首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
Summary Meiotic associations of different wheat-Aegilops variabilis and wheat-Ae. kotschyi hybrid combinations with low and high homoeologous pairing were analyzed at metaphase I. Five types of pairing involving wheat and Aegilops genomes were identified by using C-banding. A genotype that seems to promote homoeologous pairing has been found in Ae. variabilis var. cylindrostachys. Its effect is detectable in the low pairing hybrids but not in the high ones. Pairing affinity has been analyzed on the basis of metaphase I associations in the low and high homoeologous pairing hybrids, and in bivalents and multivalents in the high pairing hybrids. The results indicate that the amount of bound arms of each type of identifiable association relative to the total associations formed (relative contribution) was not maintained, either between the different levels of pairing (low and high) or between different meiotic configurations (bivalents and multivalents). These findings seem to indicate that quantifications of genomic relationships based on the amount of chromosome pairing at metaphase I must be carefully done in this type of hybrid combinations.  相似文献   

2.
Summary Genome affinities were analyzed at meiosis in C-banded metaphase-I cells of wheat x Ae. Sharonensis hybrid plants. The results showed that the most frequent type of pairing occurred between chromosomes of the A and D genomes in all plants, as well as in cells with different numbers of associations. These findings clearly indicated that Ae. Sharonensis can be excluded as the donor of the B genome of wheat.  相似文献   

3.
Aegilops longissima Schw. et Musch. (2n= 2x=14, SlSl) and Aegilops sharonensis Eig. (2n=2x=14, SlSl) are diploid species belonging to the section Sitopsis in the tribe Triticeae and potential donors of useful genes for wheat breeding. A comparative genetic map was constructed of the Ae. longissima genome, using RFLP probes with known location in wheat. A high degree of conserved colinearity was observed between the wild diploid and basic wheat genome, represented by the D genome of cultivated wheat. Chromosomes 1Sl, 2Sl, 3Sl, 5Sl and 6Sl are colinear with wheat chromosomes 1D, 2D, 3D, 5D and 6D, respectively. The analysis confirmed that chromosomes 4Sl and 7Sl are translocated relative to wheat. The short arms and major part of the long arms are homoeologous to most of wheat chromosomes 4D and 7D respectively, but the region corresponding to the distal segment of 7D was translocated from 7SlL to the distal region of 4SlL. The map and RFLP markers were then used to analyse the genomes and added chromosomes in a set of ’Chinese Spring’ (CS)/Ae. longissima chromosome additions. The study confirmed the availability of disomic CS/Ae. longissima addition lines for chromosomes 1Sl, 2Sl, 3Sl, 4Sl and 5Sl. An as yet unpublished set of Ae. sharonensis chromosome addition lines were also available for analysis. Due to the gametocidal nature of Ae. sharonensis chromosomes 2Sl and 4Sl, additions 1Sl, 3Sl, 5Sl, 6Sl and 7Sl were produced in a (4D)4Sl background, and 2Sl and 4Sl in a euploid wheat background. The analysis also confirmed that the 4/7 translocation found in Ae. longissima was not present in Ae. sharonensis although the two wild relatives of wheat are considered to be closely related. The phenotypes of the Ae. sharonensis addition lines are described in an Appendix. Received: 28 September 2000 / Accepted: 19 January 2001  相似文献   

4.
Summary Chromosome pairing and chiasma frequency were studied in bread wheat euhaploids (2n = 3x = 21; ABD genomes) with and without the major pairing regulatorPh1. This constitutes the first report of chromosome pairing relationships among the A, B, and D genomes of wheat without the influence of an alien genome. AllPh1 euhaploids had very little pairing, with 0.62–1.05 rod bivalents per cell; ring bivalents were virtually absent and mean arm-binding frequency (c) values ranged from 0.050 to 0.086. In contrast, theph1b euhaploids had extensive homoeologous pairing, with chiasma frequency 7.5–11.6 times higher than that in thePh1 euhaploids. They had 0.53–1.16 trivalents, 1.53–1.74 ring bivalents, and 2.90–3.57 rod bivalents, withc from 0.580 to 0.629. N-banding of meiotic chromosomes showed strongly preferential pairing between chromosomes of the A and D genomes; 80% of the pairing was between these genomes, especially in the presence of theph1b allele. The application of mathematical models to unmarked chromosomes also supported a 21 genomic structure of theph1b euhaploids. Numerical modeling suggested that about 80% of the metaphase I association was between the two most related genomes in the presence ofph1b, but that pairing under Ph1 was considerably more random. The data demonstrate that the A and D genomes are much more closely related to each other than either is to B. These results may have phylogenetic significance and hence breeding implications.This paper is dedicated to the memory of the late Ernest R. SearsCooperative investigations of the USDA-Agricultural Research Service and the Utah Agricultural Experiment Station, Logan, UT 84322, USA. Approved as Journal Paper No. 3986  相似文献   

