首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The F1 portion of the H+-ATPase from Clostridium thermoaceticum was purified to homogeneity by solubilization at low ionic strength, ion-exchange chromatography, and gel filtration. The last indicated the Mr to be 370,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the pure enzyme revealed four bands with Mr corresponding to 60,000, 55,000, 37,000, and 17,000 in an apparent molar ratio of 3:3:1:1. The purified enzyme would bind to stripped membranes to reconstitute dicyclohexylcarbodiimide-sensitive ATPase activity. Phosphohydrolase activity, measured at 58 degrees C, was optimal at pH 8.5. In the presence of a 1 mM excess of Mg2+ over the concentration of ATP, the Km for ATP was 0.4 mM, and the Vmax was 6.7 mumol min-1 mg-1. Unlike the membrane-bound F1F0 complex, the F1-ATPase was relatively insensitive to the inhibitors dicyclohexylcarbodiimide and tributyltin chloride. Both the complex and the F1-ATPase were inhibited by quercetin, azide, 7-chloro-4-nitro-benz-2-oxa-1,3-diazole, and free magnesium, and both were stimulated by primary alcohols and sulfite. In whole cells, the F1F0-ATPase catalyzed the synthesis of ATP in response to a pH gradient.  相似文献   

2.
The purified F0 part of the ATP synthase complex from Escherichia coli was incorporated into liposomes and chemically modified by various reagents. The modified F0-liposomes were assayed for H+ uptake and, after reconstitution with F1, for total and dicyclohexylcarbodiimide-sensitive ATPase activity. The water-soluble carbodiimide, 1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide methiodide, (1.2 mM), inhibited H+ uptake to a great extent. Binding of F1 was almost unaffected, but the hydrolysis of ATP was uncoupled from H+ transport. This is reflected by the inhibition of dicyclohexylcarbodiimide-sensitive ATPase activity. Woodward's reagent K, N-ethyl-5-phenylisoxazolium-3'-sulfonate, inhibited both H+ uptake and total ATPase activity. Modification of arginine residues by phenylglyoxal (20 mM) was followed by inhibition of the F1 binding activity by 80% of the control. H+ translocation was reduced to 70%. Diethylpyrocarbonate (3 mM) exhibited a strong inhibiting effect on H+ uptake but not on F1 binding. Modification of tyrosine (by tetranitromethane) as well as lysine residues (by succinic anhydride) did not affect F0 functions. From the data presented we conclude that carboxyl-groups, different from the dicyclohexylcarbodiimide-binding site, are involved in H+ translocation through F0 and, in part, in the functional binding of F1. Furthermore, for the latter function, also arginine residues seem to be important. The role of histidine residues remains unclear at present.  相似文献   

3.
Purified F0 from Escherichia coli ATP synthase was labelled with N-(7-dimethylamino-4-methyl-coumarinyl)-maleimide (DACM), a hydrophobic reagent which forms a stable, strongly fluorescent adduct with SH groups. Sodium dodecyl sulfate gel electrophoresis clearly demonstrated that subunit b was exclusively labelled, most likely at Cys-21, the only cysteine residue in E. coli F0. The amount of two molecules of DACM bound per F0, which was calculated from the absorption spectrum at 380 nm, is in full agreement with the postulated stoichiometry of two copies of subunit b/F0 complex. Thus the label provides a useful tool for simply detecting subunit b in protein chemical studies. DACM-labelled F0 was incorporated into liposomes and assayed for H+ translocating activity and its capacity to bind purified F1. Whereas the initial rate of H+ uptake was inhibited about 40% the reconstitution of a dicyclohexylcarbodiimide-sensitive F1F0 ATPase activity was completely unaffected. In a second set of experiments we reconstituted an F0 complex from DACM-labelled purified subunit b and an ac complex. In contrast to the results obtained with intact, DACM-labelled F0, both H+ translocating activity and F1 binding capacity were greatly reduced. Our data indicate that cysteine-21, probably together with other amino acids, is involved in maintaining a proper interaction of the hydrophobic N-terminal region of subunit b with the ac complex. This interplay seems to be a prerequisite for at least the in vitro assembly of a functional F0 complex.  相似文献   

