首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidermal sensory structures of adults and juveniles of amphihaline migratory fish hilsa Tenualosa ilisha were studied from two habitats, i.e., freshwater (FW) and marine water (MW). Every year, adults and sexually mature hilsa migrate upstream from marine habitat to riverine freshwater habitat for breeding. This report provides evidences of chemoreception on their upstream migration through several characteristic features on their body, especially on the head and oral cavity. Scanning electron microscopy (SEM) reveals that freshwater adult hilsa (FH) has abundant solitary chemosensory cells (SCCs) on the snout epidermis (around the openings of the epidermal pit) and upper lip, whereas marine water adult hilsa (MH) moderately possesses such sensory structures. The juveniles returning to marine water completely lack SCCs. Immunohistochemical studies revealed the expression of PLC β2 on the snout of FH and tongue of both FH and MH. Further analysis (immunofluorescence, immunoblot and densitometry) of the epidermis confirms the presence of chemosensory structures through strong expression and localization of G-proteins (Gαq and Gα s/olf) from the snout as well as tongue in freshwater hilsa. The SEM also confirms the presence of two types of taste buds in FH, viz. type I (TB I) and type III (TB III). Whereas TB I and TB III are observed on the upper palatine and lips, most of the TB III are located on the tongue region of freshwater and marine hilsa. The juvenile hilsa are devoid of such structures. The presence of dense and rich SCCs and taste sensory cells in adults could be a characteristic feature for strong sensory reception to recognize odour and food-related environmental cues from habitats where they often migrate.  相似文献   

2.
3.
Most olfactory bulb (OB) interneurons are derived from neural stem cells in the subventricular zone (SVZ) and migrate to the OB via the rostral migratory stream (RMS). Mature dopaminergic interneurons in the OB glomerular layer are readily identified by their synaptic activity-dependent expression of tyrosine hydroxylase (TH). Paradoxically, TH is not expressed in neural progenitors migrating in the RMS, even though ambient GABA and glutamate depolarize these progenitors. In forebrain slice cultures prepared from transgenic mice containing a GFP reporter gene under the control of the Th 9 kb upstream regulatory region, treatment with histone deacetylase (HDAC) inhibitors (either sodium butyrate, Trichostatin A or Scriptaid) induced Th-GFP expression specifically in the RMS independently of depolarizing conditions in the culture media. Th-GFP expression in the glomerular layer was also increased in slices treated with Trichostatin A, but this increased expression was dependent on depolarizing concentrations of KCl in the culture media. Th-GFP expression was also induced in the RMS in vivo by intra-peritoneal injections with either sodium butyrate or valproic acid. Quantitative RT-PCR analysis of neurosphere cultures confirmed that HDAC inhibitors de-repressed Th expression in SVZ-derived neural progenitors. Together, these findings suggest that HDAC function is critical for regulating Th expression levels in both neural progenitors and mature OB dopaminergic neurons. However, the differential responses to the combinatorial exposure of HDAC inhibitors and depolarizing culture conditions indicate that Th expression in mature OB neurons and neural progenitors in the RMS are regulated by distinct HDAC-mediated mechanisms.  相似文献   

4.
Odor-detection in the malaria mosquito Anopheles gambiae involves large families of diverse proteins, including multiple odorant binding proteins (AgOBPs) and olfactory receptors (AgORs). The receptors AgOR1 and AgOR2, as well as the binding protein AgOBP1, have been implicated in the recognition of human host odors. In this study, we have explored the expression of these olfactory proteins, as well as the ubiquitous odorant receptor heteromerization partner AgOR7, in the thirteen flagellomeres (segments) of female and male antenna. Expressing cells were visualized by adapting a whole mount fluorescence in situ hybridization method. In female mosquitoes, AgOR1-expressing olfactory receptor neurons (ORNs) were almost exclusively segregated in segments 3 to 9, whereas AgOR2-expressing ORNs were distributed over flagellomeres 2 to 13. Different individuals comprised a similar number of cells expressing a distinct AgOR type, although their antennal topography and number per flagellomere varied. AgOBP1-expressing support cells were present in segments 3 to 13 of the female antenna, with increasing numbers towards the distal end. In male mosquitoes, total numbers of AgOR- and AgOBP1-expressing cells were much lower. While AgOR2-expressing cells were found on both terminal flagellomeres, AgOR1 cells were restricted to the most distal segment. High densities of AgOBP1-expressing cells were identified in segment 13, whereas segment 12 comprised very few. Altogether, the results demonstrate that both sexes express the two olfactory receptor types as well as the binding protein AgOBP1 but there is a significant sexual dimorphism concerning the number and distribution of these cells. This may suggest gender-specific differences in the ability to detect distinct odorants, specifically human host-derived volatiles.  相似文献   

