首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have shown previously that the ELR-negative CXC chemokines interferon-inducible protein 10, monokine induced by gamma interferon, and platelet factor 4 inhibit epidermal growth factor (EGF)-induced m-calpain activation and thereby EGF-induced fibroblast cell motility (H. Shiraha, A. Glading, K. Gupta, and A. Wells, J. Cell Biol. 146:243-253, 1999). However, how this cross attenuation could be accomplished remained unknown since the molecular basis of physiological m-calpain regulation is unknown. As the initial operative attenuation signal from the CXCR3 receptor was cyclic AMP (cAMP), we verified that this second messenger blocked EGF-induced motility of fibroblasts (55% +/- 4.5% inhibition) by preventing rear release during active locomotion. EGF-induced calpain activation was inhibited by cAMP activation of protein kinase A (PKA), as the PKA inhibitors H-89 and Rp-8Br-cAMPS abrogated cAMP inhibition of both motility and calpain activation. We hypothesized that PKA might negatively modulate m-calpain in an unexpected manner by directly phosphorylating m-calpain. A mutant human large subunit of m-calpain was genetically engineered to negate a putative PKA consensus sequence in the regulatory domain III (ST369/370AA) and was expressed in NR6WT mouse fibroblasts to represent about 30% of total m-calpain in these cells. This construct was not phosphorylated by PKA in vitro while a wild-type construct was, providing proof of the principle that m-calpain can be directly phosphorylated by PKA at this site. cAMP suppressed EGF-induced calpain activity of cells overexpressing a control wild-type human m-calpain (83% +/- 3.7% inhibition) but only marginally suppressed that of cells expressing the PKA-resistant mutant human m-calpain (25% +/- 5.5% inhibition). The EGF-induced motility of the cells expressing the PKA-resistant mutant also was not inhibited by cAMP. Structural modeling revealed that new constraints resulting from phosphorylation at serine 369 would restrict domain movement and help "freeze" m-calpain in an inactive state. These data point to a novel mechanism of negative control of calpain activation, direct phosphorylation by PKA.  相似文献   

2.
Keratinocyte migration is critical to reepithelialization during wound repair. The motility response is promoted by growth factors, cytokines, and cytokines produced in the wound bed, including those that activate the epidermal growth factor (EGF) receptor. The Alu-Leu-Arg-negative CXC chemokine interferon-inducible protein 9 (IP-9; also known as CXCL11, I-TAC, beta-R1, and H-174) is produced by keratinocytes in response to injury. As keratinocytes also express the receptor, CXCR3, this prompted us to examine the role and molecular mechanism by which IP-9 regulates keratinocyte motility. Unexpectedly, as CXCR3 liganding blocks growth factor-induced motility in fibroblasts, IP-9 alone promoted motility in undifferentiated keratinocytes (37 +/- 6% of the level of the highly motogenic EGF) as determined in a two-dimensional in vitro wound healing assay. IP-9 even enhanced EGF-induced motility in undifferentiated keratinocytes (116 +/- 5%; P < 0.05 compared to EGF alone), suggesting two separate mechanisms of action. IP-9-increased motility and -decreased adhesiveness required the intracellular protease calpain. The increases in both motility and calpain activity by IP-9 were blocked by pharmacological and molecular inhibition of phospholipase C-beta3 and chelation of calcium, which prevented an intracellular calcium flux. Molecular downregulation or RNA interference-mediated depletion of mu-calpain (calpain 1) but not M-calpain (calpain 2) blocked IP-9-induced calpain activation and motility. In accord with elimination of IP-9-induced de-adhesion, RNA interference-mediated depletion of calpain 1 but not calpain 2 prevented cleavage of the focal adhesion component focal adhesion kinase and disassembly of vinculin aggregates. In comparison, EGF-induced motility of the same undifferentiated keratinocytes requires the previously described extracellular signal-regulated kinase to the M-calpain pathway. These data demonstrate that while both EGF- and IP-9-induced motility in keratinocytes requires calpain activity, the isoform of calpain triggered depends on the nature of the receptor for the particular ligand. Interestingly, physiological nonapoptotic calcium fluxes were capable of activating mu-calpain, implying that the calcium requirement of mu-calpain for activation is attained during cell signaling. This is also the first demonstration of differential activation of the two ubiquitous calpain isoforms in the same cell by different signals.  相似文献   

