首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tachykinin neurokinin 1 receptors (NK1Rs) regulation of acetylcholine release and its interaction with the enkephalin/mu opioid receptors (MORs) transmission was investigated in the limbic/prefrontal (PF) territory of the dorsal striatum. Using double immunohistochemistry, we first showed that in this territory, cholinergic interneurons contain tachykinin NK1Rs and co-express MORs in the last part of the light period (afternoon). In slices of the striatal limbic/PF territory, following suppression of the dopaminergic inhibitory control of acetylcholine release, application of the tachykinin NK1R antagonist, SSR240600, markedly reduced the NMDA-induced acetylcholine release in the morning but not in the afternoon when the enkephalin/MOR regulation is operational. In the afternoon, the NK1R antagonist response required the suppression of the enkephalin/MOR inhibitory control of acetylcholine release by βfunaltrexamine. The pharmacological profile of the tachykinin NK1R regulation tested by application of the receptor agonists [[Pro9]substance P, neurokinin A, neuropeptide K, and substance P(6–11)] and antagonists (SSR240600, GR205171, GR82334, and RP67580) indicated that the subtype of tachykinin NK1R implicated are the new NK1-sensitive receptor binding site. Therefore, in the limbic/PF territory of the dorsal striatum, endogenous tachykinin facilitates acetylcholine release via a tachykinin NK1R subtype. In the afternoon, the tachykinin/NK1R and the enkephalin/MOR transmissions interact to control cholinergic transmission.  相似文献   

2.
In an attempt to examine some functional characteristics of the N-methyl-D-aspartate (NMDA) receptor complex, the NMDA-evoked effluxes of endogenous dopamine (DA) and [3H]acetylcholine ([3H]ACh) were simultaneously examined in a rat Striatal slice preparation. NMDA induced release of both DA and ACh in a concentration-dependent, Ca2+-, Mg2+-, and tetrodotoxin-sensitive manner. These release responses were remarkably reduced by long-term pre-treatment with a low concentration of NMDA. an indication of the desensitization of the NMDA receptor. Glycine was potent in reversing the desensitization-related reduction of DA release but failed to reverse the diminution of ACh release in the same slices. Our results indicate that the NMDA receptors regulating the release of DA and ACh are different with respect to their glycine modulatory site. This finding is consistent with a functional heterogeneity of the NMDA receptor complex in the rat striatum.  相似文献   

3.
Attempts were made to label tachykinin NK2 binding sites in the adult rat brain using [125I]neurokinin A (NKA) as ligand in the presence of NK1 and NK3 agonist or antagonist to avoid labelling of NK1 and NK3 binding sites, respectively. A high-affinity, specifically NK2-sensitive, [125I]NKA-binding, temperature-dependent, reversible, sensitive to GTPgammaS and correspondence to a single population of binding sites (K(D) and B(max) values: 2.2 nM and 7.3 fmol/mg protein) was demonstrated on hippocampal membranes. Competition studies performed with tachykinins and tachykinin-related compounds indicated that the pharmacological properties of these NK2-sensitive [125I]NKA binding sites were identical to those identified in the rat urinary bladder and duodenum. NKA, neuropeptide K, and neuropeptide gamma, as well as the potent and selective NK2 antagonists SR 144190, SR 48968 and MEN 10627, presented a nanomolar affinity for these sites. The regional distribution of these NK2-sensitive [125I]NKA binding sites differs markedly from those of NK1 and NK3 binding sites, with the largest labeling being found in the hippocampus, the thalamus and the septum. Binding in other brain structures was low or negligible. A preliminary autoradiographic analysis confirmed [125I]NKA selective binding in hippocampal CA1 and CA3 areas, particularly, and in several thalamic nuclei.  相似文献   

