首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diversity in plant red pigments: anthocyanins and betacyanins   总被引:1,自引:0,他引:1  
Plant pigments are of interest for research into questions of basic biology as well as for purposes of applied biology. Red colors in flowers are mainly produced by two types of pigments: anthocyanins and betacyanins. Though anthocyanins are broadly distributed among plants, betacyanins have replaced anthocyanins in the Caryophyllales. Red plant pigments are good indicator metabolites for evolutionary studies of plant diversity as well as for metabolic studies of plant cell growth and differentiation. In this review, we focus on the biosynthesis of anthocyanins and betacyanins and the possible mechanisms underlying the mutual exclusion of betalains and anthocyanins based on the regulation of the biosynthesis of these red pigments.  相似文献   

2.
While the apparent mutual exclusiveness of anthocyanins and betalains in the Caryophyllales has given rise to considerable taxonomic debate, historical factors affecting the present distribution of these compounds have rarely been discussed. An understanding of pigment evolution in the order is hindered by a number of unresolved systematic issues and a lack of knowledge of the importance of anthocyanins and betalains beyond their roles in pollination and seed dispersal. The hypothesis that betalains arose in an unpigmented ancestor of the Chenopodiinae in response to selection from pollinators cannot be rejected, but scant evidence exists in favor of it. Questions persist regarding whether the most recent ancestor to the Chenopodiinae presented a pigmented floral display and whether the appropriate pollinators were present at this time to select for floral pigmentation. In view of these ambiguities and the possible non-monophyly of the Chenopodiinae we consider some alternative scenarios and suggest potentially rewarding avenues for future research. We discuss roles for anthocyanins and betalains beyond their use as optical attractants, possible costs and benefits associated with producing each pigment type, and the possibility that they may have co-occurred in an ancestor for some period of time.  相似文献   

3.
Betalains are the nitrogenous pigments that replace anthocyanins in the plant order Caryophyllales. Here, we describe unconventional decarboxylated betalains in quinoa (Chenopodium quinoa) grains. Decarboxylated betalains are derived from a previously unconsidered activity of the 4,5-DOPA-extradiol-dioxygenase enzyme (DODA), which has been identified as the key enzymatic step in the established biosynthetic pathway of betalains. Here, dopamine is fully characterized as an alternative substrate of the DODA enzyme able to yield an intermediate and structural unit of plant pigments: 6-decarboxy-betalamic acid, which is proposed and described. To characterize this activity, quinoa grains of different colors were analyzed in depth by chromatography, time-of-flight mass spectrometry, and reactions were performed in enzymatic assays and bioreactors. The enzymatic-chemical scheme proposed leads to an uncharacterized family of 6-decarboxylated betalains produced by a hitherto unknown enzymatic activity. All intermediate compounds as well as the final products of the dopamine-based biosynthetic pathway of pigments have been unambiguously determined and the reactions have been characterized from the enzymatic and functional perspectives. Results evidence a palette of molecules in quinoa grains of physiological relevance and which explain minor betalains described in plants of the Caryophyllales order. An entire family of betalains is anticipated.

A biosynthetic pathway produces unconventional plant pigments betalains derived from dopamine in quinoa.  相似文献   

4.
甜菜色素(Betalains)是一类以六碳结构为骨架的水溶性色素,存在于石竹目Caryophyllales的绝大部分科和一类真菌中。目前已知甜菜色素大约有75种,都属于季胺型生物碱,可以分为两类:甜菜黄素(Betaxanthin)和甜菜红素(Betacyanin)。甜菜色素除了赋予花、果、叶着色,吸引昆虫,提高植物本身抗逆能力等外,也具有优良的抗氧化作用。甜菜色素的合成代谢始于酪氨酸,是由4~5个关键酶催化反应和一系列自发反应构成的反应网络。本文结合国内外最新研究进展,对甜菜色素理化性质、生理功能、合成以及应用做较为全面的综述。  相似文献   

