首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of sidestream analyzers for respired gas analysis is almost universal. However, they are not ideal for measurements of respiratory gas exchange because the analyses are both temporally dissociated from measurements of respiratory flow and also not generally conducted under the same physical conditions. This study explores the possibility of constructing an all optical, fast response, in-line breath analyzer for oxygen and carbon dioxide. Using direct absorption spectroscopy with a diode laser operating at a wavelength near 2 μm, measurements of expired carbon dioxide concentrations were obtained with an absolute limit of detection of 0.04% at a time resolution of 10 ms. Simultaneously, cavity enhanced absorption spectroscopy at a wavelength near 760 nm was employed to obtain measurements of expired oxygen concentrations with an absolute limit of detection of 0.26% at a time resolution of 10 ms. We conclude that laser-based absorption spectroscopy is a promising technology for in-line analysis of respired carbon dioxide and oxygen concentrations.  相似文献   

2.
A new method is described for collecting and concentrating volatile compounds in the breath, in order to facilitate their assay by gas chromatography. Breath was collected into sealed Mylar bags containing an internal standard (isopropyl alcohol). The sample was pumped through a cooled gas chromatograph column, where the volatile compounds were concentrated by adsorption onto the resin packing (Porapak Q) at 35 degrees C. The column was then heated, and the volatilized sample was separated for assay by flame ionization detection. The assay was highly sensitive for ethanol (detecting at least 4.0 nmol) and linear up to 20 nmol (r2 = 0.98). Accuracy and precision were determined by assaying nine replicates of a sample containing 12.0 nmol ethanol; a mean value of 12.18 nmol ethanol was obtained with a coefficient of variation of 10.26%. In a group of normal volunteers, endogenous breath ethanol concentrations ranged from 2.23 to 6.51 nmol/liter. This assay provided a number of advantages over previously described methods: The use of breath collection bags enabled the collection of samples outside the laboratory. The use of an internal standard in the collection bag reduced errors that might have resulted from leakage of the specimen. An on-column concentration of the sample in the gas chromatograph eliminated the need for an additional preconcentration device, such as a cryogenic or adsorptive trapping apparatus.  相似文献   

3.
External respiration in healthy males has, in addition to eupnea, six functionally active variants with one or several indices deviating from the normal values. Hyperpnea and hypopnea are determined by deviations in general oxygen consumption accompanied by adequate changes in pulmonary ventilation and gas exchange. Inhibition of gas exchange in the respiratory parts of the lungs is a typical primary event of hyperventilation, a fact indicated by a decrease in the coefficient of oxygen consumption and a compensatory increase in the minute respiratory volume during hyperventilation. Tension of the respiratory system is especially pronounced during enhanced oxygen consumption (O2C). Highly effective bradypnea is characterized by infrequent and deep breathing. No tension of the respiratory system is observed even for increased O2C. This state may be considered a genotypic and phenotypic variant of normal respiration. The data obtained may be used to automate the assessment of gas exchange in the respiratory parts of the lungs.  相似文献   

4.
Measurement of pulmonary gas uptake and elimination is often performed, using nitrogen as marker gas to measure gas flow, by applying the Haldane transformation. Because of the inability to measure nitrogen with conventional equipment, measurement is difficult during inhalational anesthesia. A new method is described, which is compatible with any inspired gas mixture, in which fresh gas and exhaust gas flows are measured using carbon dioxide as an extractable marker gas. A system was tested in eight patients undergoing colonic surgery for automated measurement of uptake of oxygen, nitrous oxide, isoflurane, and elimination of carbon dioxide with this method. Its accuracy and precision were compared with simultaneous measurements made with the Haldane transformation and corrected for predicted nitrogen excretion by the lungs. Good agreement was obtained for measurement of uptake or elimination of all gases studied. Mean bias was -0.003 l/min for both oxygen and nitrous oxide uptake, -0.0002 l/min for isoflurane uptake, and 0.003 l/min for carbon dioxide elimination. Limits of agreement lay within 30% of the mean uptake rate for nitrous oxide, within 15% for oxygen, within 10% for isoflurane, and within 5% for carbon dioxide. The extractable marker gas method allows accurate and continuous measurement of gas uptake and elimination in an anesthetic breathing system with any inspired gas mixture.  相似文献   