4.
Binding studies have shown that [125I]NKA is a selective ligand of tachykinin septide-sensitive binding sites from membranes of the rat submaxillary gland. Indeed, this ligand bound with high affinity to a single population of sites. In addition, competition studies indicated that natural tachykinins and tachykinin-related compounds had a similar affinity for these sites than for those labeled with [3H]ALIE-124, a selective ligand of septide-sensitive binding sites. Moreover, selective tachykinin NK2, or NK3 agonists or antagonists exhibited weak or no affinity for [125I]NKA binding sites. As indicated by Ki values of several compounds, the pharmacological characteristics of the septide-sensitive binding sites (labeled with [125I]NKA) largely differ from those of classic NK1 binding sites, as determined on crude synaptosomes from the rat brain using [125I]Bolton-Hunter substance P (SP) as ligand. Indeed, several tachykinins including neurokinin A (NKA), neuropeptide K (NPK), neuropeptide gamma (NKgamma), and neurokinin B, as well as some SP and NKA analogues or C-terminal fragments such as septide, ALIE-124, SP(6-11), NKA(4-10), which have a weak affinity for classic tachykinin NK1 binding sites exhibited a high affinity for the septide-sensitive binding sites. In contrast, SP, classic selective NK1 agonists, and antagonists had a high affinity for both types of binding sites. The presence of a large population of tachykinin septide-sensitive binding sites in the rat submaxillary gland may thus explain why NPK and NPgamma induce salivary secretion and may potentiate the SP-evoked response in spite of the absence of tachykinin NK2 receptors in this tissue.  相似文献   

5.
An extract of the whole brain of the frog Rana ridibunda contained high concentrations of substance P-like immunoreactivity, measured with an antiserum directed against the COOH-terminal region of mammalian substance P and neurokinin B-like immunoreactivity, measured with an antiserum directed against the NH2-terminus of neurokinin B. The primary structure of the substance P-related peptide (ranakinin) was established as: Lys-Pro-Asn-Pro-Glu-Arg-Phe-Tyr-Gly-Leu-Met-NH2. Mammalian substance P was not present in the extract. The primary structure of the neurokinin B-related peptide was established as: Asp-Met-His-Asp-Phe-Phe-Val-Gly-Leu-Met-NH2. This amino acid sequence is the same as that of mammalian neurokinin B. Ranakinin was equipotent with substance P and [Sar9,Met(O2)11]substance P in inhibiting the binding of 125I-Bolton-Hunter-[Sar9,Met(O2)11]substance P, a selective radioligand for the NK1 receptor, to binding sites in rat submandibular gland membranes (IC50 1.6 +/- 0.3 nM; n = 5). It is concluded that ranakinin is a preferred agonist for the mammalian NK1 tachykinin receptor subtype.  相似文献   

6.
Tachykinin receptors mediating substance P-induced secretion were examined in muscle-stripped segments of guinea-pig ileum set up in flux chambers. Changes in the short-circuit current (Isc) served as an index of active, electrogenic ion transport. Substance P evoked a transient increase in Isc which was concentration-dependent. The maximal change in Isc occurred at 1 microM concentration. [Sar9,Met(O2)11]-substance P, a neurokinin 1 (NK-1) receptor agonist, evoked a similar concentration-dependent increase in Isc. [Nle10]NKA(4-10) (1 microM) or [Pro7]NKB (1 microM), selective NK2 and NK3 agonists, respectively, had minimal effects on Isc. CP-96,345 (5 microM), a nonpeptide NK-1 antagonist, and the peptide NK-1 antagonist, GR82334 (1 microM), reduced the secretory response to substance P (50 nM) in the presence and absence of tetrodotoxin (0.2 microM). The NK2 antagonist, [Tyr5,D-Trp6,8,9,Arg10]NKA(4-10) MEN 10207 had no effect on the substance P response. Tetrodotoxin (0.2 microM) significantly reduced, but did not abolish the Isc response to substance P (1 microM) and [Sar9,Met(O2)11]substance P (1 microM). The substance P response was unaltered by 5 microM atropine and 50 microM mecamylamine. Piroxicam (10 microM) or pyrilamine (10 microM) or a combination of both had no effect on the tetrodotoxin-resistant substance P response. Electrical field stimulation evoked a biphasic increase in Isc which was significantly reduced by 0.2 microM tetrodotoxin. Atropine (5 microM) reduced the first peak of the biphasic response and mecamylamine (50 microM) had no effect. Similarly, 5 microM CP-96,345 and 1 microM GR82334 did not alter the EFS-induced change Isc. The results suggest that substance P-evoked secretory responses are independent of histamine or prostaglandins. Substance P responses are mediated by an NK-1 receptor type on enteric neurons and possibly epithelial cells.  相似文献   