5.
Anthocyanidin synthase in non-anthocyanin-producing Caryophyllales species   总被引:1,自引:0,他引:1  
Red colors in flowers are mainly produced by two types of pigments: anthocyanins and betacyanins. Although anthocyanins are widely distributed in higher plants, betacyanins have replaced anthocyanins in the Caryophyllales. There has been no report so far to find anthocyanins and betacyanins existing together within the same plant. This curious phenomenon has been examined from genetic and evolutionary perspectives, however nothing is known at the molecular level about the mutual exclusion of anthocyanins and betacyanins in higher plants. Here, we show that spinach (Spinacia oleracea) and pokeweed (Phytolacca americana), which are both members of the Caryophyllales, have functional anthocyanidin synthases (ANSs). The ability of ANSs of the Caryophyllales to oxidize trans-leucocyanidin to cyanidin is comparable to that of ANSs in anthocyanin-producing plants. Expression profiles reveal that, in spinach, dihydroflavonol 4-reductase (DFR) and ANS are not expressed in most tissues and organs, except seeds, in which ANS may contribute to proanthocyanidin synthesis. One possible explanation for the lack of anthocyanins in the Caryophyllales is the suppression or limited expression of the DFR and ANS.  相似文献   

6.
Current research into the evolution and adaptive function of avian eggshell pigmentation, including maculation, has focused mostly on signalling‐based and structural function hypotheses but ignored the potential consequences of shell pigmentation for the developing avian embryo, especially in moderating the embryo's interaction with its light environment. The exposure of the eggs to sunlight that frequently accompanies avian incubation behaviour is one of the major evolutionary steps setting apart birds and reptiles, and coincides with the appearance of eggshell pigmentation. This suggests that shell pigments could play a major role in ensuring the successful development of the avian embryo. We propose that the effects of shell pigments on the egg contents should be considered in addition to established hypotheses of shell pigmentation such as crypsis, egg recognition or a possible structural function. This approach has the potential to identify trade‐offs between different pigment functions and to resolve some of the long standing paradoxa in the evolution of eggshell colour, such as the occurrence of conspicuous blue eggs in passerines or the secondary evolution of white eggshells in cavity nesters. In particular, we identify seven hypotheses, which address how the interaction of eggshell pigments and the light environment may influence embryonic development. These hypotheses are the: thermo‐regulation; UV‐B protection; photo‐acceleration; lateralization; circadian rhythm; photo‐reactivation; and antimicrobial defence. We believe that the understanding of eggshell pigmentation will greatly benefit from taking these hypotheses into consideration when studying the functional significance of eggshell pigmentation and suggest a number of promising directions for future experimental and comparative research.  相似文献   

7.
Journal of Plant Research - Although anthocyanins are widely distributed in higher plants, betalains have replaced anthocyanins in most species of the order Caryophyllales. The accumulation of...  相似文献   

8.
Betalains, comprising violet betacyanins and yellow betaxanthins, are pigments found in plants belonging to the order Caryophyllales. In this study, we induced the accumulation of betalains in ornamental lisianthus (Eustoma grandiflorum) by genetic engineering. Three betalain biosynthetic genes encoding CYP76AD1, dihydroxyphenylalanine (DOPA) 4,5-dioxygenase (DOD), and cyclo-DOPA 5-O-glucosyltransferase (5GT) were expressed under the control of the cauliflower mosaic virus (CaMV) 35S promoter in lisianthus, in which anthocyanin pigments are responsible for the pink flower color. During the selection process on hygromycin-containing media, some shoots with red leaves were obtained. However, most red-colored shoots were suppressed root induction and incapable of further growth. Only clone #1 successfully acclimatized and bloomed, producing pinkish-red flowers, with a slightly greater intensity of red color than that in wild-type flowers. T1 plants derived from clone #1 segregated into five typical flower color phenotypes: wine red, bright pink, pale pink, pale yellow, and salmon pink. Among these, line #1-1 showed high expression levels of all three transgenes and exhibited a novel wine-red flower color. In the flower petals of line #1-1, abundant betacyanins and low-level betaxanthins were coexistent with anthocyanins. In other lines, differences in the relative accumulation of betalain and anthocyanin pigments resulted in flower color variations, as described above. Thus, this study is the first to successfully produce novel flower color varieties in ornamental plants by controlling betalain accumulation through genetic engineering.  相似文献   