3.
4.
The EGF receptor (EGFR) upon activation signals increased cell movement. However, the domains within the receptor, and the pathway which trigger movement are undefined. We expressed EGFR mutants at physiologic levels in receptor-devoid NR6 cells to investigate this biologic response. The receptors possessed kinase activity and underwent autophosphorylation as predicted by primary amino acid sequence. EGF-induced cell motility was assessed in vitro by excess migration into an acellular area and colony scatter in the presence of saturating concentrations of EGF. Wild-type (WT)-EGFR signaled increased motility. However, replacing the conserved lysine721 with methionine resulted in a kinase-inactive receptor which did not elicit movement. Removal of the entire terminus by truncation (c'973) also abrogated ligand-induced motility. Thus, we concentrated on the carboxy- terminal domains. EGF-induced movement was seen with a less-truncated mutant (c'1000) that contained a single autophosphorylated tyrosine (tyrosine992). Other mutants, c'991 and c'1000F992, in which this tyrosine was removed did not signal motility. Fusion mutants which presented other autophosphorylated tyrosine domains also exhibited EGF- induced movement. These findings suggested that the presence of both an autophosphorylated tyrosine signaling domain and the kinase activity are necessary for this biologic response. All kinase-positive mutants signaled cell proliferation but only those that contained autophosphorylatable tyrosines induced movement. The motility responses mediated by these EGFR were identical in the presence or absence of mitomycin-C, at a dose (0.5 micrograms/ml) which completely inhibited cell proliferation. On the other side, D-actinomycin (50 ng/ml) blocked EGF-induced motility but did not affect thymidine incorporation. Thus, EGF-induced mitogenesis and cell motility are mediated through different pathways.  相似文献   

5.
Metastasis is the major cause of morbidity and mortality in cancer. Recent studies reveal a role of chemotaxis in cancer cell metastasis. Epidermal growth factor receptors (EGFR) have potent chemotactic effects on human breast cancer cells. Lipid rafts, organized microdomain on plasma membranes, regulate the activation of many membrane receptors. In the current study, we investigated the role of lipid rafts in EGFR-mediated cancer cell chemotaxis. Our confocal microscopy results suggested that EGFR co-localized with GM1-positive rafts. Disrupting rafts with methyl-beta-cyclodextrin (mbetaCD) inhibited EGF-induced chemotaxis of human breast cancer cells. Supplementation with cholesterol reversed the inhibitory effects. Pretreatment with mbetaCD also impaired directional migration of cells in an in vitro "wound healing" assay, EGF-induced cell adhesion, actin polymerization, Akt phosphorylation and protein kinase Czeta (PKCzeta) translocation. Taken together, our study indicated that integrity of lipid rafts was critical in EGF-induced chemotaxis of human breast cancer cells.  相似文献   

6.
Epidermal growth factor (EGF) receptor (EGFR) is involved in various basic biochemical pathways and is thus thought to play an important role in cell migration. We examined the effect of EGF on motility, migration, and morphology of a human adenocarcinoma cell line CAC-1. EGF treatment increased the motility of cervical adenocarcinoma cells and promoted migration of the cells on fibronectin and type IV collagen. EGF induced morphological changes with lamellipodia during EGFR-mediated motility. The results of an immunoprecipitation study showed that EGF up-regulated the expression of alpha2beta1-integrin in a dose-dependent manner. EGF-induced cell migration was blocked by alpha2beta1-integrin antibody. Our results also showed that EGF treatment stimulated the level of tyrosine dephosphorylation of FAK, which is required for EGF-induced changes in motility, migration, and cell morphology. A tyrosine kinase inhibitor (ZD1839) blocked EGF-induced changes in cervical adenocarcinoma cells. The results suggest that EGF promotes cell motility and migration and increases the expression of alpha2beta1-integrin, possibly by decreasing FAK phosphorylation.  相似文献   

