling location. For each WWTP, the overall bacterial community structure was significantly different than community structure of bacterial taxa associated with viral sequences. These findings highlight viral community composition in transects through different WWTPs and provide context for dsDNA viral sequences in bacterial communities from these systems.  相似文献   

13.
East Lake (Lake Donghu), located in Wuhan, China, is a typical city freshwater lake that has been experiencing eutrophic conditions and algal blooming during recent years. Marine and fresh water are considered to contain a large number of viruses. However, little is known about their genetic diversity because of the limited techniques for culturing viruses. In this study, we conducted a viral metagenomic analysis using a high-throughput sequencing technique with samples collected from East Lake in Spring, Summer, Autumn, and Winter. The libraries from four samples each generated 234,669, 71,837, 12,820, and 34,236 contigs (> 90 bp each), respectively. The genetic structure of the viral community revealed a high genetic diversity covering 23 viral families, with the majority of contigs homologous to DNA viruses, including members of Myoviridae, Podoviridae, Siphoviridae, Phycodnaviridae, and Microviridae, which infect bacteria or algae, and members of Circoviridae, which infect invertebrates and vertebrates. The highest viral genetic diversity occurred in samples collected in August, then December and June, and the least diversity in March. Most contigs have low-sequence identities with known viruses. PCR detection targeting the conserved sequences of genes (g20, psbA, psbD, and DNApol) of cyanophages further confirmed that there are novel cyanophages in the East Lake. Our viral metagenomic data provide the first preliminary understanding of the virome in one freshwater lake in China and would be helpful for novel virus discovery and the control of algal blooming in the future.  相似文献   

14.
Batch culture experiments using viral enrichment were conducted to test the response of a coastal bacterial community to autochthonous (i.e., co-existing) or allochthonous riverine viruses. The effects of viral infections on bacterial dynamics and activity were assessed by epifluorescence microscopy and thymidine incorporation, respectively, whereas the effect of viral infection on bacterial community composition was examined by polymerase chain reaction-single strand conformation polymorphism 16S ribosomal RNA fingerprinting. The percentages of high nucleic acid-containing cells, evaluated by flow cytometry, were significantly correlated (r 2 = 0.91, n = 12, p < 0.0001) to bacterial production, making this value a good predictor of active cell dynamics along the study. While confinement and temperature were the two principal experimental factors affecting bacterial community composition and dynamics, respectively, additions of freshwater viruses had significant effects on coastal bacterial communities. Thus, foreign viruses significantly reduced net bacterial population increase as compared to the enrichment treated with inactivated virus. Moreover, freshwater viruses recurrently and specifically affected bacterial community composition, as compared to addition of autochthonous viruses. In most cases, the combined treatment viruses and freshwater dissolved organic matter helped to maintain or even enhance species richness in coastal bacterial communities in agreement to the ‘killing the winner’ hypothesis. Thus, riverine virus input could potentially influence bacterial community composition of the coastal bay albeit with modest modification of bulk bacterial growth. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Although the structure and dynamics of planktonic viruses in freshwater and seawater environments are relatively well documented, little is known about the occurrence and activity of these viruses in estuaries, especially in the tropics. Viral abundance, life strategies, and morphotype distribution were examined in the Bach Dang Estuary (Vietnam) during the dry season in 2009. The abundance of both viruses and their prokaryotic hosts decreased significantly from upstream to downstream, probably as the result of nutrient dilution and osmotic stress faced by the freshwater communities. The antibiotic mitomycin-C revealed that the fraction of lysogenic cells was substantially higher in the lower seawater part of the estuary (max 27.1%) than in the upper freshwater area where no inducible lysogens were observed. The question of whether there is a massive, continuous induction of marine lysogens caused by the mixing with freshwater is considered. Conversely, the production of lytic viruses declined as salinity increased, indicating a spatial succession of viral life strategies in this tropical estuary. Icosahedral tailless viruses with capsids smaller than 60?nm dominated the viral assemblage throughout the estuary (63.0% to 72.1% of the total viral counts), and their distribution was positively correlated with that of viral lytic production. Interestingly, the gamma-proteobacteria explained a significant portion of the variance in the <60?nm and 60 to 90?nm tailless viruses (92% and 80%, respectively), and in the Myoviridae (73%). Also, 60% of the variance of the tailless larger viruses (>90?nm) was explained by the beta-proteobacteria. Overall, these results support the view that the environment, through selection mechanisms, probably shapes the structure of the prokaryotic community. This might be in turn a source of selection for the virioplankton community via specific affiliation favoring particular morphotypes and life strategies.  相似文献   

