首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It may appear counter-intuitive to compare feathers and mammary glands. However, through this Evo-Devo analysis, we appreciate how species interact with the environment, requiring different ectodermal organs. Novel ectodermal organs help define evolutionary directions, leading to new organism classes as exemplified by feathers for Aves and mammary glands for Mammals. Here, we review their structure, function, morphogenesis and regenerative cycling. Interestingly, both organs undergo extensive branching for different reasons; feather branching is driven by mechanical advantage while mammary glands nourish young. Besides natural selection, both are regulated by sex hormones and acquired a secondary function for attracting mates, contributing to sexual selection.  相似文献   

2.
The static allometry of secondary sexual characters is currently subject to debate. While some studies suggest an almost universal positive allometry for such traits, but isometry or negative allometry for nonornamental traits, other studies maintain that any kind of allometric pattern is possible. Therefore, we investigated the allometry of sexually size dimorphic feather ornaments in 67 species of birds. We also studied the allometry of female feathers homologous to male ornaments (female ornaments in the following) and ordinary nonsexual traits. Allometries were estimated as reduced major axis slopes of trait length on tarsus length. Ornamental feathers showed positive allometric slopes in both sexes, although that was not a peculiarity for ornamental feathers, because nonsexual tail feathers also showed positive allometry. Migration distance (in males) and relative size of the tail ornament (in females) tended to be negatively related to the allometric slope of tail feather ornaments, although these results were not conclusive. Finally, we found an association between mating system and allometry of tail feather ornaments, with species with more intense sexual selection showing a smaller degree of allometry of tail ornaments. This study is consistent with theoretical models that predict no specific kind of allometric pattern for sexual and nonsexual characters.  相似文献   

3.
We investigated how exogenous and endogenous glucocorticoids affect feather replacement in European starlings (Sturnus vulgaris) after approximately 56% of flight feathers were removed. We hypothesized that corticosterone would retard feather regrowth and decrease feather quality. After feather regrowth began, birds were treated with exogenous corticosterone or sham implants, or endogenous corticosterone by applying psychological or physical (food restriction) stressors. Exogenous corticosterone had no impact on feather length and vane area, but rectrices were lighter than controls. Exogenous corticosterone also decreased inter-barb distance for all feathers and increased barbule number for secondaries and rectrices. Although exogenous corticosterone had no affect on rachis tensile strength and stiffness, barbicel hooking strength was reduced. Finally, exogenous corticosterone did not alter the ability of Bacillus licheniformis to degrade feathers or affect the number of feathers that failed to regrow. In contrast, endogenous corticosterone via food restriction resulted in greater inter-barb distances in primaries and secondaries, and acute and chronic stress resulted in greater inter-barb distances in rectrices. Food-restricted birds had significantly fewer barbules in primaries than chronic stress birds and weaker feathers compared to controls. We conclude that, although exogenous and endogenous corticosterone had slightly different effects, some flight feathers grown in the presence of high circulating corticosterone are lighter, potentially weaker, and with altered feather micro-structure.  相似文献   

4.
Avian feathers have robust growth and regeneration capability. To evaluate the contribution of signaling molecules and pathways in these processes, we profiled gene expression in the feather follicle using an absolute quantification approach. We identified hundreds of genes that mark specific components of the feather follicle: the dermal papillae (DP) which controls feather regeneration and axis formation, the pulp mesenchyme (Pp) which is derived from DP cells and nourishes the feather follicle, and the ramogenic zone epithelium (Erz) where a feather starts to branch. The feather DP is enriched in BMP/TGF-β signaling molecules and inhibitors for Wnt signaling including Dkk2/Frzb. Wnt ligands are mainly expressed in the feather epithelium and pulp. We find that while Wnt signaling is required for the maintenance of DP marker gene expression and feather regeneration, excessive Wnt signaling delays regeneration and reduces pulp formation. Manipulating Dkk2/Frzb expression by lentiviral-mediated overexpression, shRNA-knockdown, or by antibody neutralization resulted in dual feather axes formation. Our results suggest that the Wnt signaling in the proximal feather follicle is fine-tuned to accommodate feather regeneration and axis formation.  相似文献   