5.
The meiotic behaviour of three three-way interspecific promising hybrids (H17, H27, and H34) was evaluated. These hybrids resulted from the crosses between B. ruziziensis X B. brizantha and crossed to another B. brizantha. Two half-sib hybrids (H27 and H34) presented an aneuploid chromosome number (2n = 4x = 33), whereas hybrid H17 was a tetraploid (2n = 4x = 36), as expected. Chromosome paired predominantly as multivalents suggesting that genetic recombination and introgression of specific target genes from B. brizantha into B. ruziziensis can be expected. Arrangement of parental genomes in distinct metaphase plates was observed in H27 and H34, which have different male genitors. Hybrids H17 and H34 have the same male genitor, but did not display this abnormality. In H17, abnormalities were more frequent from anaphase II, when many laggard chromosomes appeared, suggesting that each genome presented a different genetic control for meiotic phase timing. Despite the phylogenetic proximity among these two species, these three hybrids presented a high frequency of meiotic abnormalities, mainly those related to irregular chromosome segregation typical of polyploids, H34, 69.1%; H27, 56.1% and H17, 44.9%. From the accumulated results obtained through cytological studies in Brachiaria hybrids, it is evident that cytogenetical analysis is of prime importance in determining which genotypes can continue in the process of cultivar development and which can be successfully used in the breeding. Hybrids with high frequency of meiotic abnormalities can seriously compromise seed production, a key trait in assuring adoption of a new apomictic cultivar of Brachiaria for pasture formation.  相似文献   

6.
The results of genome analysis of five hybrids, viz.Elymus patagonicus ×Hordeum procerum, E. patagonicus ×H. tetraploidum, E. angulatus ×H. jubatum, E. angulatus ×H. lechleri, andE. angulatus ×H. parodii, are reported. The genomic constitution ofHordeum tetraploidum andH. jubatum is best given as H1H1H2H2, ofH. lechleri andH. parodii as H1H1H2H2H4H4, ofH. procerum as H1H1H2H2H3H3, and ofElymus patagonicus andE. angulatus as SSH1H1H2H2.  相似文献   

7.
Following protoplast fusion between Nicotiana tabacum (dhfr) and N. megalosiphon (nptII) somatic hybrids were selected on the basis of dual resistance to kanamycin and methotrexate. Despite strong selection for parental nuclear-encoded resistances, only nine N. tabacum (+) N. megalosiphon somatic hybrids were obtained. A preferential loss of the parental N. tabacum nuclear and organelle genome was apparent in some plants in spite of the lack of genomic inactivation by the irradiation or chemical treatment of the parental protoplasts. Only six of the nine hybrids recovered possessed both parental profiles of nuclear RFLPs and isoenzymes. The remaining three hybrids were highly asymmetric with two being identical to N. megalosiphon except for minor morphological differences and rearranged or recombined mitochondrial DNAs (mtDNA), while the other one was distinguishable only by the presence of a rearranged or recombined mtDNA, and was therefore possibly a cybrid. Overall, eight somatic hybrids possessed rearranged or recombined mtDNAs and chloroplast inheritance was non-random since eight possessed N. megalosiphon-type chloroplasts and only one had N. tabacum chloroplasts. In contrast, using the same selection approach, numerous morphologically similar symmetric somatic hybrids with nuclear RFLPs and isozymes of both the parental species were recovered from control fusions between N. tabacum and the more closely related N. sylvestris. In spite of the low frequency of recovery of symmetric N. tabacum (+) N. megalosiphon hybrids in this study, one of these hybrids displayed a significant degree of self-fertility allowing for back-crosses to transfer N. megalosiphon disease-resistance traits to N. tabacum. Plant Research Centre Contribution No. 1579  相似文献   