9.
The photoacoustic spectroscopic studies of purple pigmented leaves revealed the occurrence of anthocyanins and betalains in some local weed species growing on soils with low moisture levels. The pigmentation intensities were higher in C4 plants than in C3 plants. An inverse correlation was observed between pigmentation intensities and soil moisture levels. This work is a part of the UNEP Research Project granted to Prof. D. O. Hall, UNEP Coordinator, Department of Plant Sciences, King’s College; London.  相似文献   

10.
Betalains are pigments that replace anthocyanins in the majority of families of the plant order Caryophyllales. Betalamic acid is the common chromophore of betalains. The key enzyme of the betalain biosynthetic pathway is an extradiol dioxygenase that opens the cyclic ring of dihydroxy-phenylalanine (DOPA) between carbons 4 and 5, thus producing an unstable seco-DOPA that rearranges nonenzymatically to betalamic acid. A gene for a 4,5-DOPA-dioxygenase has already been isolated from the fungus Amanita muscaria, but no homolog was ever found in plants. To identify the plant gene, we constructed subtractive libraries between different colored phenotypes of isogenic lines of Portulaca grandiflora (Portulacaceae) and between different stages of flower bud formation. Using in silico analysis of differentially expressed cDNAs, we identified a candidate showing strong homology at the level of translated protein with the LigB domain present in several bacterial extradiol 4,5-dioxygenases. The gene was expressed only in colored flower petals. The function of this gene in the betalain biosynthetic pathway was confirmed by biolistic genetic complementation in white petals of P. grandiflora genotypes lacking the gene for color formation. This gene named DODA is the first characterized member of a novel family of plant dioxygenases phylogenetically distinct from Amanita sp. DOPA-dioxygenase. Homologs of DODA are present not only in betalain-producing plants but also, albeit with some changes near the catalytic site, in other angiosperms and in the bryophyte Physcomitrella patens. These homologs are part of a novel conserved plant gene family probably involved in aromatic compound metabolism.  相似文献   

11.
Birds display a rainbow of eye colours, but this trait has been little studied compared with plumage coloration. Avian eye colour variation occurs at all phylogenetic scales: it can be conserved throughout whole families or vary within one species, yet the evolutionary importance of this eye colour variation is under-studied. Here, we summarize knowledge of the causes of eye colour variation at three primary levels: mechanistic, genetic and evolutionary. Mechanistically, we show that avian iris pigments include melanin and carotenoids, which also play major roles in plumage colour, as well as purines and pteridines, which are often found as pigments in non-avian taxa. Genetically, we survey classical breeding studies and recent genomic work on domestic birds that have identified potential ‘eye colour genes’, including one associated with pteridine pigmentation in pigeons. Finally, from an evolutionary standpoint, we present and discuss several hypotheses explaining the adaptive significance of eye colour variation. Many of these hypotheses suggest that bird eye colour plays an important role in intraspecific signalling, particularly as an indicator of age or mate quality, although the importance of eye colour may differ between species and few evolutionary hypotheses have been directly tested. We suggest that future studies of avian eye colour should consider all three levels, including broad-scale iris pigment analyses across bird species, genome sequencing studies to identify loci associated with eye colour variation, and behavioural experiments and comparative phylogenetic analyses to test adaptive hypotheses. By examining these proximate and ultimate causes of eye colour variation in birds, we hope that our review will encourage future research to understand the ecological and evolutionary significance of this striking avian trait.  相似文献   