5.
JOOP JUKEMA  THEUNIS PIERSMA 《Ibis》2000,142(2):289-296
Among the sandpiper family Scolopacidae, the Ruff Philomachus pugnax combines a large seasonal change in the appearance of the plumage with a very pronounced sexual plumage dimorphism. Studies on the east and south African wintering grounds of Ruffs indicate that before northward migration at least the males moult (part of) their basic (winter) plumage into a kind of alternative plumage. We studied the details of the subsequent moult into a final (supplemental) breeding plumage by quantifying the presence of three feather types—(1) winter (basic), (2) striped (alternate) and (3) breeding (supplemental)—in breast feather samples of 1441 Ruffs captured on staging areas in The Netherlands during northward migration in 1993-97. Ruffs arriving in March show a mix of winter and striped feathers. In April, the 'breeding feather' type appears in both male and female Ruffs, and partially takes the place of winter feathers as well as striped feathers in males, and winter feathers only in females. The presence of three plumages in Ruffs is thus confirmed for males, but also occurs in female Ruffs and in Bar-tailed Godwits Limosa lapponica. We suggest that striped feathers represent the 'original' alternative plumage feather type of the sandpiper family and that the showy feathers of the, in the European literature fortuitously appropriately named, 'supplementary plumage' represent an additional feather generation. Such colourful nuptial plumages could thus be derived characters that have evolved independently in several scolopacid genera, presumably under particularly strong sexual selection pressures.  相似文献   

6.
The biology of feather follicles   总被引:1,自引:0,他引:1  
The feather is a complex epidermal organ with hierarchical branches and represents a multi-layered topological transformation of keratinocyte sheets. Feathers are made in feather follicles. The basics of feather morphogenesis were previously described (Lucas and Stettenheim, 1972). Here we review new molecular and cellular data. After feather buds form (Jiang et al., this issue), they invaginate into the dermis to form feather follicles. Above the dermal papilla is the proliferating epidermal collar. Distal to it is the ramogenic zone where the epidermal cylinder starts to differentiate into barb ridges or rachidial ridge. These neoptile feathers tend to be downy and radially symmetrical. They are replaced by teleoptile feathers which tend to be bilateral symmetrical and more diverse in shapes. We have recently developed a "transgenic feather" protocol that allows molecular analyses: BMPs enhance the size of the rachis, Noggin increases branching, while anti- SHH causes webbed branches. Different feather types formed during evolution (Wu et al., this issue). Pigment patterns along the body axis or intra-feather add more colorful distinctions. These patterns help facilitate the analysis of melanocyte behavior. Feather follicles have to be connected with muscles and nerve fibers, so they can be integrated into the physiology of the whole organism. Feathers, similarly to hairs, have the extraordinary ability to go through molting cycles and regenerate. Some work has been done and feather follicles might serve as a model for stem cell research. Feather phenotypes can be modulated by sex hormones and can help elucidate mechanisms of sex hormone-dependent growth control. Thus, the developmental biology of feather follicles provides a multi-dimension research paradigm that links molecular activities and cellular behaviors to functional morphology at the organismal level.  相似文献   

7.
To examine the role of development in the origin of evolutionary novelties, we investigated the developmental mechanisms involved in the formation of a complex morphological novelty-branched feathers. We demonstrate that the anterior-posterior expression polarity of Sonic hedgehog (Shh) and Bone morphogenetic protein 2 (Bmp2) in the primordia of feathers, avian scales, and alligator scales is conserved and phylogenetically primitive to archosaurian integumentary appendages. In feather development, derived patterns of Shh-Bmp2 signaling are associated with the development of evolutionarily novel feather structures. Longitudinal Shh-Bmp2 expression domains in the marginal plate epithelium between barb ridges provide a prepattern of the barbs and rachis. Thus, control of Shh-Bmp2 signaling is a fundamental component of the mechanism determining feather form (i.e., plumulaceous vs. pennaceous structure). We show that Shh signaling is necessary for the formation and proper differentiation of a barb ridge and that it is mediated by Bmp signaling. BMP signaling is necessary and sufficient to negatively regulate Shh expression within forming feather germs and this epistatic relationship is conserved in scale morphogenesis. Ectopic SHH and BMP2 signaling leads to opposing effects on proliferation and differentiation within the feather germ, suggesting that the integrative signaling between Shh and Bmp2 is a means to regulate controlled growth and differentiation of forming skin appendages. We conclude that Shh and Bmp signaling is necessary for the formation of barb ridges in feathers and that Shh and Bmp2 signaling constitutes a functionally conserved developmental signaling module in archosaur epidermal appendage development. We propose a model in which branched feather form evolved by repeated, evolutionary re-utilization of a Shh-Bmp2 signaling module in new developmental contexts. Feather animation Quicktime movies can be viewed at http://fallon.anatomy.wisc.edu/feather.html.  相似文献   