4.
The ATP-hydrolyzing activity of Propionigenium modestum was extracted from the membranes with Triton X-100 or by incubation with EDTA at low ionic strength. The ATPase in the Triton extract was highly sensitive to dicyclohexylcarbodiimide but not to vanadate. These properties are characteristic for enzymes of the F1 F0 type. The ATPase was specifically activated by Na+ ions yielding a 15-fold increase in catalytic activity at 5 mM Na+ concentration. The additional presence of 1% Triton X-100 caused a further 1.5-fold activation. In the absence of Na+ Triton stimulated the ATPase about 13-fold. The Triton-stimulated ATPase was further activated about 1.5-2-fold by Na+ addition. The ATPase extracted by the low-ionic-strength treatment was purified to homogeneity by fractionation with poly(ethylene glycol) and gel chromatography. The enzyme had the characteristic F1-ATPase subunit structure with Mr values of 58,000 (alpha), 56,000 (beta), 37,600 (gamma), 22,700 (delta), and 14,000 (epsilon). The F1-ATPase was not stimulated by Na+ ions. The membrane-bound ATPase was reconstituted from the purified F1 part and F1-depleted membranes, thus further indicating an F1 F0 structure for the ATPase of P. modestum. Upon reconstitution the ATPase recovered its stimulation by Na+ ions, suggesting that the binding site for Na+ is localized on the membrane-bound F0 part of the enzyme complex.  相似文献   

5.
W Laubinger  P Dimroth 《Biochemistry》1988,27(19):7531-7537
The ATP synthase (F1F0) of Propionigenium modestum has been purified to a specific ATPase activity of 5.5 units/mg of protein, which is about 6 times higher than that of the bacterial membranes. Analysis by SDS gel electrophoresis indicated that in addition to the five subunits of the F1 ATPase, subunits of Mr 26,000 (a), 23,000 (b), and 7500 (c) have been purified. The ATPase activity of F1F0 was specifically activated about 10-fold by Na+ions. The enzyme was strongly inhibited by dicyclohexylcarbodiimide, venturicidin, tributyltin chloride, and azide. After incubation with [14C]dicyclohexylcarbodiimide, about 3-4 mol of the inhibitor was bound per 500,000 g of the enzyme. The radioactive label was specifically bound to submit c. These subunits form stable aggregates which resist dissociation by SDS at 100 degrees C. The monomer is formed upon heating with SDS to 121 degrees C or by extraction of the membranes with chloroform/methanol. The ATP synthase was incorporated into liposomes by a freeze-thaw-sonication procedure. The reconstituted proteoliposomes catalyzed the transport of Na+ions upon ATP hydrolysis. The transport was completely abolished by dicyclohexylcarbodiimide. Whereas monensin prevented the accumulation of Na+ions, the uptake rate was stimulated 4-5-fold in the presence of valinomycin or carbonyl cyanide m=chlorophenylhydrazone. These results indicate an electrogenic Na+ transport and also that it is a primary event and not accomplished by a H+-translocating ATP synthase in combination with a Na+/H+ antiporter.  相似文献   

6.
At low concentrations, diethylstilbestrol (DES) is shown to be a potent F0-directed inhibitor of the F0F1-ATPase of rat liver mitochondria. In analogy to other F0-directed inhibitors, DES inhibits both the ATPase and ATP-dependent proton-translocation activities of the purified and membrane bound enzyme. When added at low concentrations with dicyclohexylcarbodiimide (DCCD), a covalent inhibitor, DES acts synergistically to inhibit ATPase activity of the complex. At higher concentrations, DES restores DCCD-inhibited ATPase activity. However, there is no restoration of ATP-dependent proton translocation. Under these conditions DCCD remains covalently bound to the F0F1-ATPase complex and F1 remains bound to Fo. Significantly, when the F0F1-ATPase is inhibited by the Fo-directed inhibitor venturicidin rather than DCCD, DES is also able to restore ATPase activity. In contrast, DES is unable to restore ATPase activity to F0F1 preparations inhibited by the Fo-directed inhibitors oligomycin or tricyclohexyltin. However, combinations of [DES + DCCD] or [DES + venturicidin] can restore ATPase activity to F0F1 preparations inhibited by either oligomycin or tricyclohexyltin. Results presented here indicate that the F0 moiety of the rat liver mitochondrial proton ATPase contains a distinct binding site for DES. In addition, they suggest that at saturating concentrations simultaneous occupancy of the DES binding site and sites for either DCCD or venturicidin promote "uncoupled" ATP hydrolysis.  相似文献   