5.
Rahman I  Kelly F 《Free radical research》2003,37(12):1253-1266
Oxidative stress is associated with a range of inflammatory lung diseases including asthma, adult respiratory distress syndrome, idiopathic pulmonary fibrosis, pneumonia, lung transplantation, chronic obstructive pulmonary disease, cystic fibrosis, bronchiectasis and lung cancer. Increased concentrations of reactive oxygen species (ROS) in the airways of such patients are reflected by elevated concentrations of oxidative stress markers in the breath, airways, lung tissue and blood. Traditionally, the measurement of these biomarkers has involved invasive procedures to procure the samples, or examine the compartments. As a consequence, there is a need for less invasive approaches to measure oxidative stress. Analysis of breath hydrocarbons has partly fulfilled this need, however only gas phase volatile constituents can be assessed by this approach. The collection of exhaled breath condensate (EBC) is a simple, non-invasive approach, which comprehensively samples the lower respiratory tract. It is currently used as a research and diagnostic tool in the free radical field, yielding information on redox disturbance and the degree and type of inflammation in the lung. With further technical developments, such an approach may ultimately have a role in the clinic, in helping to diagnose specific lung diseases. EBC can be exploited to assess a spectrum of potential biomarkers, thus generating a “finger print” characteristic of the disease. By assessing the nature of oxidative stress in this manner, the most appropriate therapy can be selected and the response to treatment monitored.  相似文献   

6.
Oxidative stress is associated with a range of inflammatory lung diseases including asthma, adult respiratory distress syndrome, idiopathic pulmonary fibrosis, pneumonia, lung transplantation, chronic obstructive pulmonary disease, cystic fibrosis, bronchiectasis and lung cancer. Increased concentrations of reactive oxygen species (ROS) in the airways of such patients are reflected by elevated concentrations of oxidative stress markers in the breath, airways, lung tissue and blood. Traditionally, the measurement of these biomarkers has involved invasive procedures to procure the samples, or examine the compartments. As a consequence, there is a need for less invasive approaches to measure oxidative stress. Analysis of breath hydrocarbons has partly fulfilled this need, however only gas phase volatile constituents can be assessed by this approach. The collection of exhaled breath condensate (EBC) is a simple, non-invasive approach, which comprehensively samples the lower respiratory tract. It is currently used as a research and diagnostic tool in the free radical field, yielding information on redox disturbance and the degree and type of inflammation in the lung. With further technical developments, such an approach may ultimately have a role in the clinic, in helping to diagnose specific lung diseases. EBC can be exploited to assess a spectrum of potential biomarkers, thus generating a “finger print” characteristic of the disease. By assessing the nature of oxidative stress in this manner, the most appropriate therapy can be selected and the response to treatment monitored.  相似文献   

7.
Biomarkers in exhaled breath are useful for respiratory disease diagnosis in human volunteers. Conventional methods that collect non-volatile biomarkers, however, necessitate an extensive dilution and sanitation processes that lowers collection efficiencies and convenience of use. Electret filter emerged in recent decade to collect virus biomarkers in exhaled breath given its simplicity and effectiveness. To investigate the capability of electret filters to collect protein biomarkers, a model that consists of an atomizer that produces protein aerosol and an electret filter that collects albumin and carcinoembryonic antigen-a typical biomarker in lung cancer development- from the atomizer is developed. A device using electret filter as the collecting medium is designed to collect human albumin from exhaled breath of 6 volunteers. Comparison of the collecting ability between the electret filter method and other 2 reported methods is finally performed based on the amounts of albumin collected from human exhaled breath. In conclusion, a decreasing collection efficiency ranging from 17.6% to 2.3% for atomized albumin aerosol and 42% to 12.5% for atomized carcinoembryonic antigen particles is found; moreover, an optimum volume of sampling human exhaled breath ranging from 100 L to 200 L is also observed; finally, the self-designed collecting device shows a significantly better performance in collecting albumin from human exhaled breath than the exhaled breath condensate method (p<0.05) but is not significantly more effective than reported 3-stage impactor method (p>0.05). In summary, electret filters are potential in collecting non-volatile biomarkers in human exhaled breath not only because it was simpler, cheaper and easier to use than traditional methods but also for its better collecting performance.  相似文献   