8.
Lorenzo Alibardi 《Protoplasma》2017,254(3):1259-1281
Feathers are corneous microramifications of variable complexity derived from the morphogenesis of barb ridges. Histological and ultrastructural analyses on developing and regenerating feathers clarify the three-dimensional organization of cells in barb ridges. Feather cells derive from folds of the embryonic epithelium of feather germs from which barb/barbule cells and supportive cells organize in a branching structure. The following degeneration of supportive cells allows the separation of barbule cells which are made of corneous beta-proteins and of lower amounts of intermediate filament (IF)(alpha) keratins, histidine-rich proteins, and corneous proteins of the epidermal differentiation complex. The specific protein association gives rise to a corneous material with specific biomechanic properties in barbules, rami, rachis, or calamus. During the evolution of different feather types, a large expansion of the genome coding for corneous feather beta-proteins occurred and formed 3–4-nm-thick filaments through a different mechanism from that of 8–10 nm IF keratins. In the chick, over 130 genes mainly localized in chromosomes 27 and 25 encode feather corneous beta-proteins of 10–12 kDa containing 97–105 amino acids. About 35 genes localized in chromosome 25 code for scale proteins (14–16 kDa made of 122–146 amino acids), claws and beak proteins (14–17 kDa proteins of 134–164 amino acids). Feather morphogenesis is periodically re-activated to produce replacement feathers, and multiple feather types can result from the interactions of epidermal and dermal tissues. The review shows schematic models explaining the translation of the morphogenesis of barb ridges present in the follicle into the three-dimensional shape of the main types of branched or un-branched feathers such as plumulaceous, pennaceous, filoplumes, and bristles. The temporal pattern of formation of barb ridges in different feather types and the molecular control from the dermal papilla through signaling molecules are poorly known. The evolution and diversification of the process of morphogenesis of barb ridges and patterns of their formation within feathers follicle allowed the origin and diversification of numerous types of feathers, including the asymmetric planar feathers for flight.  相似文献   

9.
Darwin's theory describes the principles that are responsible for evolutionary change of organisms and their attributes. The actual mechanisms, however, need to be studied for each species and each organ separately. Here we have investigated the mechanisms underlying these principles in the avian feather. Feathers comprise one of the most complex and diverse epidermal organs as demonstrated by their shape, size, patterned arrangement and pigmentation. Variations can occur at several steps along each level of organization, leading to highly diverse forms and functions. Feathers develop gradually during ontogeny through a series of steps that may correspond to the evolutionary steps that were taken during the phylogeny from a reptilian ancestor to birds. These developmental steps include 1) the formation of feather tract fields on the skin surfaces; 2) periodic patterning of the individual feather primordia within the feather tract fields; 3) feather bud morphogenesis establishing anterio-posterior (along the cranio-caudal axis) and proximo-distal axes; 4) branching morphogenesis to create the rachis, barbs and barbules within a feather bud; and 5) gradual modulations of these basic morphological parameters within a single feather or across a feather tract. Thus, possibilities for variation in form and function of feathers occur at every developmental step. In this paper, principles guiding feather tract formation, distributions of individual feathers within the tracts and variations in feather forms are discussed at a cellular and molecular level.  相似文献   

10.
The evolution of secondary sexual characters is the subject of controversial debate between those defending their role as ‘viability indicators’ and those arguing that ornaments are purely ‘attractive traits’ selected by females. Recent theoretical studies suggest that these hypotheses are not mutually exclusive, as both viability and attractiveness can contribute to improve the reproductive success of progeny and could thus simultaneously underlie female choices. If that is the case, strategies of cheaper advertisement, allowing the expression of larger ornaments for the same cost, could proliferate even in species in which honest signalling of viability prevails. Under this scenario, different males could invest a different amount of resources per ornament unit of expression, thus using different signalling rules. We studied the relationship between tail feather length (a trait that is the subject of a female mate preference) and feather mass (a measure of investment in feather production) in a barn swallow Hirundo rustica population. Different males used different and consistent signalling rules when developing ornamental feathers. That is, to produce a feather of a given length, each male used a constant amount of resources across different years, but this amount varied between males. Although the amount of material invested in feathers (feather mass) is a condition-dependent trait, the organization of this material in ornamental feathers (i.e. the signalling rules) was not. Neither survival nor risk of feather breakage was related to the signalling rules. Thus, these results suggest that both ‘viability’ and ‘runaway’ mechanisms are independent determinants of the evolution of ornamental sexual feathers in the barn swallow. A preference for long tails will ensure that females either obtain a sire with high viability, or one transferring the capability to produce longer and more attractive tails at a lower cost of production to its offspring.  相似文献   