7.
Lauryl dimethylamino oxide, a zwitterionic detergent, was employed to solubilize the H+ ATPase from beef heart mitochondria. A simple preparation procedure has been devised to obtain F1-F0 based on a method described to purify F1 ATPase (M. Tuena de Gómez-Puyou and A. Gómez-Puyou, 1977, Arch. Biochem. Biophys. 182, 82-86) which consists of the selective adsorption of F1 to Sepharose-hexylammonium beads. The preparation showed approximately 18 bands in sodium dodecyl sulfate-polyacrylamide gel electrophoresis; 5 correspond to F1 subunits and the rest probably to the stalk and hydrophobic sector F0. The binding of [14C]dicyclohexylcarbodiimide to a low-molecular-weight component of this preparation was demonstrated. The F1-F0 complex was reconstituted into phospholipid vesicles which displayed ATP-Pi exchange and ATP-dependent 9-aminoacridine fluorescence quenching, both sensitive to proton channel inhibitors.  相似文献   

8.
Oligomycin sensitivity-conferring protein (OSCP) is a water-soluble subunit of bovine heart mitochondrial H(+)-ATPase (F1-F0). In order to investigate the requirement of OSCP for passive proton conductance through mitochondrial F0, OSCP-depleted membrane preparations were obtained by extracting purified F1-F0 complexes with 4.0 M urea. The residual complexes, referred to as UF0, were found to be deficient with respect to OSCP, as well as alpha, beta, and gamma subunits of F1-ATPase, but had a full complement of coupling factor 6 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting techniques. These UF0 complexes had no intrinsic ATPase activity and were able to bind nearly the same amount of F1-ATPase in the presence of either OSCP or NH4+ ions alone, or a combination of the two. However, the preparations exhibited an absolute dependency on OSCP for conferral of oligomycin sensitivity to membrane-bound ATPase. The passive proton conductance in UF0 proteoliposomes was measured by time-resolved quenching of 9-amino-6-chloro-2-methoxyacridine or 9-aminoacridine fluorescence following a valinomycin-induced K(+)-diffusion potential. The data clearly establish that OSCP is not a necessary component of the F0 proton channel nor is its presence required for conductance blockage by the inhibitors oligomycin or dicyclohexylcarbodiimide. Furthermore, OSCP does not prevent or block passive H+ leakage. Comparisons of OSCP with the F1-F0 subunits from Escherichia coli and chloroplast lead us to suggest that mitochondrial OSCP is, both structurally and functionally, a hybrid between the beta and delta subunits of the prokaryotic systems.  相似文献   

9.
1. The isolation of F0F1-ATPase complex from Rhodospirillum rubrum chromatophores by the use of taurodeoxycholate is described. 2. The enzyme preparation contains about 12 polypeptides; five are subunits of the F1 moiety. 3. The ATPase activity of the purified enzyme is dependent on the addition of phospholipids. 4. Km-vales for Mg2+-ATP and Ca2+-ATP are similar to the values obtained for the membrane-bound enzyme. 5. The F0F1-ATPase complex is more than 70% inhibited by oligomycin and N,N'-dicyclohexylcarbodiimide. 6. The F0F1-ATPase complex was integrated into liposomes. The reconstituted proteoliposomes catalyzed energy transduction as shown by ATP-dependent quenching of acridine dye fluorescence and ATP-32Pi exchange.  相似文献   

10.
The uncE114 mutation (Gln42----Glu) in subunit c of the Escherichia coli H+ ATP synthetase causes uncoupling of proton translocation from ATP hydrolysis (Mosher, M. E., White, L. K., Hermolin, J., and Fillingame, R. H. (1985) J. Biol. Chem. 260, 4807-4814). In the background of strain ER, the mutation led to dissociation of F1 from the membrane. Ten revertants to the uncE114 mutation were isolated, and the uncE gene was cloned and sequenced. Six of the revertants were intragenic and had substitutions of glycine, alanine, or valine for the mutant glutamate residue at position 42. The intragenic, revertant uncE genes were incorporated into an otherwise wild type chromosome of strain ER. Membrane vesicles prepared from each of the revertants showed a restoration of F1 binding to F0. The Val42 revertant differed from the other two revertants in that the ATPase activity of F1 was inhibited when membrane bound. This was shown by the stimulation of ATPase activity when F1 was released from the membrane. The Gly42 and Ala42 revertants demonstrated membrane ATPase activity that was resistant to dicyclohexylcarbodiimide treatment. Resistance was shown to be due to the increased dissociation of F1 from the membrane under ATPase assay conditions. The Ala42 revertant showed a significant reduction in ATP-dependent quenching of quinacrine fluorescence that was attributed to less efficient coupling of ATP hydrolysis to H+ translocation, whereas the other revertants showed responses very near to that of wild type. Minor changes in the F1-F0 interaction in all three revertants were indicated by an increase in H+ leakiness, as judged by reduced NADH-dependent quenching of quinacrine fluorescence. The minor defects in the revertants support the idea that residue 42 is involved in the binding and coupling of F1 to F0 but also show that the conserved glutamine (or asparagine) is not absolutely necessary in this function.  相似文献   