5.
Phosducin (PD) is a regulatory protein involved in the phototransduction cascade of vertebrate photoreceptor cells. We have previously demonstrated that there are rod- and cone-specific PDs (OlPD-R and OlPD-C) in the retina of the teleost fish, medaka (Oryzias latipes) [FEBS Lett. 502 (2001) 117]. A 6x His affinity precipitation assay revealed that phosphorylation by either protein kinase A (PKA) or Ca(2+)/calmodulin-dependent kinase II (CaMKII) reduced the affinity of recombinant medaka PDs to endogenous medaka G-protein beta gamma subunits (Gbetagamma). These results suggest that the affinity of medaka PDs to Gbetagamma is regulated by cAMP and Ca(2+) concentrations as also found for mammalian PDs. However, we found a specific difference in the phosphorylation patterns between recombinant OlPD-R and OlPD-C, which resulted in different affinities to Gbetagamma. These differences may affect the light/dark-adaptation between medaka rods and cones.  相似文献   

6.
昆虫嗅觉受体的研究进展   总被引:3,自引:2,他引:3  
昆虫的嗅觉对昆虫的栖息地选择、觅食、群集、趋避、繁殖以及信息传递等行为具有重要的影响。对昆虫嗅觉机理的深入研究和嗅觉信号传导途径的完整阐述,是探索农业害虫的专一性防治的基础。嗅觉受体(olfactory receptors,Ors)是G蛋白偶联受体(G protein-coupled receptor)的一种,是嗅觉系统的关键成分。近年来嗅觉受体的研究日益受到关注。本文对昆虫嗅觉的基本过程、基因结构和表达调控特征、蛋白分子结构、生理功能、分布部位和相关配体的研究等进行了综述。  相似文献   

7.
The hilsa shad, Tenualosa ilisha (Clupeidae, Clupeiformes) is an important anadromous clupeid species from the Western division of the Indo-Pacific region. It constitutes the largest single fishable species in Bangladesh. Information on genetic variability and population structure is very important for both management and conservation purposes. Past reports on the population structure of T. ilisha involving morphometric, allozyme and RAPD analyses are contradictory. We examined genetic variability and divergence in two riverine (the Jamuna and the Meghna), two estuarine (Kuakata and Sundarbans) and one marine (Cox's Bazar) populations of T. ilisha by applying PCR-RFLP analysis of the mtDNA D-loop region. The amplified PCR products were restricted with four restriction enzymes namely, XbaI, EcoRI, EcoRV, and HaeIII. High levels of haplotype and gene diversity within and significant differentiations among, populations of T. ilisha were observed in this study. Significant F(ST) values indicated differentiation among the river, estuary and marine populations. The UPGMA dendrogram based on genetic distance resulted in two major clusters, although, these were subsequently divided into three, corresponding to the riverine, estuarine and marine populations. The study underlines the usefulness of RFLP of mtDNA D-loop region as molecular markers, and detected at least two differentiated populations of T. ilisha in Bangladesh waters.  相似文献   

8.
We have investigated the development of chemosensilla and the secretion of odorant‐binding proteins (OBPs) and chemosensory proteins (CSPs) in the embryo of Locusta migratoria manilensis. We first report the changes of each sensillum in embryo just preceding hatch in detail and show that different sensilla have different developmental processes. Trichogen cells are first involved in forming the structure of pegs, and then, after retraction, they start secreting OBPs and CSPs in the sensillar lymph. The synthesis of LmigOBP1 starts during the embryogenesis about 0.5 h preceding hatching, specifically in sensilla trichodea and basiconica of the antenna. LmigOBP2, instead, was only found in the outer sensillum lymph (oSl) of sensilla chaetica of the antenna, while we could not detect LmigOBP3 in any type of sensilla of the antenna. The ontogenesis of CSPs in the embryos is similar to that of OBPs. Expression of CSPI homolog in Locusta migratoria is detected using the antiserum raised against SgreCSPI. CSPI is specifically expressed in the outer sensillum lymph of sensilla chaetica of the antenna, and anti‐LmigCSPII dose not label any sensilla of the embryos. These data indicate that in locusts, OBPs and CSPs follow different temporal expression patterns, and also that OBPs are expressed in different types of sensilla. © 2009 Wiley Periodicals, Inc.  相似文献   