11.
《Animal behaviour》1986,34(3):727-738
Male satin bowerbirds use feathers to decorate their bowers and often steal feathers and other decorations from the bowers of other males. Decorations are a key element in sexual display and tracking their movement between bowers provides the first detailed information about this unique pattern of sexual competition. For two field seasons the movement of marked feathers was followed. Males varied greatly in stealing activity. The most active feather thieves were often from areas where bowers were close together and they were involved in reciprocal stealing with males at adjacent bowers. The rate of stealing by males was significantly correlated with the number of feathers on their bowers. This suggests that stealing is important in determining the level of bower decoration and mating success. Patterns of stealing behaviour support models of sexual selection which suggest that male interactions are important in influencing female choice through their effect on the quality of male display.  相似文献   

12.
Various doses of testosterone propionate (TP) were administered for 10 days to refractory male redheaded buntings exposed to 15L:9D in last week of June, shortly before the onset of molt, to determine the effect of exogenous male hormone on the testes, body weight and plumage regeneration in photorefractory birds. While 5-, 10-, or 25 micrograms of TP bird-1 day-1 did not affect the testes, body weight or feather regeneration, testicular growth was stimulated but body weight declined and plumage regeneration prevented in birds that received 150- or 250 micrograms of TP bird-1 day-1. In contrast, a 50 micrograms treatment, although unable to induce the growth of the testes, caused loss in body weight and feather regeneration. Also, a 25 micrograms dose of TP administered to photostimulated birds induced complete testicular atrophy. These results suggests that testosterone exerts dose-dependent effects on the testes, body weight and plumage regeneration in buntings. A positive correlation is found between the amount of hormone and the testes growth, while the increasing amount of hormone has negative effect on the body weight and regeneration of feathers.  相似文献   

13.
Phenotypic variation, measured as the coefficient of variation (CV), is usually larger in secondary sexual characters than in ordinary morphological traits. We tested if intraspecific differences in the CV between ornamental and non-ornamental feather traits in 67 evolutionary events of feather ornamentation in birds were due to differences in (1) the allometric pattern (slope of the regression line when regressing trait size on an indicator of body size), or (2) the dispersion of observations around the regression line. We found that only dispersion of observations around the regression line contributed significantly to total variation. A large dispersion of observations around the regression line for ornamental feathers is consistent with these characters showing condition-dependence, supporting indicator models of sexual selection more strongly than a pure Fisher process. Ornamental feathers in males demonstrated negative allometry when regressed on tarsus length, which is a measure of skeletal body size. This finding is consistent with ornamental feather traits being subject to directional selection due to female mate preferences, where large body size is less important than in male–male competition. This pattern of phenotypic variation for avian secondary sexual characters contrasts with patterns of variation for insect genitalia, supposedly subject to sexual selection, since the latter traits only differ from ordinary morphology traits in allometry coefficient. The prevailing regime of selection (directional or stabilizing) and the effects of environmental factors are proposed to account for these differences among traits.  相似文献   

14.
Longevity in mammals is influenced by sex, and lifespan extension in response to anti‐aging interventions is often sex‐specific, although the mechanisms underlying these sexual dimorphisms are largely unknown. Treatment of mice with 17‐α estradiol (17aE2) results in sex‐specific lifespan extension, with an increase in median survival in males of 19% and no survival effect in females. Given the links between lifespan extension and metabolism, we performed untargeted metabolomics analysis of liver, skeletal muscle and plasma from male and female mice treated with 17aE2 for eight months. We find that 17aE2 generates distinct sex‐specific changes in the metabolomic profile of liver and plasma. In males, 17aE2 treatment raised the abundance of several amino acids in the liver, and this was further associated with elevations in metabolites involved in urea cycling, suggesting altered amino acid metabolism. In females, amino acids and urea cycling metabolites were unaffected by 17aE2. 17aE2 also results in male‐specific elevations in a second estrogenic steroid—estriol‐3‐sulfate—suggesting different metabolism of this drug in males and females. To understand the underlying endocrine causes for these sexual dimorphisms, we castrated males and ovariectomized females prior to 17aE2 treatment, and found that virtually all the male‐specific metabolite responses to 17aE2 are inhibited or reduced by male castration. These results suggest novel metabolic pathways linked to male‐specific lifespan extension and show that the male‐specific metabolomic response to 17aE2 depends on the production of testicular hormones in adult life.  相似文献   