7.
A 25 year adventure in the field of tachykinins   总被引:3,自引:0,他引:3  
  相似文献   

8.
Inflammatory bowel disease (IBD) and idiopathic chronic constipation (ICC) are intestinal disorders which disrupt normal colonic motility. Enteric tachykinins are well-recognised to play a role in the motor control of the gut, and increased colonic levels of substance P are seen in IBD, whereas decreased levels have been reported in ICC. In this investigation, we have characterised the tachykinin receptor population of normal human colonic circular smooth muscle and examined any changes that occur in IBD and ICC. The selective tachykinin NK2 receptor agonist, [beta-Ala8]neurokinin A(4-10), caused concentration-dependent contractions in healthy tissues; neither NK1 receptor-selective nor NK3 receptor-selective agonists were contractile. In diseased preparations also, only [beta-Ala8]neurokinin A(4-10) caused contractions with EC50 values similar to health. The maximum contractile responses (Emax), however, were significantly decreased in both forms of IBD but significantly increased in ICC. The muscarinic acetylcholine receptor agonist, carbachol, also caused contractions in diseased tissues, but EC50 and Emax values were not significantly different from health. The differential changes in contractility found in IBD and ICC are specific to NK2 receptors, and may reflect the altered levels of substance P or other tachykinins found in these intestinal disorders.  相似文献   

9.
The aim of the present microdialysis study was to investigate whether the increase in striatal glutamate levels induced by intrastriatal perfusion with NMDA was dependent on the activation of extrastriatal loops and/or endogenous striatal substance P and dopamine. The NMDA-evoked striatal glutamate release was mediated by selective activation of the NMDA receptor-channel complex and action potential propagation, as it was prevented by local perfusion with dizocilpine and tetrodotoxin, respectively. Tetrodotoxin and bicuculline, perfused distally in the substantia nigra reticulata, prevented the NMDA-evoked striatal glutamate release, suggesting its dependence on ongoing neuronal activity and GABA(A) receptor activation, respectively, in the substantia nigra. The NMDA-evoked glutamate release was also dependent on striatal substance P and dopamine, as it was antagonized by intrastriatal perfusion with selective NK(1) (SR140333), D(1)-like (SCH23390) and D(2)-like (raclopride) receptor antagonists, as well as by striatal dopamine depletion. Furthermore, impairment of dopaminergic transmission unmasked a glutamatergic stimulation by submicromolar NMDA concentrations. We conclude that in vivo the NMDA-evoked striatal glutamate release is mediated by activation of striatofugal GABAergic neurons and requires activation of striatal NK(1) and dopamine receptors. Endogenous striatal dopamine inhibits or potentiates the NMDA action depending on the strength of the excitatory stimulus (i.e. the NMDA concentration).  相似文献   

10.
The actions of the stereoisomers of homocysteic acid (HCA) were characterized at N-methyl-D-aspartate (NMDA)-type receptors which mediate excitatory amino acid-evoked [3H]acetylcholine ([3H]ACh) release from striatal cholinergic interneurons. Like NMDA, L-HCA and D-HCA evoked the release of [3H]ACh formed from [3H]choline in striatal slices. The concentration-response curve for L-HCA was virtually superimposable on that for NMDA, yielding an equal EC50 value (56.1 microM) and maximal response. However, D-HCA was weaker, with an EC50 value of 81.1 microM, and an apparently smaller maximal response. L-HCA-evoked [3H]ACh release was inhibited by the same categories of compounds which inhibit NMDA-evoked [3H]ACh release: the divalent ion Mg2+ (IC50 = 25.8 microM); competitive NMDA antagonists 2-amino-7-phosphonoheptanoate (IC50 = 51.2 microM) and 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (IC50 = 20.1 microM); and the dissociative anesthetics tiletamine (IC50 = 0.59 microM) and MK-801 (IC50 = 0.087 microM). Like NMDA, L-HCA produced a tachyphylaxis in this system. Tachyphylaxis to NMDA resulted in a decrease response to L-HCA, and conversely, tachyphylaxis to L-HCA resulted in a decrease response to NMDA. The results suggest that L-HCA is an agonist at the NMDA-type receptor and may represent an endogenous ligand for this excitatory amino acid receptor.  相似文献   