12.
Two types of red pigment, anthocyanins and betacyanins, never occur together in the same plant. Although anthocyanins are widely distributed in higher plants as flower and fruit pigments, betacyanins have replaced anthocyanins in the Caryophyllales. We isolated cDNAs encoding dihydroflavonol 4-reductase (DFR), which is the first enzyme committed to anthocyanin biosynthesis in the flavonoid pathway, from Spinacia oleracea and Phytolacca americana, plants that belong to the Caryophyllales. The deduced amino acid sequence of Spinacia DFR and Phytolacca DFR revealed a high degree of homology with DFRs of anthocyanin-producing plants. The DFR of carnation, an exception in the Caryophyllales that synthesizes anthocyanin, showed the highest level of identity. In the phylogenetic tree, Spinacia DFR and Phytolacca DFR clustered with the DFRs of anthocyanin-synthesizing dicots. Recombinant Spinacia and Phytolacca DFRs expressed in Escherichia coli convert dihydroflavonol to leucoanthocyanidin. The expression and function of DFR in spinach and pokeweed are discussed in relation to the molecular evolution of red pigment biosynthesis in higher plants.  相似文献   

13.
Betalains are water-soluble pigments with high antiradical capacity which bestow bright colors to flowers, fruits and other parts of most plants of the order Caryophyllales. The formation of the structural unit of all betalains, betalamic acid from the precursor amino acid 4,5-dihydroxyphenylalanine is catalyzed by the enzyme 4,5-DOPA-extradiol-dioxygenase followed by intramolecular cyclization of the 4,5-secodopa intermediate. This paper describes the purification and the molecular and functional characterization of an active 4,5-DOPA-extradiol-dioxygenase from the best-known source of betalains—Beta vulgaris—after heterologous expression in Escherichia coli. The enzyme is a monomeric protein with a molecular mass of 32 kDa characterized by chromatography, electrophoresis and MALDI-TOF analysis. Enzyme kinetic properties are characterized in the production of betalamic acid, the structural, chromophoric and bioactive unit of plant pigment betalains.  相似文献   

14.
The biosynthesis of betalamic acid, the structural unit of pigments betalains, is performed by enzymes with 4,5-DOPA-extradiol-dioxygenase activity. These enzymes were believed to be limited to plants of the order Caryophyllales and to some fungi. However, the discovery of Gluconacetobacter diazotrophicus as the first betalain-forming bacterium opened a new field in the search for novel biological systems able to produce betalains. This paper describes molecular and functional characterization of a novel dioxygenase enzyme from the aquatic cyanobacterium Anabaena cylindrica. The enzyme was found to be a homodimer of a polypeptide of 17.8 kDa that, opposite to previous related enzymes, showed a strong inhibition by excess of the precursor L-DOPA. However, its heterologous expression has allowed detecting the formation of the main compounds in the biosynthetic pathway of betalains. In addition, phylogenetic analysis has shown that this enzyme is not close related to enzymes from plants, fungi or proteobacteria such as G. diazotrophicus. The presence of enzymes that produce these health-promoting compounds is more diverse than expected. The discovery of this novel dioxygenase in the phylum cyanobacteria expands the presence of betalamic acid-forming enzymes in organisms of different nature with no apparent relationship among them.  相似文献   

15.
The structural types, biogenesis and distribution of betalains and anthocyanins in centrospermous families are reviewed. The implications of the pigment and DNA-RNA hybridization data, along with other evidence, are discussed with respect to the view that the evolutionary line of centrospermous families contains eleven basic or core families of which nine produce betalains and two, theCaryophyllaceae andMolluginaceae, produce anthocyanins; it is suggested that the betalain and anthocyanin families developed from a common ancestor at a time prior to the widespread occurrence of floral pigments in angiosperms.Presented in the Symposium Evolution of Centrospermous Families, during the XIIth International Botanical Congress, Leningrad, July 8, 1975.  相似文献   