15.
Molecular signaling in feather morphogenesis   总被引:2,自引:0,他引:2  
The development and regeneration of feathers have gained much attention recently because of progress in the following areas. First, pattern formation. The exquisite spatial arrangement provides a simple model for decoding the rules of morphogenesis. Second, stem cell biology. In every molting, a few stem cells have to rebuild the entire epithelial organ, providing much to learn on how to regenerate an organ physiologically. Third, evolution and development ('Evo-Devo'). The discovery of feathered dinosaur fossils in China prompted enthusiastic inquiries about the origin and evolution of feathers. Progress has been made in elucidating feather morphogenesis in five successive phases: macro-patterning, micro-patterning, intra-bud morphogenesis, follicle morphogenesis and regenerative cycling.  相似文献   

16.
Organogenesis involves a series of dynamic morphogenesis and remodeling processes. Since feathers exhibit complex forms, we have been using the feather as a model to analyze how molecular pathways and cellular events are used. While several major molecular pathways have been studied, the roles of matrix degrading proteases and inhibitors in feather morphogenesis are unknown. Here we addressed this knowledge gap by studying the temporal and spatial expression of proteases and inhibitors in developing feathers using mammalian antibodies that cross react with chicken proteins. We also investigated the effect of protease inhibitors on feather development employing an in vitro feather bud culture system. The results show that antibodies specific for mammalian MMP2 and TIMP2 stained positive in both feather epithelium and mesenchyme. The staining co-localized in structures of E10-E13 developing feathers. Interestingly, MMP2 and TIMP2 exhibited a complementary staining pattern in developing E15 and E20 feathers and in maturing feather filaments. Although they exhibited a slight delay in feather bud development, similar patterns of MMP2 and TIMP2 staining were observed in in vitro culture explants. The broad spectrum pharmacological inhibitors AG3340 and BB103 (MMP inhibitors) but not Aprotinin (a plasmin inhibitor) showed a reversible effect on epithelium invagination and feather bud elongation. TIMP2, a physiological inhibitor to MMPs, exhibited a similar effect. Markers of feather morphogenesis showed that MMP activity was required for both epithelium invagination and mesenchymal cell proliferation. Inhibition of MMP activity led to an overall delay in the expression of molecules that regulate either early feather bud growth and/or differentiation and thereby produced abnormal buds with incomplete follicle formation. This work demonstrates that MMPs and their inhibitors are not only important in injury repair, but also in development tissue remodeling as demonstrated here for the formation of feather follicles.  相似文献   

17.
Feathers are the most complex epidermal derivatives among vertebrates. The present review deals with the origin of feathers from archosaurian reptiles, the cellular and molecular aspects of feather morphogenesis, and focus on the synthesis of keratins and associated proteins. Feathers consist of different proteins among which exists a specialized group of small proteins called beta-keratins. Genes encoding these proteins in the chick genome are distributed in different chromosomes, and most genes encode for feather keratins. The latter are here recognized as proteins associated with the keratins of intermediate filaments, and functionally correspond to keratin-associated proteins of hairs, nails and horns in mammals. These small proteins possess unique properties, including resistance and scarce elasticity, and were inherited and modified in feathers from ancestral proteins present in the scales of archosaurian progenitors of birds. The proteins share a common structural motif, the core box, which was present in the proteins of the reptilian ancestors of birds. The core box allows the formation of filaments with a different molecular mechanism of polymerization from that of alpha-keratins. Feathers evolved after the establishment of a special morphogenetic mechanism gave rise to barb ridges. During development, the epidermal layers of feathers fold to produce barb ridges that produce the ramified structure of feathers. Among barb ridge cells, those of barb and barbules initially accumulate small amounts of alpha-keratins that are rapidly replaced by a small protein indicated as “feather keratin”. This 10 kDa protein becomes the predominant form of corneous material of feathers. The main characteristics of feather keratins, their gene organization and biosynthesis are similar to those of their reptilian ancestors. Feather keratins allow elongation of feather cells among supportive cells that later degenerate and leave the ramified microstructure of barbs. In downfeathers, barbs are initially independent and form plumulaceous feathers that rest inside a follicle. Stem cells remain in the follicle and are responsible for the regeneration of pennaceous feathers. New barb ridges are produced and they merge to produce a rachis and a flat vane. The modulation of the growth pattern of barb ridges and their fusion into a rachis give rise to a broad variety of feather types, including asymmetric feathers for flight. Feather morphogenesis suggests possible stages for feather evolution and diversification from hair-like outgrowths of the skin found in fossils of pro-avian archosaurians.  相似文献   