8.
Summary Tetraploid F1 hybrids between Ipomoea batatas, sweet potato (2n = 6x = ca. 90), and diploid (2n = 2x = 30) I. trifida (H. B. K.) Don. showed various degrees of fertility reduction. The present study aimed to clarify its causes by cytological analysis of meiotic chromosome behavior in the diploid and sweet potato parents and their tetraploid hybrids. The diploid parents showed exclusively 15 bivalents, and the sweet potato parents exhibited almost perfect chromosome pairing along with predominant multivalent formation. Their hybrids (2n = 4x= 57–63) formed 2.6–5.0 quadrivalents per cell, supporting the autotetraploid nature. The meiotic aberratios of the hybrids were characterized by the formation of univalents, micronuclei, and abnormal sporads (monad, dyad, triad, and polyad). The causes underlying these aberrations were attributed in part to the multivalent formation, and in part to a disturbance in the spindle function. Three hybrids showing serious meiotic aberrations were very low in fertility. The utilization of the sweet potato-diploid I. trifida hybrids for sweet potato improvement is described and, further, the role of interploidy hybridization in the study of the sweet potato evolution is discussed.  相似文献   

9.
Summary Asymmetric somatic hybrids between Solanum tuberosum L. and S. brevidens Phil. have been obtained via the fusion of protoplasts from potato leaves and from cell suspension culture of S. brevidens. The wild Solanum species served as donor after irradiation of its protoplasts with a lethal X-ray dose (200 Gy). Selection of the putative hybrids was based on the kanamycin-resistance marker gene previously introduced into the genome of Solanum brevidens by Agrobacterium-mediated gene transfer. Thirteen out of the 45 selected clones exhibited reduced morphogenic potential. The morphological abnormalities of the regenerated plantlets were gradually eliminated during the extended in vitro culture period. Cytological investigations revealed that the number of chromosomes in the cultured S. brevidens cells used as protoplast source ranged between 28–40 instead of the basic 2n=24 value. There was a high degree of aneuploidy in all of the investigated hybrid clones, and at least 12 extra chromosomes were observed in addition to the potato chromosomes (2n=48). Interand intraclonal variation and segregation during vegetative propagation indicated the genetic instability of the hybrids, which can be ascribed to the pre-existing and X-ray irradiation-induced chromosomal abnormalities in the donor S. brevidens cells. The detection of centromeric chromosome fragments and long, poly-constrictional chromosomes in cytological preparations as well as non-parental bands in Southern hybridizations with restriction fragment length polymorphism (RFLP) markers revealed extensive chromosome rearrangements in most of the regenerated clones. On the basis of the limited number of RFLP probes used, preferential loss of S. brevidens specific markers with a non-random elimination pattern could be detected in hybrid regenerants.  相似文献   

10.
Summary Intergeneric hybrids between Triticum aestivum cv Chinese Spring and Agropyron cristatum 4x (2n= 5x=35, ABDPP genomes) with a high level of homoeologous meiotic pairing between the wheat chromosomes were backcrossed 3 times to wheat. Pollination of the F1 hybrid with Chinese Spring resulted in 22 BC1 seeds with an average seed set of 1.52%. Five BC1 plants with 39–41 chromosomes were raised using embryo rescue techniques. Chromosome pairing in the BC1 was characterized by a high frequency of multivalent associations, but in spite of this there was no evidence of homoeologous pairing between chromosomes of wheat and those of Agropyron. All of the plants were self sterile. The embryo rescue technique was again essential to produce 39 BC2 plants with chromosome numbers ranging from 37 to 67. The phenomenon of meiotic non-reduction was also observed in the BC3 progenies. In this generation male and female fertility greatly increased, and meiotic pairing was fairly regular. Some monosomic (2n=43) and double monosomic (2n=44) lines were produced. Analysis of these progenies should permit the extraction of the seven possible wheat-Agropyron disomic addition lines including those with the added chromosomes carrying the genes involved in meiotic non-reduction and in suppression of Ph activity.  相似文献   

11.
Summary More than 28,000 pollinations were carried out between 5 Ipomoea batatas and 41 diploid I. trifida accessions of diverse origins to obtain 4x interspecific hybrids. From the resultant 730 seeds, 248 plants were finally obtained. Ploidy level determination of the progeny showed unexpected results: 52 individuals were hexaploid, 5 were pentaploid, 190 were tetraploid, as expected, and one was not determined. The existence of 5x and 6x progenies from 6x x 2x crosses not only confirmed the presence of 2n gametes but also their successful function in gene flow between ploidy levels and polyploidization within this genus. The progeny and their cultivated parents were planted in an observation field. The cultivated parents produced 0.49 kg/plant or less. Most 4x progenies did not produce storage roots or had very poor yields; nonetheless, and despite their cultivated parents' poor yields, 8 genotypes yielded between 0.81 and 1.50 kg/plant.A new scheme, using the 4x interspecific hybrids, is proposed for evaluating 2x and 4x wild accessions of the section Batatas to which the sweet potato belongs. Other possible uses of the 4x hybrids in breeding and genetics of the sweet potato are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号