7.
Metastasis is the major cause of morbidity and mortality in cancer. Recent studies reveal a role of chemotaxis in cancer cell metastasis. Epidermal growth factor receptors (EGFR) have potent chemotactic effects on human breast cancer cells. Lipid rafts, organized microdomain on plasma membranes, regulate the activation of many membrane receptors. In the current study, we investigated the role of lipid rafts in EGFR-mediated cancer cell chemotaxis. Our confocal microscopy results suggested that EGFR co-localized with GM1-positive rafts. Disrupting rafts with methyl-β-cyclodextrin (mβCD) inhibited EGF-induced chemotaxis of human breast cancer cells. Supplementation with cholesterol reversed the inhibitory effects. Pretreatment with mβCD also impaired directional migration of cells in an in vitro “wound healing” assay, EGF-induced cell adhesion, actin polymerization, Akt phosphorylation and protein kinase Cζ (PKCζ) translocation. Taken together, our study indicated that integrity of lipid rafts was critical in EGF-induced chemotaxis of human breast cancer cells.  相似文献   

8.
Herein, we define how MEKK1, a MAPK kinase kinase, regulates cell migration. MEKK1 is associated with actin fibers and focal adhesions, localizing MEKK1 to sites critical in the control of cell adhesion and migration. EGF-induced ERK1/2 activation and chemotaxis are inhibited in MEKK1-/- fibroblasts. MEKK1 deficiency causes loss of vinculin in focal adhesions of migrating cells, increased cell adhesion and impeded rear-end detachment. MEKK1 is required for activation of the cysteine protease calpain and cleavage of spectrin and talin, proteins linking focal adhesions to the cytoskeleton. Inhibition of ERK1/2 or calpain, but not of JNK, mimics MEKK1 deficiency. Therefore, MEKK1 regulates calpain-mediated substratum release of migrating fibroblasts.  相似文献   

9.
We recently have demonstrated that EGF receptor (EGFR)-induced cell motility requires receptor kinase activity and autophosphorylation (P. Chen, K. Gupta, and A. Wells. 1994. J. Cell Biol. 124:547-555). This suggests that the immediate downstream effector molecule contains a src homology-2 domain. Phospholipase C gamma (PLC gamma) is among the candidate transducers of this signal because of its potential roles in modulating cytoskeletal dynamics. We utilized signaling-restricted EGFR mutants expressed in receptor devoid NR6 cells to determine if PLC activation is necessary for EGFR-mediated cell movement. Exposure to EGF (25 nM) augmented PLC activity in all five EGFR mutant cell lines which also responded by increased cell movement. Basal phosphoinositide turnover was not affected by EGF in the lines which do not present the enhanced motility response. The correlation between EGFR-mediated cell motility and PLC activity suggested, but did not prove, a causal link. A specific inhibitor of PLC, U73122 (1 microM) diminished both the EGF- induced motility and PLC responses, while its inactive analogue U73343 had no effect on these responses. Both the PLC and motility responses were decreased by expression of a dominant-negative PLC gamma-1 fragment in EGF-responsive infectant lines. Lastly, anti-sense oligonucleotides (20 microM) to PLC gamma-1 reduced both responses in NR6 cells expressing wild-type EGFR. These findings strongly support PLC gamma as the immediate post receptor effector in this motogenic pathway. We have demonstrated previously that EGFR-mediated cell motility and mitogenic signaling pathways are separable. The point of divergence is undefined. All kinase-active EGFR mutants induced the mitogenic response while only those which are autophosphorylated induced PLC activity. U73122 did not affect EGF-induced thymidine incorporation in these motility-responsive infectant cell lines. In addition, the dominant-negative PLC gamma-1 fragment did not diminish EGF-induced thymidine incorporation. All kinase active EGFR stimulated mitogen-activated protein (MAP) kinase activity, regardless of whether the receptors induced cell movement; this EGF-induced MAP kinase activity was not affected by U73122 at concentrations that depressed the motility response. Thus, the signaling pathways which lead to motility and cell proliferation diverge at the immediate post-receptor stage, and we suggest that this is accomplished by differential activation of effector molecules.  相似文献   