11.
The conserved Pro43 residue of the uncE protein (subunit c) of the Escherichia coli F1F0-ATPase was changed to Ser or Ala by oligonucleotide-directed mutagenesis, and the mutations were incorporated into the chromosome. The resultant mutant strains were capable of oxidative phosphorylation as indicated by their ability to grow on succinate and had growth yields on glucose that were 80-90% of wild type. Membrane vesicles from the mutants were slightly less efficient than wild type vesicles in ATP-driven proton pumping as indicated by ATP-dependent quenching of quinacrine fluorescence. The decreased quenching response was not due to increased H+ leakiness of the mutant membranes or to loss of F1-ATPase activity from the membrane. These results indicate that the mutant F1F0-ATPases are defective in coupling ATP hydrolysis to H+ translocation. The membrane ATPase activity of the mutants was inhibited less by dicyclohexylcarbodiimide than that of wild type. The decrease in sensitivity to inhibition by dicyclohexylcarbodiimide was caused primarily by dissociation of the F1-ATPase from the mutant F0 in the ATPase assay mixture. These results support the idea that Pro43, and neighboring conserved polar residues play an important role in the binding and functional coupling of F1 to F0. Although a Pro residue is found at position 43 in all species of subunit c studied, surprisingly, it is not absolutely essential to function.  相似文献   

12.
Chloroplast F0 (CF0) was purified from the ATP synthase by Zwittergent 3-12 treatment and DEAE-Trisacryl anion exchange chromatography. Purified CF0 contains four subunits corresponding to subunits I, II, III, and IV. CF0 mediated proton translocation across the membrane after incorporation into asolectin liposomes. The CF0-mediated proton transport was inhibited by N,N'-dicyclohexylcarbodiimide and the binding of chloroplast coupling factor 1 (CF1). Rebinding of CF1 to CF0 liposomes resulted in reconstitution of N,N'-dicyclohexylcarbodiimide and uncoupler sensitive energy-transducing activities. Like CF0 in native thylakoid membranes, purified CF0 bound CF1 as well as CF1 deficient in either the delta or epsilon subunits.  相似文献   

13.
Here we report a fast, simple purification for thermophilic F1F0 ATP synthase (TF1F0) that utilizes a cocktail of stabilizing reagents and the detergent n-dodecyl beta-D-maltoside to yield enzyme with an ATPase activity of 41 micromol/min/mg, 2.5-fold higher than that previously reported. ATPase activity was 80% inhibited by the F0-reactive reagent dicyclohexylcarbodiimide, indicating that F1-F0 interactions were largely intact. To measure ATP-driven proton pumping activity, purified TF1F0 was incorporated into liposomes, and the ATP-induced change in internal pH was measured using the fluorescent probe pyranine. In the presence of valinomycin, a maximum ATP-driven deltapH of 0.8 units was obtained. To measure ATP synthesis activity, TF1F0 was incorporated into liposomes with the light-dependent proton pump bacteriorhodopsin. Proteoliposomes were illuminated to generate an electrochemical gradient, after which ADP and inorganic phosphate were added to initiate ATP synthesis. A steady state ATP synthesis activity of 490 nmol/min/mg was achieved after an initial approximately 30-min lag phase.  相似文献   

14.
The membrane F0 sector of mitochondrial ATP synthase complex was rapidly isolated by direct extraction with CHAPS from F1-depleted submitochondrial particles. The preparation thus obtained is stable and can be reconstituted in artificial phospholipid membranes to result in oligomycin-sensitive proton conduction, or recombined with purified F1 to give the oligomycin-sensitive F0F1-ATPase complex. The F0 preparation and constituent polypeptides were characterized by SDS-polyacrylamide gel electrophoresis and immunoblot analysis. The functional role of F0 polypeptides was examined by means of trypsin digestion and reconstitution studies. It is shown that, in addition to the 8 kDa DCCD-binding protein, the nuclear encoded protein [(1987) J. Mol. Biol. 197, 89-100], characterized as an intrinsic component of F0 (F0I, PVP protein [(1988) FEBS Lett. 237,9-14]) [corrected] is involved in H+ translocation and the sensitivity of this process to the F0 inhibitors, DCCD and oligomycin.  相似文献   