8.
Inhaling cigarette smoke with each breath, with the subject at rest, by use of a smoking device that brought more smoke into the lungs than would be the case in ordinary smoking, produced consistent significant decreases in arterial blood oxygen saturation and in arterial pO(2) in most subjects who had severe or very severe pulmonary emphysema. In normal subjects and in those with a moderate degree of emphysema no significant changes in blood gas exchange resulted. No consistent significant changes in blood gas exchange were noted after the smoking of two cigarettes, either with the subject at rest or after a one-minute step-up exercise.A decrease in oxygen uptake occurred when treadmill exercise was done after smoking two cigarettes, and the ventilation volume was also decreased, probably accounting for part of the oxygen decrease. Pulmonary compliance measurements after smoking one cigarette were consistently and significantly decreased in most subjects-normal as well as those with pulmonary emphysema. The elastic work of breathing was increased in the majority of cases. In two cases in which studies were done after the subjects stopped smoking, one for three months and one for two years, significant reductions in residual air were noted. The results indicated that persons with severe or very severe emphysema would be better off to stop smoking.  相似文献   

9.
Inhaling cigarette smoke with each breath, with the subject at rest, by use of a smoking device that brought more smoke into the lungs than would be the case in ordinary smoking, produced consistent significant decreases in arterial blood oxygen saturation and in arterial pO2 in most subjects who had severe or very severe pulmonary emphysema. In normal subjects and in those with a moderate degree of emphysema no significant changes in blood gas exchange resulted.No consistent significant changes in blood gas exchange were noted after the smoking of two cigarettes, either with the subject at rest or after a one-minute step-up exercise.A decrease in oxygen uptake occurred when treadmill exercise was done after smoking two cigarettes, and the ventilation volume was also decreased, probably accounting for part of the oxygen decrease.Pulmonary compliance measurements after smoking one cigarette were consistently and significantly decreased in most subjects—normal as well as those with pulmonary emphysema. The elastic work of breathing was increased in the majority of cases.In two cases in which studies were done after the subjects stopped smoking, one for three months and one for two years, significant reductions in residual air were noted.The results indicated that persons with severe or very severe emphysema would be better off to stop smoking.  相似文献   

10.
The change in the external respiration parameters was studied in individuals engaging in sports (swimming) combined with training in voluntary cyclic breath holding during a session of intermittent normobaric hypoxia (three cycles of 5 min breathing a gas mixture containing 10.7% O2 alternating with 5 min breathing ordinary air). It was shown that they differed from the control group in sharp variations in the oxygen consumption rate, which were accompanied by equally marked changes in the effectiveness of oxygen binding in the lungs with a slightly increased stable level of pulmonary ventilation and a bradypneic type of breathing. An increase in the alveolar concentration of carbonic acid and a dramatic increase in the effectiveness of its elimination are significant features of the adaptive process in the mechanism of regulation of external respiration in this training.  相似文献   