10.
Myosin-based cell contractile force is considered to be a critical process in cell motility. However, for epidermal growth factor (EGF)-induced fibroblast migration, molecular links between EGF receptor (EGFR) activation and force generation have not been clarified. Herein, we demonstrate that EGF stimulation increases myosin light chain (MLC) phosphorylation, a marker for contractile force, concomitant with protein kinase C (PKC) activity in mouse fibroblasts expressing human EGFR constructs. Interestingly, PKCdelta is the most strongly phosphorylated isoform, and the preferential PKCdelta inhibitor rottlerin largely prevented EGF-induced phosphorylation of PKC substrates and MARCKS. The pathway through which EGFR activates PKCdelta is suggested by the fact that the MEK-1 inhibitor U0126 and the phosphatidylinositol 3-kinase inhibitor LY294002 had no effect on PKCdelta activation, whereas lack of PLCgamma signaling resulted in delayed PKCdelta activation. EGF-enhanced MLC phosphorylation was prevented by a specific MLC kinase inhibitor ML-7 and the PKC inhibitors chelerythrine chloride and rottlerin. Further indicating that PKCdelta is required, a dominant-negative PKCdelta construct or RNAi-mediated PKCdelta depletion also prevented MLC phosphorylation. In the absence of PLC signaling, MLC phosphorylation and cell force generation were delayed similarly to PKCdelta activation. All of the interventions that blocked PKCdelta activation or MLC phosphorylation abrogated EGF-induced cell contractile force generation and motility. Our results suggest that PKCdelta activation is responsible for a major part of EGF-induced fibroblast contractile force generation. Hence, we identify here a new pathway helping to govern cell motility, with PLC signaling playing a role in activation of PKCdelta to promote the acute phase of EGF-induced MLC activation.  相似文献   

11.
Epithelial-to-mesenchymal transition (EMT), important cellular process in metastasis of primary tumors, is characterized by loss of their cell polarity, disruption of cell-cell adhesion, and gain certain properties of mesenchymal phenotype that enable migration and invasion. Delphinidin is a member of anthocyanidin belong to flavonoid groups, known as having pharmacological and physiological effects including anti-tumorigenic, antioxidative, anti-inflammatory, and antiangiogenic effects. However, the effects of delphinidin on EMT is rarely investigated. Epidermal growth factor (EGF) is known as a crucial inducer of EMT in various cancer including hepatocellular carcinoma (HCC). To determine whether delphinidin inhibits EGF-induced EMT in HCC cells, antiproliferative effect of delphinidin on Huh7 and PLC/PRF/5 cells were measured by Cell Counting Kit-8 assay. As a result, delphinidin inhibited cell proliferation in a dose-dependent manner. Based on the result of proliferation, to measure the effects of delphinidin on EGF-induced EMT, we designated a proper concentration of delphinidin, which is not affected to cell proliferation. We found that delphinidin inhibits morphological changes from epithelial to mesenchymal phenotype by EGF. Moreover, delphinidin increased the messenger RNA and protein expression of E-cadherin and decreased those of Vimentin and Snail in EGF-induced HCC cells. Also, delphinidin prevented motility and invasiveness of EGF-induced HCC cells through suppressing activation of matrix metalloproteinase 2, EGF receptor (EGFR), AKT, and extracellular signal-regulated kinase (ERK). Taken together, our findings demonstrate that delphinidin inhibits EGF-induced EMT by inhibiting EGFR/AKT/ERK signaling pathway in HCC cells.  相似文献   

12.
To become migratory, cells must reorganize their connections to the substratum, and during locomotion they must break rear attachments. The molecular and biochemical mechanisms underlying these biophysical processes are unknown. Recent studies have implicated both extracellular signal-regulated kinase/mitogen-activated protein (ERK/MAP) kinase and calpain (EC 3.4.22.17) in these processes, but it is uncertain whether these are two distinct pathways acting on different modes of motility. We report that cell deadhesion involved in epidermal growth factor (EGF) receptor-mediated fibroblast motility requires activation of M-calpain downstream of ERK/MAP kinase signaling. NR6 fibroblasts expressing full-length wild type epidermal growth factor receptor required both calpain and ERK activation, as demonstrated by pharmacological inhibitors (calpeptin and calpain inhibitor I and PD98059, respectively) for EGF-induced deadhesion and motility. EGF induced rapid activation of calpain that was preventable by molecular inhibition of the Ras-Raf-MEK but not phospholipase Cgamma signaling pathway, and calpain was stimulated by transfection of constitutively active MEK. Enhanced calpain activity was not mirrored by increased calpain protein levels or decreased levels of its endogenous inhibitor calpastatin. The link between ERK/MAP kinase signaling and cell motility required the M-isoform of calpain (calpain II), as determined by specific antisense-mediated down-regulation. These data promote a previously undescribed signaling pathway of ERK/MAP kinases activating calpain to destabilize cell-substratum adhesions in response to EGF stimulation.  相似文献   