9.
The aim of the present study was to verify the use of the arms of the Itaipu Reservoir as areas of initial development for migratory fish species and to assess the relationship between rainfall and the spawning of migratory fish. Accordingly, fish larvae were collected from five arms of the reservoir from 2009 to 2016 using 0.5 mm plankton nets. Density was standardized as the number of larvae per 10 m3 filtered water, and the captured larval and juvenile specimens were identified at the lowest-possible taxonomic level. The larvae were also classified according to the degree of development and notochord flexion stage: larval vitelline, pre-flexion, flexion and post-flexion. To evaluate the distribution of larval abundance and the developmental stage along the longitudinal gradients of the arms, the data were evaluated using a set of nested linear models, following the AIC and Bayesian information criteria. In addition, an analysis of covariance was performed to investigate the influence of rainfall on the larval abundance of migratory species. During sampling, several species of economic and conservation interest such as Salminus brasiliensis and Pseudoplatystoma corruscans were collected. The larvae of the migratory fish taxa were captured from all sampled arms, which indicate them as areas of initial development. Nevertheless, it was observed that larval density increases from fluvial towards lacustrine zones inside the arms. Also, the present study verified that species, even in lentic environments, respond positively to rainfall stimuli in a manner similar to that exhibited by conspecifics in lotic environments. Such results reinforce the necessity of the protection of arms aiming at the conservation of this main group of species impaired by the construction of dams.  相似文献   

10.
Changes in the density of NMDA (GluN) receptors in the neuronal membrane are critical for plasticity, whereas malfunction of precisely regulated GluN receptor activity may be involved in neurotoxicity. In cultured rat neocortical interneurons, we have studied the regulation of the surface density of GluN1, GluN2A and GluN2B subunits. Application of 5 μMol NMDA for 24 h followed by a washout period of 24 h decreased the response of GluN receptors for at least 2?days. The reduction was caused by a decrease in the surface density of GluN1/GluN2B subunits, whereas GluN2A subunits remained unaffected. Our data indicate that long but reversible low level activation of GluN receptors can cause long-term changes in their subunit composition in cultured interneurons.  相似文献   

11.
In this study, we investigated the distribution and developmental expression of the GABAB receptor subunits, GABAB1 and GABAB2, in the main and accessory olfactory bulbs of the rat. Antibodies raised against these subunits strongly labelled the glomerular layer, suggesting that olfactory and vomeronasal nerve fibers express functional GABAB receptors. Using postembedding immunogold cytochemistry, we found that GABAB receptors can be present at both extrasynaptic and presynaptic sites of olfactory nerve terminals, and in the latter case they are preferentially associated with the peripheral part of the synaptic specialization. Olfactory nerve fibers expressed GABAB1 and GABAB2 at early developmental stages, suggesting that GABAB receptors may play a role in olfactory development. Output and local neurons of the main and accessory olfactory bulbs were also labelled for GABAB1 and GABAB2, although the subcellular distribution patterns of the two subunits were not completely overlapping. These results indicate that presynaptically located GABAB receptors modulate neurotransmitter release from olfactory and vomeronasal nerve fibers and that, in addition to this presynaptic role, GABAB receptors may regulate neuronal excitability in infraglomerular circuits.  相似文献   