16.
Prolonged exposure of plants to high fluxes of solar radiation as well as to other environmental stressors disturbs the balance between absorbed light energy and capacity of its photochemical utilization resulting in photoinhibition of and eventually in damage to plants. Under such circumstances, the limiting of the light absorption by the photosynthetic apparatus efficiently augments the general photoprotective mechanisms of the plant cell, such as reparation of macromolecules, elimination of reactive oxygen species, and thermal dissipation of the excessive light energy absorbed. Under stressful conditions, plants accumulate, in different cell compartments and tissue structures, pigments capable of attenuation of the radiation in the UV and visible parts of the spectrum. To the date, four principle key groups of photoprotective pigments are known: mycosporine-like amino acids, phenolic compounds (including phenolic acids, flavonols, and anthocyanins), alkaloids (betalains), and carotenoids. The accumulation of UV-absorbing compounds (mycosporine-like amino acids and phenolics in lower and higher plants, respectively) is a ubiquitous mechanism of adaptation to and protection from the damage by high fluxes of solar radiation developed by photoautotrophic organisms at the early stages of their evolution. Extrathylakoid carotenoids, betalains, and anthocyanins play an important role in long-term adaptation to the illumination conditions and in protection of plants against photodamage. A prominent feature of certain plant taxa lacking some classes of photoprotective pigments (such as anthocyanins) is their substitution by other compounds (e.g. keto-carotenoids or betalains) disparate in terms of chemical structure and subcellular localization but possessing close spectral properties.  相似文献   

17.
Betalains are water-soluble pigments with high antiradical capacity which bestow bright colors on flowers and fruits of most plants of the order Caryophyllales. They are classified as betacyanins, exhibiting a violet coloration, and betaxanthins, which exhibit yellow coloration. Traditionally, betalains have been defined as condensation products of betalamic acid with different amines and amino acids, but the implication of the pigment structure for their properties has not been investigated. This paper explores different structural features of the betalains, revealing the clues for the switch from yellow to violet color, and the loss of fluorescence. A relevant series of 15 betalain-related compounds (both natural and novel semisynthetic ones) is obtained and characterized by chromatography, UV-vis spectrophotometry, fluorescence, and electrospray ionization mass spectroscopy. Antiradical properties of individual pure compounds in a broad pH range are studied under the ABTS•+ radical assay. Relevance of specific bonds is studied, and differences between betaxanthins and betacyanins are used to explore in depth the structure–antiradical activity relationships in betalains.  相似文献   

18.
Recent advances in betalain research   总被引:19,自引:0,他引:19  
  相似文献   

19.
20.
The mechanistic link between avian oxidative physiology and plumage coloration has attracted considerable attention in past decades. Hence, multiple proximal hypotheses were proposed to explain how oxidative state might covary with the production of melanin and carotenoid pigments. Some hypotheses underscore that these pigments (or their precursors, e.g., glutathione) have antioxidant capacities or function as molecules storing the toxic excess of intracellular compounds, while others highlight that these pigments can act as pro‐oxidants under specific conditions. Most studies addressing these associations are at the intraspecific level, while phylogenetic comparative studies are still scarce, though needed to assess the generality of these associations. Here, we tested whether plumage and bare part coloration were related to oxidative physiology at an interspecific level by measuring five oxidative physiology markers (three nonenzymatic antioxidants and two markers of lipid peroxidative damage) in 1387 individuals of 104 European bird species sampled during the breeding season, and by scoring plumage eumelanin, pheomelanin, and carotenoid content for each sex and species. Only the plasma level of reactive oxygen metabolites was related to melanin coloration, being positively associated with eumelanin score and negatively with pheomelanin score. Thus, our results do not support the role of antioxidant glutathione in driving variation in melanin synthesis across species. Furthermore, the carotenoid scores of feathers and bare parts were unrelated to the measured oxidative physiology parameters, further suggesting that the marked differences in pigmentation across birds does not influence their oxidative state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号