15.
W Laubinger  P Dimroth 《Biochemistry》1989,28(18):7194-7198
The purified ATPase (F1F0) of Propionigenium modestum has its pH optimum at pH 7.0 or at pH 6.0 in the presence or absence of 5 mM NaCl, respectively. The activation by 5 mM NaCl was 12-fold at pH 7.0, 3.5-fold at pH 6.0, and 1.5-fold at pH 5.0. In addition to its function as a primary Na+ pump, the ATPase was capable of pumping protons. This activity was demonstrated with reconstituted proteoliposomes by the ATP-dependent quenching of the fluorescence of 9-amino-6-chloro-2-methoxyacridine. No delta pH was formed in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone or by blocking the ATPase with dicyclohexylcarbodiimide. In the presence of valinomycin and K+, the delta pH increased, in accord with the operation of an electrogenic proton pump. The proton pump was only operative at low Na+ concentrations (less than 1 mM), and its activity increased as the Na+ concentration decreased. Parallel to the decrease of H+ pumping, the velocity of the Na+ transport increased about 6-fold from 0.1 to 4 mM NaCl, indicating a switch from H+ to Na+ pumping, as the Na+ concentration increases. Due to proton leaks in the proteoliposomal membranes, fluorescence quenching was released after blocking the ATPase with dicyclohexylcarbodiimide, by trapping residual ATP with glucose and hexokinase, or by the Na+-induced conversion of the proton pump onto a Na+ pump. Amiloride, an inhibitor of various Na+-coupled transport systems, was without effect on the kinetics of Na+ transport by the P. modestum ATPase.  相似文献   

16.
A study is presented on the role of F0 and F1 subunits in oligomycin-sensitive H+ conduction and energy transfer reactions of bovine heart mitochondrial F0F1 H(+)-ATP synthase. Mild treatment with azodicarboxylic acid bis(dimethylamide) (diamide) enhanced oligomycin-sensitive H+ conduction in submitochondrial particles containing F1 attached to F0. This effect was associated with stimulation of the ATPase activity, with no effect on its inhibition by oligomycin, and depression of the 32Pi-ATP exchange. The stimulatory effect of diamide on H+ conduction decreased in particles from which F1 subunits were partially removed by urea. The stimulatory effect exerted by diamide in the submitochondrial particles with F1 attached to F0 was directly correlated with a decrease of the original electrophoretic bands of a subunit of F0 (F0I-PVP protein) and the gamma subunit of F1, with corresponding formation of their cross-linking product. In F0 liposomes, devoid of gamma subunit, diamide failed to stimulate H+ conduction and to cause disappearance of F0I-PVP protein, unless purified gamma subunit was added back. The addition to F0 liposomes of gamma subunit, but not that of alpha and beta subunits, caused per se inhibition of H+ conduction. It is concluded that F0I-PVP and gamma subunits are directly involved in the gate of the F0F1 H(+)-ATP synthase. Data are also presented indicating contribution to the gate of oligomycin-sensitivity conferral protein and of another protein subunit of F0, F6.  相似文献   

17.
Mg~(2+)对线粒体H~+-ATP酶的F_O在脂质体重建时的影响   总被引:1,自引:1,他引:0  
线粒体ATP合成酶是由具有H~+转运活性的F_0亚基,可溶性的催化中心F_1和连接二者的致寡霉素敏感蛋白(OSCP)所组成. 将纯化的猪心线粒体H—ATP酶复合体的F_0亚基,用胆酸盐透析法在有Mg~(2+)和无Mg~(2+)条件下在大豆磷脂脂质体上重建得脂酶体(L·F_0).用探剂9-AA荧光淬灭法和电权法测定了两种脂酶体的质子转运活力.由两种方法所得的实验结果均表明,在透返介质中加入1mmolmg~(2+)条件下形成的脂酶体(L·F_0)+Mg~(2+)较无Mg~(2+)者的质子转运活性明显增加.前者的荧光强度变化较后者增加约30%;由电极法测得的质子转运的初速度,前者为5nmolH~+′sF_0,后者为3nmolH~+′s·nmolF_O,质子转运活性高约一倍.这进一步支持Mg~(2+)通过调节脂的物理状态而诱导F_O具有较适合的构象,并进而将这一影响传递至F_1,使整个H~+—AhP酶具有较高活性的假设.  相似文献   