12.
13.
Diadromous fish have exhibited a dramatic decline since the end of the 20th century. The allis shad (Alosa alosa) population in the Gironde-Garonne-Dordogne (GGD) system, once considered as a reference in Europe, remains low despite a fishing ban in 2008. One hypothesis to explain this decline is that the downstream migration and growth dynamics of young stages have changed due to environmental modifications in the rivers and estuary. We retrospectively analysed juvenile growth and migration patterns using otoliths from adults caught in the GGD system 30 years apart during their spawning migration, in 1987 and 2016. We coupled otolith daily growth increments and laser ablation inductively-coupled plasma mass spectrometry measurements of Sr:Ca, Ba:Ca, and Mn:Ca ratios along the longest growth axis from hatching to an age of 100 days (i.e., during the juvenile stage). A back-calculation allowed us to estimate the size of juveniles at the entrance into the brackish estuary. Based on the geochemistry data, we distinguished four different zones that juveniles encountered during their downstream migration: freshwater, fluvial estuary, brackish estuary, and lower estuary. We identified three migration patterns during the first 100 days of their life: (a) Individuals that reached the lower estuary zone, (b) individuals that reached the brackish estuary zone, and (c) individuals that reached the fluvial estuary zone. On average, juveniles from the 1987 subsample stayed slightly longer in freshwater than juveniles from the 2016 subsample. In addition, juveniles from the 2016 subsample entered the brackish estuary at a smaller size. This result suggests that juveniles from the 2016 subsample might have encountered more difficult conditions during their downstream migration, which we attribute to a longer exposure to the turbid maximum zone. This assumption is supported by the microchemical analyses of the otoliths, which suggests based on wider Mn:Ca peaks that juveniles in 2010s experienced a longer period of physiological stress during their downstream migration than juveniles in 1980s. Finally, juveniles from the 2016 subsample took longer than 100 days to exit the lower estuary than we would have expected from previous studies. Adding a new marker (i.e., Ba:Ca) helped us refine the interpretation of the downstream migration for each individual.  相似文献   

14.
Postnatally, the Purkinje cell degeneration mutant mice lose the main projecting neurons of the main olfactory bulb (OB): mitral cells (MC). In adult animals, progenitor cells from the rostral migratory stream (RMS) differentiate into bulbar interneurons that modulate MC activity. In the present work, we studied changes in proliferation, tangential migration, radial migration patterns, and the survival of these newly generated neurons in this neurodegeneration animal model. The animals were injected with bromodeoxyuridine 2 weeks or 2 months before killing in order to label neuroblast incorporation into the OB and to analyze the survival of these cells after differentiation, respectively. Both the organization and cellular composition of the RMS and the differentiation of the newly generated neurons in the OB were studied using specific markers of glial cells, neuroblasts, and mature neurons. No changes were observed in the cell proliferation rate nor in their tangential migration through the RMS, indicating that migrating neuroblasts are only weakly responsive to the alteration in their target region, the OB. However, the absence of MC does elicit differences in the final destination of the newly generated interneurons. Moreover, the loss of MC also produces changes in the survival of the newly generated interneurons, in accordance with the dramatic decrease in the number of synaptic targets available.  相似文献   

15.
Fish larvae were sampled in 1986 in the St. Clair River, and adjacent waters. Species richness (9 taxa as larvae; 4 others as juveniles) and abundance was lowest in the river, where many larvae (e.g., burbot, rainbow smelt, and yellow perch) were in transit from Lake Huron. The most abundant, and localized, species was gizzard shad, which reached a peak mean density of 4600 larvae 100 m-3 in an agricultural canal. Adjacent waters contribute greatly to the fish communities of the river and adjoining Lakes Huron and Erie, especially in terms of the number and quantity of forage species.  相似文献   

16.
Molt is a major component of the annual cycle of birds, the timing and extent of which can affect body condition, survival, and future reproductive success through carry‐over effects. The way in which molt is fitted into the annual cycle seems to be a somewhat neglected area which is both of interest and of importance. Study of the causes of annual variation in the timing of molt and its potential consequence in long‐distance migratory birds was examined using the Curlew Sandpiper, Calidris ferruginea, as a model species. Using the maximum likelihood molt models of Underhill and Zucchini (1988, Ibis 130:358–372), the relationship between annual variability in the start dates of molt at the population level with conditions on the breeding area was explored. Adult males typically started early in years when temperature in June on the Arctic breeding grounds were high compared to cold years while adult females molted later in years of high breeding success and/or warm July temperature and vice versa. When molt started later, the duration was often shorter, indicating that late completion of molt might have fitness consequences, probably jeopardizing survival. Evidence of this was seen in the low body condition of birds in years when molt was completed late. The results indicate that these migratory shorebirds follow a fine‐tuned annual life cycle, and disturbances at a certain stage can alter next biological events through carry‐over effects.  相似文献   