11.
Throughout life, most mammals breathe between maximal and minimal lung volumes determined by respiratory mechanics and muscle strength. In contrast, competitive breath-hold divers exceed these limits when they employ glossopharyngeal insufflation (GI) before a dive to increase lung gas volume (providing additional oxygen and intrapulmonary gas to prevent dangerous chest compression at depths recently greater than 100 m) and glossopharyngeal exsufflation (GE) during descent to draw air from compressed lungs into the pharynx for middle ear pressure equalization. To explore the mechanical effects of these maneuvers on the respiratory system, we measured lung volumes by helium dilution with spirometry and computed tomography and estimated transpulmonary pressures using an esophageal balloon after GI and GE in four competitive breath-hold divers. Maximal lung volume was increased after GI by 0.13-2.84 liters, resulting in volumes 1.5-7.9 SD above predicted values. The amount of gas in the lungs after GI increased by 0.59-4.16 liters, largely due to elevated intrapulmonary pressures of 52-109 cmH(2)O. The transpulmonary pressures increased after GI to values ranging from 43 to 80 cmH(2)O, 1.6-2.9 times the expected values at total lung capacity. After GE, lung volumes were reduced by 0.09-0.44 liters, and the corresponding transpulmonary pressures decreased to -15 to -31 cmH(2)O, suggesting closure of intrapulmonary airways. We conclude that the lungs of some healthy individuals are able to withstand repeated inflation to transpulmonary pressures far greater than those to which they would normally be exposed.  相似文献   

12.
The airways of cystic fibrosis (CF) patients are chronically colonized by patient-specific polymicrobial communities. The conditions and nutrients available in CF lungs affect the physiology and composition of the colonizing microbes. Recent work in bioreactors has shown that the fermentation product 2,3-butanediol mediates cross-feeding between some fermenting bacteria and Pseudomonas aeruginosa, and that this mechanism increases bacterial current production. To examine bacterial fermentation in the respiratory tract, breath gas metabolites were measured and several metagenomes were sequenced from CF and non-CF volunteers. 2,3-butanedione was produced in nearly all respiratory tracts. Elevated levels in one patient decreased during antibiotic treatment, and breath concentrations varied between CF patients at the same time point. Some patients had high enough levels of 2,3-butanedione to irreversibly damage lung tissue. Antibiotic therapy likely dictates the activities of 2,3-butanedione-producing microbes, which suggests a need for further study with larger sample size. Sputum microbiomes were dominated by P. aeruginosa, Streptococcus spp. and Rothia mucilaginosa, and revealed the potential for 2,3-butanedione biosynthesis. Genes encoding 2,3-butanedione biosynthesis were disproportionately abundant in Streptococcus spp, whereas genes for consumption of butanedione pathway products were encoded by P. aeruginosa and R. mucilaginosa. We propose a model where low oxygen conditions in CF lung lead to fermentation and a decrease in pH, triggering 2,3-butanedione fermentation to avoid lethal acidification. We hypothesize that this may also increase phenazine production by P. aeruginosa, increasing reactive oxygen species and providing additional electron acceptors to CF microbes.  相似文献   

13.
利用尾气分析仪对发酵过程的尾气中的O2、CO2含量进行实时检测,建立了裂殖弧菌发酵生产DHA过程中的呼吸参数在线检测方法,实现了裂殖壶菌补料分批发酵过程及双阶段供氧控制发酵过程中的呼吸参数在线检测分析。通过呼吸参数在线检测分析,从氧消耗机制方面解释了双阶段氧传递控制工艺能获得较高生物量、油脂和DHA含量的原因,从而为该工艺过程提供了理论指导。根据发酵过程中菌体生长不同时期的呼吸参数的变化情况,建立了基于呼吸商变化的在线补料控制方法,设计了一种基于RQ-Stat的补料工艺。RQ-Stat补料方式最终获得的油脂含量、DHA产量和产率比间歇式补料工艺分别提高了11.58%、12.19%和11.40%。  相似文献   

14.
The present article deals with the development and application of an innovative breath analyser for metabolic stress testing and cardio respiratory measurements. The system is based on new, miniaturized ceramic gas sensors, which have the unique ability to measure simultaneously oxygen and carbon dioxide concentrations as well as flow rates. The small size of just a few millimetres allows the operation of the sensor directly in a breathing mask, minimizing dead space and breath resistance. Due to these properties and the fast response time of the measurement, it will be possible to perform a breath-by-breath analysis, in both stationary and mobile mode, with low environmental and psychological influences of the experimental circumstances to the tested person. The current development status and the most interesting technical data, experimental results, and benefits of the new breath analyser are described in the article.  相似文献   