11.
(2-[(125)I]iodohistidyl(1))Neurokinin A ([(125)I]NKA), which labels "septide-sensitive" but not classic NK(1) binding sites in peripheral tissues, was used to determine whether septide-sensitive binding sites are also present in the rat brain. Binding studies were performed in the presence of SR 48968 (NK(2) antagonist) and senktide (NK(3) agonist) because [(125)I]NKA also labels peripheral NK(2) binding sites and, as shown in this study, central NK(3) binding sites. [(125)I]NKA was found to label not only septide-sensitive binding sites but also a new subtype of NK(1) binding site distinct from classic NK(1) binding sites. Both subtypes of [(125)I]NKA binding sites were sensitive to tachykinin NK(1) antagonists and agonists but also to the endogenous tachykinins NKA, neuropeptide K (NPK), and neuropeptide gamma (NPgamma). However, compounds of the septide family such as substance P(6-11) [SP(6-11)] and propionyl-[Met(O(2))(11)]SP(7-11) and some NK(1) antagonists, GR 82334, RP 67580, and CP 96345, had a much lower affinity for the new NK(1)-sensitive sites than for the septide-sensitive sites. The hypothalamus and colliculi possess only this new subtype of NK(1) site, whereas both types of [(125)I]NKA binding sites were found in the amygdala and some other brain structures. These results not only explain the central effects of septide or SP(6-11), but also those of NKA, NPK, and NPgamma, which can be selectively blocked by NK(1) receptor antagonists.  相似文献   

12.
Stable CHO cell clones which selectively express all three rat tachykinin receptors were established by transfection. The binding of radiolabled substance P and neurokinin A (substance K) to CHO clones expressing the NK1 and NK2 receptors, respectively, were saturatable and of high affinity (Kd = 0.17 nM (NK1); 3.4 nM (NK2)). Scatchard analysis of the binding data indicated for both receptors binding to a single population of binding sites, and competition binding studies showed that the binding specificities of the receptors corresponded to those of classical NK1 and NK2 receptors. In contrast, the binding of eledoisin to the NK3 receptor expressed in the transfected CHO cells was of low affinity (IC50 = 240 nM) compared to the high affinity of the receptor found when it was transiently expressed in COS-7 cells (IC50 = 8 nM). However, in both cases the receptor exhibited the specificity of a classical NK3 receptor. The established cell clones may provide an important tool for further analysis of the molecular mechanisms involved in binding, activation, and coupling of receptors for tachykinin peptides.  相似文献   

13.
Abstract: The human NK1 tachykinin receptor in the astrocytoma cell line U 373 MG was characterized using selective agonists and antagonists described for this receptor in the rat. Specific [3H]substance P binding sites were present on cell homogenates, whereas [3H]neurokinin A or [3H]-senktide binding sites were absent. The binding was saturable and reversible. The binding of [3H]substance P was inhibited by very low concentrations of [L-Pro9]substance P and [Sar9,Met(O2)11]substance P; septide was ∼ 1,000-fold less potent. The most potent peptide antagonist was trans -4-hydroxy-1-(1 H -indol-3-ylcarbonyl)-L-prolyl- N -methyl- N -(phenylmethyl)-L-tyrosineamide. The rank order of potency for the nonpeptide antagonists was ( S , S )-CP 96,345 > (±)-CP 96,345 > (±)-2-chlorobenzylquinuclidinone > ( R , R )-CP 96,345 > RP 67580 > RP 68651. In [3H]-inositol-labeled cells, substance P stimulated phosphatidylinositol turnover. A good correlation was found when the abilities of NK1 receptor agonists for stimulating inositol phosphate production and for inhibiting [3H]substance P binding were compared. Similarly, the binding and functional assays were well correlated for the antagonists. As a result of its high sensitivity and selectivity, the U 373 MG cell line thus appears an excellent tool for investigating the pharmacology of the human NK1 receptor.  相似文献   