13.
Cao C  Sun Y  Healey S  Bi Z  Hu G  Wan S  Kouttab N  Chu W  Wan Y 《The Biochemical journal》2006,400(2):225-234
AQP3 (aquaporin-3), known as an integral membrane channel in epidermal keratinocytes, facilitates water and glycerol movement into and out of the skin. Here, we demonstrate that AQP3 is also expressed in cultured human skin fibroblasts, which under normal wound healing processes migrate from surrounding tissues to close the wound. EGF (epidermal growth factor), which induced fibroblast migration, also induced AQP3 expression in a time- and dose-dependent manner. CuSO4 and NiCl2, previously known as AQP3 water transport inhibitors, as well as two other bivalent heavy metals Mn2+ and Co2+, inhibited EGF-induced cell migration in human skin fibroblasts. AQP3 knockdown by small interfering RNA inhibited EGF-induced AQP3 expression and cell migration. Furthermore, an EGFR (EGF receptor) kinase inhibitor, PD153035, blocked EGF-induced AQP3 expression and cell migration. MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK inhibitor U0126 and PI3K (phosphoinositide 3-kinase) inhibitor LY294002 also inhibited EGF-induced AQP3 expression and cell migration. Collectively, our findings show for the first time that AQP3 is expressed in human skin fibroblasts and that EGF induces AQP3 expression via EGFR, PI3K and ERK signal transduction pathways. We have provided evidence for a novel role of AQP3 in human skin fibroblast cell migration, which occurs during normal wound healing.  相似文献   

14.
Epidermal growth factor (EGF) is a well-known growth factor that induces cancer cell migration and invasion. Previous studies have shown that SMAD ubiquitination regulatory factor 1 (SMURF1), an E3 ubiquitin ligase, regulates cell motility by inducing RhoA degradation. Therefore, we examined the role of SMURF1 in EGF-induced cell migration and invasion using MDA-MB-231 cells, a human breast cancer cell line. EGF increased SMURF1 expression at both the mRNA and protein levels. All ErbB family members were expressed in MDA-MB-231 cells and receptor tyrosine kinase inhibitors specific for the EGF receptor (EGFR) or ErbB2 blocked the EGF-mediated induction of SMURF1 expression. Within the signaling pathways examined, ERK1/2 and protein kinase C activity were required for EGF-induced SMURF1 expression. The overexpression of constitutively active MEK1 increased the SMURF1 to levels similar to those induced by EGF. SMURF1 induction by EGF treatment or by the overexpression of MEK1 or SMURF1 resulted in enhanced cell migration and invasion, whereas SMURF1 knockdown suppressed EGF- or MEK1-induced cell migration and invasion. EGF treatment or SMURF1 overexpression decreased the endogenous RhoA protein levels. The overexpression of constitutively active RhoA prevented EGF- or SMURF1-induced cell migration and invasion. These results suggest that EGFinduced SMURF1 plays a role in breast cancer cell migration and invasion through the downregulation of RhoA.  相似文献   