17.
Suture zones are areas where range contact zones and hybrid zones of multiple taxa are clustered. Migratory divides, contact zones between divergent populations that breed adjacent to one another but use different migratory routes, are a particular case of suture zones. Although multiple hypotheses for both the formation and maintenance of migratory divides have been suggested, quantitative tests are scarce. Here, we tested whether a novel factor, prevailing winds, was sufficient to explain both the evolution and maintenance of the Cordilleran migratory divide using individual‐based models. Empirical observations of eastern birds suggest a circuitous migratory route across Canada before heading south. Western breeders, however, travel south along the Pacific coast to their wintering grounds. We modeled the effect of wind on bird migratory flights by allowing them to float at elevation using spatially explicit modeled wind data. Modeled eastern birds had easterly mean trajectories, whereas western breeders showed significantly more southern trajectories. We also determined that a mean airspeed of 18.5 m s–1 would be necessary to eliminate this difference in trajectory, a speed that is achieved by waterfowl and shorebirds, but is faster than songbird flight speeds. These results lend support for the potential importance of wind in shaping the phylogeographic history of North American songbirds.  相似文献   

18.
The aim of this study was to examine changes in rat emotional behavior and determine differences in the expression of GABA-A receptor alpha-2 subunits in brain structures of low- (LR) and high-anxiety (HR) rats after the repeated corticosterone administration. The animals were divided into LR and HR groups based on the duration of their conditioned freezing in a contextual fear test. Repeated daily administration of corticosterone (20 mg/kg) for 21 days decreased activity in a forced swim test, reduced body weight and decreased prefrontal cortex corticosterone concentration in both the LR and HR groups. These effects of corticosterone administration were stronger in the HR group in comparison with the appropriate control group, and compared to LR treated and LR control animals. Moreover, in the HR group, chronic corticosterone administration increased anxiety-like behavior in the open field and elevated plus maze tests. The behavioral effects in HR rats were accompanied by a decrease in alpha-2 subunit density in the medial prefrontal cortex (prelimbic cortex and frontal association cortex) and by an increase in the expression of alpha-2 subunits in the basolateral amygdala. These studies have shown that HR rats are more susceptible to anxiogenic and depressive effects of chronic corticosterone administration, which are associated with modification of GABA-A receptor function in the medial prefrontal cortex and basolateral amygdala. The current data may help to better understand the neurobiological mechanisms responsible for individual differences in changes in mood and emotions induced by repeated administration of high doses of glucocorticoids or by elevated levels of these hormones associated with chronic stress or affective pathology.  相似文献   

19.
20.
Until the onset of anaphase, sister chromatids are bound to each other by a multi-subunit protein complex called cohesin. Since chromosomes in meiosis behave differently from those in mitosis, the cohesion and separation of homologous chromosomes and sister chromatids in meiosis are thought to be regulated by meiosis-specific cohesin subunits. Actually, several meiosis-specific cohesin subunits, including Rec8, STAG3 and SMC1beta, are known to exist in mammals; however, there are no reports of meiosis-specific cohesin subunits in other vertebrates. To investigate the protein expression and localization of cohesin subunits during meiosis in non-mammalian species, we isolated cDNA clones encoding SMC1alpha, SMC1beta, SMC3 and Rad21 in the medaka and produced antibodies against recombinant proteins. Medaka SMC1beta was expressed solely in gonads, while SMC1alpha, SMC3 and Rad21 were also expressed in other organs and in cultured cells. SMC1beta forms a complex with SMC3 but not with Rad21, in contrast to SMC1alpha, which forms complexes with both SMC3 and Rad21. SMC1alpha and Rad21 were mainly expressed in mitotically dividing cells in the testis (somatic cells and spermatogonia), although their weak expression was detected in pre-leptotene spermatocytes. SMC1beta was expressed in spermatogonia and spermatocytes. SMC1beta was localized along the chromosomal arms as well as on the centromeres in meiotic prophase I, and its existence on the chromosomes persisted up to metaphase II, a situation different from that reported in the mouse, in which SMC1beta is lost from the chromosome arms in late pachytene despite its universal presence in vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号