14.
The aim of this study was to analyze the function and expression of tachykinins, tachykinin receptors, and neprilysin (NEP) in the mouse uterus. A previous study showed that the uterotonic effects of substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) in estrogen-treated mice were mainly mediated by the tachykinin NK1 receptor. In the present work, further contractility studies were undertaken to determine the nature of the receptors mediating responses to tachykinins in uteri of late pregnant mice. Endpoint and real-time quantitative RT-PCR were used to analyze the expression of the genes that encode the tachykinins SP/NKA, NKB, and hemokinin-1 (HK-1) (Tac1, Tac2, and Tac4); and the genes that encode tachykinin NK1 (Tacr1), NK2 (Tacr2), and NK3 (Tacr3) receptors in uteri from pregnant and nonpregnant mice. The data show that the mRNAs of tachykinins (particularly NKB and HK-1), tachykinin receptors, and NEP are locally expressed in the mouse uterus, and their expression changes during the estrous cycle and during pregnancy. The tachykinin NK1 receptor is the predominant tachykinin receptor in the nonpregnant and early pregnant mouse and may mediate tachykinin-induced uterine contractions in the nonpregnant mouse. The tachykinin NK2 receptor is predominant in the late pregnant mouse and is the main receptor mediating uterotonic responses to tachykinins at late pregnancy. The tachykinin NK3 receptor is expressed in considerable amounts only in uteri from nonpregnant diestrous animals, and its physiological significance remains to be clarified.  相似文献   

15.
In membranes of dogfish brain and stomach, two binding sites for tachykinins were identified. One site specifically bound [125I]-Bolton-Hunter substance P (BH-SP) and the rank potency of tachykinins to compete for BH-SP binding revealed similarities with the rank potency of an NK1 receptor. The pharmacology of the other site, which specifically bound [125I]-Bolton-Hunter scyliorhinin II (BH-Scy II), did not resemble any of the mammalian tachykinin receptors. The rank potency to inhibit BH-Scy II binding to this second site was: scyliorhinin II approximately scyliorhinin I greater than eledoisin approximately substance P approximately neurokinin A greater than phyllomedusin approximately physalaemin greater than [Sar9Met(O2)11]substance P. Neurokinin B and senktide did not displace BH-Scy II binding. In addition, nucleotide analogues inhibited BH-SP binding but not BH-Scy II binding. Our binding data suggest the existence of a mammalian-like NK1 receptor and of a nonmammalian tachykinin receptor in the dogfish.  相似文献   

16.
The guinea pig ileum possesses NK-1 and NK-3 tachykinin receptors. As expected, [Pro9]SP and senktide, which are selective agonists of NK-1 and NK-3 receptors, respectively, were found to be highly potent in contracting the guinea pig ileum. Surprisingly, similar observations were made with septide, SP-O-CH3, [Apa9-10]SP, or [Pro9,10]SP although, in contrast to [Pro9]SP, these four peptides showed a low affinity for 3H-[Pro9]SP-specific NK-1 binding sites on membranes from the guinea pig ileum. They were also devoid of affinity for NK-2 and NK-3 binding sites. GR 71251, a compound which has been described as a NK-1 antagonist, was more potent in inhibiting the septide- than the [Pro9]SP-evoked contracting response. Altogether, these results suggest that septide, [Apa9-10]SP, and [Pro9,10]SP exert their high contracting activity in the guinea pig ileum by acting on a new subtype of tachykinin receptors.  相似文献   