15.
Angiogenesis plays a critical role in processes such as organ development, wound healing, and tumor growth. It requires well-orchestrated integration of soluble and matrix factors and timely recognition of such signals to regulate this process. Previous work has shown that newly forming vessels express the chemokine receptor CXC receptor 3 (CXCR3) and, activation by its ligand IP-10 (CXCL10), both inhibits development of new vasculature and causes regression of newly formed vessels. To identify and develop new therapeutic agents to limit or reverse pathological angiogenesis, we identified a 21 amino acid fragment of IP-10, spanning the α-helical domain residues 77-98, that mimic the actions of the whole IP-10 molecule on endothelial cells. Treatment of the endothelial cells with the 22 amino acid fragment referred to as IP-10p significantly inhibited VEGF-induced endothelial motility and tube formation in vitro, properties critical for angiogenesis. Using a Matrigel plug assay in vivo, we demonstrate that IP-10p both prevented vessel formation and induced involution of nascent vessels. CXCR3 neutralizing antibody was able to block the inhibitory effects of the IP-10p, demonstrating specificity of the peptide. Inhibition of endothelial function by IP-10p was similar to that described for IP-10, secondary to CXCR3-mediated increase in cAMP production, activation of PKA inhibiting cell migration, and inhibition of VEGF-mediated m-calpain activation. IP-10p provides a novel therapeutic agent that inhibits endothelial cell function thus, allowing for the modulation of angiogenesis.  相似文献   

16.
Epidermal growth factor receptor (EGFR) can undergo post-translational modifications, including phosphorylation, glycosylation and ubiquitylation, leading to diverse physiological consequences and modulation of its biological activity. There is increasing evidence that methylation may parallel other post-translational modifications in the regulation of various biological processes. It is still not known, however, whether EGFR is regulated by this post-translational event. Here, we show that EGFR Arg?1175 is methylated by an arginine methyltransferase, PRMT5. Arg?1175 methylation positively modulates EGF-induced EGFR trans-autophosphorylation at Tyr?1173, which governs ERK activation. Abolishment of Arg?1175 methylation enhances EGF-stimulated ERK activation by reducing SHP1 recruitment to EGFR, resulting in augmented cell proliferation, migration and invasion of EGFR-expressing cells. Therefore, we propose a model in which the regulatory crosstalk between PRMT5-mediated Arg?1175 methylation and EGF-induced Tyr?1173 phosphorylation attenuates EGFR-mediated ERK activation.  相似文献   

17.
The platelet-derived growth factor (PDGF) receptor (PDGFR) transactivates the epidermal growth factor (EGF) receptor (ErbB1) to stimulate the cell migration of fibroblasts through an unknown mechanism (Li, J., Kim, Y. N. & Bertics, P. (2000) J. Biol. Chem. 275, 2951-2958). In this paper we provide evidence that the transactivation of the EGF receptor (EGFR) by PDGFR is essential for PDGF to activate p21-activated kinase (PAK) family kinases. Fetal calf serum (10%) transiently stimulates the PAK activity in NIH 3T3 fibroblasts. The activation of PAK was completely inhibited by either PDGFR-specific inhibitor (AG1295) or EGFR-specific inhibitor (AG1478), suggesting that serum requires either the PDGF- or EGF-dependent pathway or the combination of both to activate PAK. PDGF-induced activation of PAK is completely inhibited by either AG1295 or AG1478, indicating that PDGF requires both PDGFR and EGFR for PAK activation. In support of this notion, a mouse embryo fibroblast cell line derived from the EGFR -/- mouse (from Dr. Erwin Wagner) doesn't activate PAK in response to PDGF. Expression of human EGFR in this cell line restores the ability of the PDGF to induce PAK activation. Our results indicate that PDGF activates PAK through transactivation of ErbB1.  相似文献   

18.
Epithelial-to-mesenchymal transition (EMT) confers cancer cells the ability of invasion and metastasis. However, how does EMT contribute to evasion of immune surveillance is unclear, especially in salivary adenoid cystic carcinoma (SACC). In this study, we investigated the molecular link between EGF-induced EMT and the immune checkpoint ligand programmed death-ligand 1 (PD-L1) by immunoprecipitation (IP) and Westernblot analysis. Cell migration and invasion activity was assayed by transwell assay. Immunohistochemical (IHC) staining analysis was performed for measurement of EMT markers and PD-L1 expression levels in tumor tissues. We found that EGF-induced EGFR activation stabilized Snail expression and induced EMT in SACC. Interestingly, EGFR activation induced simultaneously both EMT and PD-L1 in SACC. Importantly, knockdown of Snail greatly suppressed EGF-induced EMT, but not EGF-induced PD-L1 expression; whereas knockdown of c-Myc strongly repressed PD-L1 expression, but not snail expression and EMT. The molecular link is strongly supported by robust correlations between the EMT markers and PD-L1 expression in human cancer samples.These results suggest that EGFR activated EMT and PD-L1 via two distinct mechanisms. EGFR activation induced EMT and PD-L1 expression in SACC. Snail is required for EGF-induced EMT, but not PD-L1 expression; whereas c-Myc is required for EGFR-mediated PD-L1 upregulation but not EMT. Thus, targeting activated EGFR may inhibit both EMT and PD-L1, which may potentiate the therapeutic effect of PD-L1-based immunotherapy, especially in the malignant subgroups of SACC patients with activated EGFR.  相似文献   