18.
The uncE114 mutation from Escherichia coli strain KI1 (Nieuwenhuis, F. J. R. M., Kanner, B. I., Gutnick, D. L., Postma, P. W., and Van Dam, K. (1973) Biochim. Biophys. Acta 325, 62-71) was characterized after transfer to a new genetic background. A defective H+-ATPase complex is formed in strains carrying the mutation. Based upon the genetic complementation pattern of other unc mutants by a lambda uncE114 transducing phage, and complementation of uncE114 recipients by an uncE+ plasmid (pCP35), the mutation was concluded to lie in the uncE gene. The uncE gene codes for the omega subunit ("dicyclohexylcarbodiimide binding protein") of the H+-ATPase complex. The mutation was defined by sequencing the mutant gene. The G----C transversion found results in a substitution of Glu for Gln at position 42 of the omega subunit in the Fo sector of the H+-ATPase. The substitution did not significantly impair H+ translocation by Fo or affect inhibition of H+ translocation by dicyclohexylcarbodiimide. Wild-type F1 was bound by uncE114 Fo with near normal affinity, but the functional coupling between F1 and Fo was disrupted. The uncoupling was indicated by an H+-leaky membrane, even when saturating levels of wild-type F1 were bound. Disassociation of F1 from Fo under conditions of assay did partially contribute to the H+ leakiness, but the major contributor to the high H+ conductance was Fo with bound F1. The F1 bound to uncE114 membranes exhibited normal ATPase activity, but ATP hydrolysis was uncoupled from H+ translocation and was resistant to inhibition by dicyclohexylcarbodiimide. The F1 isolated from the uncE114 mutant was modified with partial loss of coupling function. However, this modification did not account for the uncoupled properties of the mutant Fo described above, since these properties were retained after reconstitution of mutant membrane (Fo) with wild-type F1.  相似文献   

19.
Recent crosslinking studies indicated the localization of the coupling ion binding site in the Na+-translocating F1F0 ATP synthase of Ilyobacter tartaricus within the hydrophobic part of the bilayer. Similarly, a membrane embedded H+-binding site is accepted for the H+-translocating F1F0 ATP synthase of Escherichia coli. For a more definite analysis, we performed parallax analysis of fluorescence quenching with ATP synthases from both I. tartaricus and E. coli. Both ATP synthases were specifically labelled at their c subunit sites with N-cyclohexyl-N'-(1-pyrenyl)carbodiimide, a fluorescent analogue of dicyclohexylcarbodiimide and the enzymes were reconstituted into proteoliposomes. Using either soluble quenchers or spinlabelled phospholipids, we observed a deeply membrane embedded binding site, which was quantitatively determined for I. tartaricus and E. coli to be 1.3 +/- 2.4 A and 1.8 +/- 2.8 A from the bilayer center apart, respectively. These data show a conserved topology among enzymes of different species. We further demonstrated the direct accessibility for Na+ ions to the binding sites in the reconstituted I. tartaricus c11 oligomer in the absence of any other subunits, pointing to intrinsic rotor channels. The common membrane embedded location of the binding site of ATP synthases suggest a common mechanism for ion transfer across the membrane.  相似文献   

20.
We have measured the inhibitory potencies of local anesthetics (procaine, lidocaine, tetracaine and dibucaine) on ATP-mediated H+-translocation, Ca2+-transport and ATPase activity in membrane vesicles from Mycobacterium phlei. Procaine and lidocaine up to 1 mM concentration did not inhibit ATP-dependent H+-translocation, Ca2+-transport and ATPase activity. However, tetracaine and dibucaine at 0.2 mM concentration caused dissipation of the proton gradient, measured by the reversal of the quenching of fluorescence of quinacrine, and inhibition of active Ca2+-transport. Tetracaine (1 mM) inhibited membrane-bound ATPase activity without affecting solubilized F1-ATPase activity. Studies show that these local anesthetics do not prevent the inactivation of F0-F1 ATPase by dicyclohexylcarbodiimide (DCCD). Binding of [14C]DCCD to F0-proteolipid component remained unchanged in the presence of tetracaine indicating that DCCD and tetracaine do not share common binding sites on the F0-proteolipid sector. The inhibition of H+-translocation and membrane-bound ATPase activity by tetracaine was substantially additive in the presence of vanadate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号