17.
SSR 146977 is a potent and selective antagonist of the tachykinin NK3 receptor. In Chinese hamster ovary cells expressing the human tachykinin NK3 receptor, SSR 146977 inhibited the binding of radioactive neurokinin B to NK3 receptors (Ki = 0.26 nM), senktide (10 nM) induced inositol monophosphate formation (IC50 = 7.8-13 nM), and intracellular calcium mobilization (IC50 = 10 nM). It antagonized [MePhe7]neurokinin B induced contractions of guinea pig ileum (pA2 = 9.07). Senktide (30 nM) induced firing rate increase of noradrenergic neurons in the guinea pig locus coeruleus and dopaminergic neurons in the guinea pig substantia nigra was also blocked by SSR 146977 (50 and 100 nM, respectively). In vivo, in the respiratory system, SSR 146977 inhibited bronchial hyperresponsiveness to acetylcholine, bronchial microvascular permeability hypersensitivity to histamine (doses of 0.1-1 mg/kg i.p.), and cough (doses of 0.03-1 mg/kg i.p.) provoked by citric acid in guinea pigs. In the central nervous system, SSR 146977 inhibited turning behaviour (ID50 = 0.2 mg/kg i.p. and 0.4 mg/kg p.o.) and prevented the decrease of locomotor activity (10 and 30 mg/kg i.p) mediated by the stimulation of NK3 receptors in gerbils. In guinea pigs, SSR 146977 antagonized senktide-induced acetylcholine release in the hippocampus (0.3 and 1 mg/kg i.p) and norepinephrine release in the prefrontal cortex (0.3 mg/kg i.p.). It also prevented haloperidol-induced increase of the number of spontaneously active dopamine A10 neurons (1 and 3 mg/kg i.p.).  相似文献   

18.
Cocaine inhibits tritium-labeled dopamine ([3H]DA) uptake in rat (IC50 approximately 400 nM) and sheep (IC50 approximately 1 microM) striatum. GBR 12909, a selective DA uptake inhibitor, potently inhibits [3H]DA uptake in rat (IC50 less than 10 nM), but is less effective (only 60% of the uptake is inhibited at a concentration of 10 microM) and less potent (IC50 approximately 300 nM) in sheep. [3H]DA release from slices of rat or sheep striatum is stimulated by potassium (15-50 mM). In the presence of nomifensine (10 microM), cocaine (10 microM) had no effect on potassium-stimulated [3H]DA release in either species. [3H]DA release is increased by N-methyl-D-aspartate (NMDA) (10-1000 microM) in rat striatum but NMDA did not stimulate [3H]DA release in sheep striatum. These findings suggest that NMDA receptors either are absent from or do not regulate release of preloaded [3H]DA in sheep striatum.  相似文献   

19.
The N-methyl-D-aspartate (NMDA) receptor-mediated regulation of the release of newly synthesized [3H]dopamine [( 3H]DA) was studied in vitro, both on rat striatal slices using a new microsuperfusion device and on rat striatal synaptosomes. Under Mg2(+)-free medium conditions, the NMDA (5 X 10(-5) M)-evoked release of [3H]DA from slices was found to be partly insensitive to tetrodotoxin (TTX). This TTX-resistant stimulatory effect of NMDA was blocked by either Mg2+ (10(-3) M) or the noncompetitive antagonist MK-801 (10(-6) M). In addition, the TTX-resistant NMDA-evoked response could be potentiated by glycine (10(-6) M) in the presence of strychnine (10(-6) M). The coapplication of NMDA (5 X 10(-5) M) and glycine (10(-6) M) stimulated the release of [3H]DA from striatal synaptosomes. This effect was blocked by Mg2+ (10(-3) M) or MK-801 (10(-5) M). These results indicate that some of the NMDA receptors involved in the facilitation of DA release are located on DA nerve terminals. These presynaptic receptors exhibit pharmacological properties similar to those described in electrophysiological studies for postsynaptic NMDA receptors.  相似文献   

20.
Substance P and selective neurokinin receptor agonists have been tested for their ability to induce shape change in rabbit platelets. Substance P and the NK1 receptor agonist Ac [Arg6,Sar9,Met(O2)11]-substance P (6-11) induced shape change (EC50 = 3 and 6 nM, respectively), whereas the selective NK2 agonist [Nle10]-Neurokinin A (4-10) and the selective NK3 agonist [MePhe7]-Neurokinin B did not show any effect. Moreover, the specific NK1 receptor antagonist CP-96,345 selectively and dose-dependently counteracted the effect of substance P or of the NK1 receptor agonist (IC50 = 2 and 0.8 nM, respectively), whereas the selective NK2 receptor antagonist, SR 48968, had no effect. Unlike for serotonin or low doses of ADP, epinephrine did not allow substance P or the NK1 receptor agonist to become a proaggregating substance. These data therefore show that the NK1 receptor is solely involved in the neurokinin-induced shape change of rabbit platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号