19.
Intracellular polyamine levels are highly regulated by the activity of ornithine decarboxylase (ODC), which catalyzes the first rate-limiting reaction in polyamine biosynthesis, producing putrescine, which is subsequently converted to spermidine and spermine. We have shown that polyamines regulate proliferation, migration, and apoptosis in intestinal epithelial cells. Polyamines regulate key signaling events at the level of the EGFR and Src. However, the precise mechanism of action of polyamines is unknown. In the present study, we demonstrate that ODC localizes in lamellipodia and in adhesion plaques during cell spreading. Spermine regulates EGF-induced migration by modulating the interaction of the EGFR with Src. The EGFR interacted with integrin β3, Src, and focal adhesion kinase (FAK). Active Src (pY418-Src) localized with FAK during spreading and migration. Spermine prevented EGF-induced binding of the EGFR with integrin β3, Src, and FAK. Activation of Src and FAK was necessary for EGF-induced migration in HEK293 cells. EGFR-mediated Src activation in live HEK293 cells using a FRET based Src reporter showed that polyamine depletion significantly increased Src kinase activity. In vitro binding studies showed that spermine directly binds Src, and preferentially interacts with the SH2 domain of Src. The physical interaction between Src and the EGFR was severely attenuated by spermine. Therefore, spermine acts as a molecular switch in regulating EGFR-Src coupling both physically and functionally. Upon activation of the EGFR, integrin β3, FAK and Src are recruited to EGFR leading to the trans-activation of both the EGFR and Src and to the Src-mediated phosphorylation of FAK. The activation of FAK induced Rho-GTPases and subsequently migration. This is the first study to define mechanistically how polyamines modulate Src function at the molecular level.  相似文献   

20.
Sphingosine-1-phosphate (S1P) is the ligand for a family of specific G protein-coupled receptors that regulate a wide variety of cellular functions, including cytoskeletal rearrangements and cell motility. Because of the pivotal role of S1P, its levels are low and tightly regulated in a spatial-temporal manner through its synthesis catalyzed by sphingosine kinases and degradation by an S1P lyase and specific S1P phosphatases (SPP). Surprisingly, down-regulation of SPP-1 enhanced migration toward epidermal growth factor (EGF); conversely, overexpression of SPP-1, which is localized in the endoplasmic reticulum, attenuated migration toward EGF. To determine whether the inhibitory effect on EGF-induced migration was because of decreased S1P or increased ceramide as a consequence of acylation of increased sphingosine by ceramide synthase, we used fumonisin B1, a specific inhibitor of ceramide synthase. Although fumonisin B1 blocked ceramide production and increased sphingosine, it did not reverse the negative effect of SPP-1 expression on EGF- or S1P-induced chemotaxis. EGF activated the epidermal growth factor receptor to the same extent in SPP-1-expressing cells, yet ERK1/2 activation was impaired. In agreement, PD98059, an inhibitor of the ERK-activating enzyme MEK, decreased EGF-stimulated migration. We next examined the possibility that intracellularly generated S1P might be involved in activating a G protein-coupled S1P receptor important for EGF-directed migration. Treatment with pertussis toxin to inactivate Galpha(i) suppressed EGF-induced migration. Moreover, expression of regulator of G protein signaling 3, which inhibits S1P receptor signaling and completely prevented ERK1/2 activation mediated by S1P receptors, not only reduced migration toward S1P but also markedly reduced migration toward EGF. Collectively, these results suggest that metabolism of S1P by SPP-1 is important for EGF-directed cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号