18.
Understanding of the regeneration of feathers, despite a 140 year tradition of study, has remained substantially incomplete. Moreover, accumulated errors and mis‐statements in the literature have confounded the intrinsic difficulties in describing feather regeneration. Lack of allusion to Rudall's (Rudall [ 1947 ] Biochem Biophys Acta 1:549–562) seminal X‐ray diffraction study that revealed two distinct keratins, β‐ and α‐, in a mature feather, is one of the several examples where lack of citation long inhibited progress in understanding. This article reviews and reevaluates the available literature and provides a synthetic, comprehensive, morphological model for the regeneration of a generalized, adult contour feather. Particular attention is paid to several features that have previously been largely ignored. Some of these, such as the β‐keratogenic sheath and the α‐keratogenic, supra‐umbilical, pulp caps, are missing from mature, functional feathers sensu stricto because they are lost through preening, but these structures nevertheless play a critical role in development. A new developmental role for a tissue unique to feathers, the medullary pith of the rachis and barb rami, and especially its importance in the genesis of the superior umbilical region (SUR) that forms the transition from the spathe (rachis and vanes) to the calamus, is described. It is postulated that feathers form through an intricate interplay between cyto‐ and histodifferentiative processes, determined by patterning signals that emanate from the dermal core, and a suite of interacting biomechanical forces. Precisely regulated patterns of loss of intercellular adhesivity appear to be the most fundamental aspect of feather morphogenesis and regeneration: rather than a hierarchically branched structure, it appears more appropriate to conceive of feathers as a sheet of mature keratinocytes that is “full of holes. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
In order to attract females, male golden-collared manakins gather in leks and perform a complex display consisting of acrobatics accompanied by loud "wingsnapping". During this display, males show off their yellow beard and yellow, black, and green plumage that is striking in comparison to the dull green plumage of young males and females. We investigated the role of testosterone (T) in activating the display of manakins and in stimulating the growth of the adult male plumage. T regulates song, copulation, and territorial aggression in temperate species. In tropical species, however, T levels can be relatively low year round, which has raised questions about the involvement of T in courtship display and male aggression in these species. In neither temperate nor tropical species has the role of hormones in the shift from juvenile to adult plumage been well studied. Therefore, we implanted green-plumaged birds and adult males with either a T pellet or an inert pellet (controls) and observed the display behaviors of these birds in the field and in captivity. In captive birds, we also plucked feathers from sexually dimorphic regions and observed color and regeneration rate of new feathers. We found that birds implanted with T increased several display behaviors compared to controls. All plucked feathers grew back the same color as prior to treatment; however, we observed some differences in feather growth rate between T-treated birds and controls.  相似文献   

20.
Evolution of the morphological innovations of feathers   总被引:1,自引:0,他引:1  
Feathers are complex assemblages of multiple morphological innovations. Recent research on the development and evolution of feathers has produced new insights into the origin and diversification of the morphological innovations in feathers. In this article, I review and discuss the contribution of three different factors to the evolution of morphological innovations in feathers: feather tubularity, hierarchical morphological modularity, and the co-option molecular signaling modules. The developing feather germ is a tube of epidermis with a central dermal pulp. The tubular organization of the feather germ and follicle produces multiple axes over which morphological differentiation can be organized. Feather complexity is organized into a hierarchy of morphological modules. These morphological modules evolved through the innovative differentiation along multiple different morphological axes created by the tubular feather germ. Concurrently, many of the morphological innovations of feathers evolved through the evolutionary co-option of plesiomorphic molecular signaling modules. Gene co-option also reveals a role for contingency in the evolution of hierarchical morphological innovations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号