16.
Antarctica and the Arctic are the coldest places, containing a high diversity of microorganisms, including viruses, which are important components of polar ecosystems. However, owing to the difficulties in obtaining access to animal and environmental samples, the current knowledge of viromes in polar regions is still limited. To better understand polar viromes, this study performed a retrospective analysis using metagenomic sequencing data of animal feces from Antarctica and frozen soil from the Arctic collected during 2012–2014. The results reveal diverse communities of DNA and RNA viruses from at least 23 families from Antarctic animal feces and 16 families from Arctic soils. Although the viral communities from Antarctica and the Arctic show a large diversity, they have genetic similarities with known viruses from different ecosystems and organisms with similar viral proteins. Phylogenetic analysis of Microviridae, Parvoviridae, and Larvidaviridae was further performed, and complete genomic sequences of two novel circular replication-associated protein (rep)-encoding single-stranded (CRESS) DNA viruses closely related to Circoviridae were identified. These results reveal the high diversity, complexity, and novelty of viral communities from polar regions, and suggested the genetic similarity and functional correlations of viromes between the Antarctica and Arctic. Variations in viral families in Arctic soils, Arctic freshwater, and Antarctic soils are discussed. These findings improve our understanding of polar viromes and suggest the importance of performing follow-up in-depth investigations of animal and environmental samples from Antarctica and the Arctic, which would reveal the substantial role of these viruses in the global viral community.  相似文献   

17.
Recent discoveries suggest that photoheterotrophs (rhodopsin-containing bacteria (RBs) and aerobic anoxygenic phototrophs (AAPs)) and chemoautotrophs may be significant for marine and freshwater ecosystem productivity. However, their abundance and taxonomic identities remain largely unknown. We used a combination of single-cell and metagenomic DNA sequencing to study the predominant photoheterotrophs and chemoautotrophs inhabiting the euphotic zone of temperate, physicochemically diverse freshwater lakes. Multi-locus sequencing of 712 single amplified genomes, generated by fluorescence-activated cell sorting and whole genome multiple displacement amplification, showed that most of the cosmopolitan freshwater clusters contain photoheterotrophs. These comprised at least 10–23% of bacterioplankton, and RBs were the dominant fraction. Our data demonstrate that Actinobacteria, including clusters acI, Luna and acSTL, are the predominant freshwater RBs. We significantly broaden the known taxonomic range of freshwater RBs, to include Alpha-, Beta-, Gamma- and Deltaproteobacteria, Verrucomicrobia and Sphingobacteria. By sequencing single cells, we found evidence for inter-phyla horizontal gene transfer and recombination of rhodopsin genes and identified specific taxonomic groups involved in these evolutionary processes. Our data suggest that members of the ubiquitous betaproteobacteria Polynucleobacter spp. are the dominant AAPs in temperate freshwater lakes. Furthermore, the RuBisCO (ribulose 1,5-bisphosphate carboxylase/oxygenase) gene was found in several single cells of Betaproteobacteria, Bacteroidetes and Gammaproteobacteria, suggesting that chemoautotrophs may be more prevalent among aerobic bacterioplankton than previously thought. This study demonstrates the power of single-cell DNA sequencing addressing previously unresolved questions about the metabolic potential and evolutionary histories of uncultured microorganisms, which dominate most natural environments.  相似文献   

18.
Assembling individual genomes from complex community metagenomic data remains a challenging issue for environmental studies. We evaluated the quality of genome assemblies from community short read data (Illumina 100 bp pair-ended sequences) using datasets recovered from freshwater and soil microbial communities as well as in silico simulations. Our analyses revealed that the genome of a single genotype (or species) can be accurately assembled from a complex metagenome when it shows at least about 20 × coverage. At lower coverage, however, the derived assemblies contained a substantial fraction of non-target sequences (chimeras), which explains, at least in part, the higher number of hypothetical genes recovered in metagenomic relative to genomic projects. We also provide examples of how to detect intrapopulation structure in metagenomic datasets and estimate the type and frequency of errors in assembled genes and contigs from datasets of varied species complexity.  相似文献   

19.

Background  

Phages, viruses that infect prokaryotes, are the most abundant microbes in the world. A major limitation to studying these viruses is the difficulty of cultivating the appropriate prokaryotic hosts. One way around this limitation is to directly clone and sequence shotgun libraries of uncultured viral communities (i.e., metagenomic analyses). PHACCS, Phage Communities from Contig Spectrum, is an online bioinformatic tool to assess the biodiversity of uncultured viral communities. PHACCS uses the contig spectrum from shotgun DNA sequence assemblies to mathematically model the structure of viral communities and make predictions about diversity.  相似文献   

20.
Understanding of the ecological roles and evolutionary histories of marine bacterial taxa can be complicated by mismatches in genome content between wild populations and their better-studied cultured relatives. We used computed patterns of non-synonymous (amino acid-altering) nucleotide diversity in marine metagenomic data to provide high-confidence identification of DNA fragments from uncultivated members of the Roseobacter clade, an abundant taxon of heterotrophic marine bacterioplankton in the world's oceans. Differences in gene stoichiometry in the Global Ocean Survey metagenomic data set compared with 39 sequenced isolates indicated that natural Roseobacter populations differ systematically in several genomic attributes from their cultured representatives, including fewer genes for signal transduction and cell surface modifications but more genes for Sec-like protein secretion systems, anaplerotic CO(2) incorporation, and phosphorus and sulfate uptake. Several of these trends match well with characteristics previously identified as distinguishing r- versus K-selected ecological strategies in bacteria, suggesting that the r-strategist model assigned to cultured roseobacters may be less applicable to their free-living oceanic counterparts. The metagenomic Roseobacter DNA fragments revealed several traits with evolutionary histories suggestive of horizontal gene transfer from other marine bacterioplankton taxa or viruses, including pyrophosphatases and glycosylation proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号