15.
Oxidative stress is the hallmark of various chronic inflammatory lung diseases. Increased concentrations of reactive oxygen species (ROS) in the lungs of such patients are reflected by elevated concentrations of oxidative stress markers in the breath, airways, lung tissue and blood. Traditionally, the measurement of these biomarkers has involved invasive procedures to procure the samples or to examine the affected compartments, to the patient's discomfort. As a consequence, there is a need for less or non-invasive approaches to measure oxidative stress. The collection of exhaled breath condensate (EBC) has recently emerged as a non-invasive sampling method for real-time analysis and evaluation of oxidative stress biomarkers in the lower respiratory tract airways. The biomarkers of oxidative stress such as H2O2, F2-isoprostanes, malondialdehyde, 4-hydroxy-2-nonenal, antioxidants, glutathione and nitrosative stress such as nitrate/nitrite and nitrosated species have been successfully measured in EBC. The reproducibility, sensitivity and specificity of the methodologies used in the measurements of EBC oxidative stress biomarkers are discussed. Oxidative stress biomarkers also have been measured for various antioxidants in disease prognosis. EBC is currently used as a research and diagnostic tool in free radical research, yielding information on redox disturbance and the degree and type of inflammation in the lung. It is expected that EBC can be exploited to detect specific levels of biomarkers and monitor disease severity in response to appropriate prescribed therapy/treatment.  相似文献   

16.
The evolution of air-breathing in land crabs is associated with a progressive shift in the primary site of respiratory gas exchange from the diffusion-limited gills used for water-breathing, via a simple 'cutaneous' lung surface to the perfusion-limited, invaginated lung described in the mountain crab, Pseudothelphusa garmani. The reduced diffusion limitation over the lungs facilitates oxygen transfer from air to the tissues at lower ventilation rates but is associated with accumulation of carbon dioxide. A potential respiratory acidosis is buffered by the respiratory pigment haemocyanin and by elevation of haemolymph bicarbonate levels. These changes parallel those described in vertebrates but air-breathing crustaceans maintain relatively low carbon dioxide levels in the haemolymph, either by retaining an aquatic route for its elimination over the reduced gills or by blowing it off across the lung. Maintenance of low carbon dioxide levels may be associated with a limited capacity to buffer against an acidosis due to low levels of circulating haemocyanin (i.e. crustaceans lack red blood cells). This may ultimately limit their survival in air as an acidosis will reduce oxygen transport due to a marked Bohr effect on haemocyanin. The primary role of an invaginated lung may be to reduce rates of water loss in air.  相似文献   

17.
Respiratory rate and blood gases were studied in 2 groups of ewes: the ewes in group 1 (9 ewes) acted as uninfected controls and those in group 2 (6 ewes) were infected with small lungworms (Muellerius, Cystocaulus, Protostrongylus and < 1% Neostrongylus). The respiratory rate was higher in infected (49 ± 19 breath min−1) than in uninfected ewes (20 ± 3 breath min−1); it was strongly reduced after treatment (49 vs 22) in infected ewes. The partial carbon dioxide arterial tension (PCO2), total CO2 and HCO3 were higher (respectively 77 vs 39 mmHg, 38 vs 23 mmoll−1 and 35 vs 23 mmoll−1) in infected compared with uninfected ewes, whereas arterial pH (7.2 vs 7.4) and partial oxygen tension PO2 were lower (41 vs 81 mmHg) in infected ewes. Group 2 was treated with fenbendazole (at 15mg kg−1 bodyweight) to eliminate small lungworms, and the respiratory rate and blood gases were measured 3 weeks after treatment. The values after treatment were similar to those in uninfected ewes. It is concluded that heavy infections by small lungworms in ewes impairs gas exchange, but that gas exchange improves rapidly after treatment.  相似文献   

18.
Carbon dioxide labeled with 18O (C18O2) was used as a tracer gas for single-breath measurements in six anesthetized, mechanically ventilated beagle dogs. C18O2 is taken up quasi-instantaneously in the gas-exchanging region of the lungs but much less so in the conducting airways. Its use allows a clear separation of phase II in an expirogram even from diseased individuals and excludes the influence of alveolar concentration differences. Phase II of a C18O2 expirogram mathematically corresponds to the cumulative distribution of bronchial pathways to be traversed completely in the course of exhalation. The derivative of this cumulative distribution with respect to respired volume was submitted to a power moment analysis to characterize volumetric mean (position), standard deviation (broadness), and skewness (asymmetry) of phase II. Position is an estimate of dead space volume, whereas broadness and skewness are measures of the range and asymmetry of functional airway pathway lengths. The effects of changing ventilatory patterns and of changes in airway size (via carbachol-induced bronchoconstriction) were studied. Increasing inspiratory or expiratory flow rates or tidal volume had only minor influence on position and shape of phase II. With the introduction of a postinspiratory breath hold, phase II was continually shifted toward the airway opening (maximum 45% at 16 s) and became steeper by up to 16%, whereas skewness showed a biphasic response with a moderate decrease at short breath holding and a significant increase at longer breath holds. Stepwise bronchoconstriction decreased position up to 45 +/- 2% and broadness of phase II up to 43 +/- 4%, whereas skewness was increased up to twofold at high-carbachol concentrations. Under all circumstances, position of phase II by power moment analysis and dead space volume by the Fowler technique agreed closely in our healthy dogs. Overall, power moment analysis provides a more comprehensive view on phase II of single-breath expirograms than conventional dead space volume determinations and may be useful for respiratory physiology studies as well as for the study of diseased lungs.  相似文献   

19.
Using mathematical modeling of respiratory rhythm generation and the breakpoint of breath holding, the dependence of gas-exchange dynamics and the duration of voluntary breath holding on chemoreceptor regulation of the respiratory system was studied. With data from experiments on ten volunteers who had performed their maximum breath holding after maximum inspiration and after maximum expiration, it was shown that experimentally obtained values of the duration of breath holding after expiration were approximately 70% of those predicted by the model. This is an estimation of the contribution of chemoreceptor control to breath holding. The results support the concept of the key role of chemoreceptors at the breakpoint of breath holding.  相似文献   

20.
Abstract

Oxidative stress is the hallmark of various chronic inflammatory lung diseases. Increased concentrations of reactive oxygen species (ROS) in the lungs of such patients are reflected by elevated concentrations of oxidative stress markers in the breath, airways, lung tissue and blood. Traditionally, the measurement of these biomarkers has involved invasive procedures to procure the samples or to examine the affected compartments, to the patient's discomfort. As a consequence, there is a need for less or non-invasive approaches to measure oxidative stress. The collection of exhaled breath condensate (EBC) has recently emerged as a non-invasive sampling method for real-time analysis and evaluation of oxidative stress biomarkers in the lower respiratory tract airways. The biomarkers of oxidative stress such as H2O2, F2-isoprostanes, malondialdehyde, 4-hydroxy-2-nonenal, antioxidants, glutathione and nitrosative stress such as nitrate/nitrite and nitrosated species have been successfully measured in EBC. The reproducibility, sensitivity and specificity of the methodologies used in the measurements of EBC oxidative stress biomarkers are discussed. Oxidative stress biomarkers also have been measured for various antioxidants in disease prognosis. EBC is currently used as a research and diagnostic tool in free radical research, yielding information on redox disturbance and the degree and type of inflammation in the lung. It is expected that EBC can be exploited to detect specific levels of biomarkers and monitor disease severity in response to appropriate prescribed therapy/treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号