首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane tension underlies a range of cell physiological processes. Strong adhesion of the simple red cell is used as a simple model of a spread cell with a finite membrane tension-a state which proves useful for studies of both membrane rupture kinetics and atomic force microscopy (AFM) probing of native structure. In agreement with theories of strong adhesion, the cell takes the form of a spherical cap on a substrate densely coated with poly-L-lysine. The spreading-induced tension, sigma, in the membrane is approximately 1 mN/m, which leads to rupture over many minutes; and sigma is estimated from comparable rupture times in separate micropipette aspiration experiments. Under the sharpened tip of an AFM probe, nano-Newton impingement forces (10-30 nN) are needed to penetrate the tensed erythrocyte membrane, and these forces increase exponentially with tip velocity ( approximately nm/ms). We use the results to clarify how tapping-mode AFM imaging works at high enough tip velocities to avoid rupturing the membrane while progressively compressing it to a approximately 20-nm steric core of lipid and protein. We also demonstrate novel, reproducible AFM imaging of tension-supported membranes in physiological buffer, and we describe a stable, distended network consistent with the spectrin cytoskeleton. Additionally, slow retraction of the AFM tip from the tensed membrane yields tether-extended, multipeak sawtooth patterns of average force approximately 200 pN. In sum we show how adhesive tensioning of the red cell can be used to gain novel insights into native membrane dynamics and structure.  相似文献   

2.
We have observed by atomic force microscopy (AFM) the amoeba surface and probed the interaction force between Entamoeba histolytica and chondroitin-6-sulphate (C6S). We have used several substrates to adhere trophozoites. The best reproducibility in sample preparation was obtained with fibronectin-coated coverslips and when the cells were fixed with paraformaldehyde. The images obtained with the AFM showed that the trophozoite exhibits an irregular surface. Pseudopods and waving adhesion plaques could be observed. Force spectroscopy analysis showed that the trophozoite surface strongly interacts with C6S-functionalized tips. During cantilever retraction, attractive force peaks were observed at distances up to 1.3 microm above the trophozoite surface. Statistical analysis of the force distributions collected for five samples shown a reproducible 2.2 nN mean adhesion force. We observed a reduction of the adhesion force and of the interaction distance after addition of galactose to the buffer solution suggesting that the observed interaction is also Gal/GalNAc-lectin-mediated.  相似文献   

3.
This study demonstrated that atomic force microscopy (AFM) can be used to obtain high-resolution topographical images of bacteria, and to quantify the tip-cell interaction force and the surface elasticity. Results show that the adhesion force between the Si3N4 tip and the bacteria surface was in the range from -3.9 to -4.3 nN. On the other hand, the adhesion forces at the periphery of the cell-substratum contact surface ranged from -5.1 to -5.9 nN and those at the cell-cell interface ranged from -6.5 to -6.8 nN. The two latter forces were considerably greater than the former one, most likely due to the accumulation of extracellular polymer substance (EPS). Results also show that the elasticity varied on the cell surface.  相似文献   

4.
The force curve mode of the atomic force microscope (AFM) was applied to extract intrinsic membrane proteins from the surface of live cells using AFM tips modified by amino reactive bifunctional covalent crosslinkers. The modified AFM tips were individually brought into brief contact with the living cell surface to form covalent bonds with cell surface molecules. The force curves recorded during the detachment process from the cell surface were often characterized by an extension of a few hundred nanometers followed mostly by a single step jump to the zero force level. Collection and analysis of the final rupture force revealed that the most frequent force values (of the force) were in the range of 0.4–0.6 nN. The observed rupture force most likely represented extraction events of intrinsic membrane proteins from the cell membrane because the rupture force of a covalent crosslinking system was expected to be significantly larger than 1.0 nN, and the separation force of noncovalent ligand-receptor pairs to be less than 0.2 nN, under similar experimental conditions. The transfer of cell surface proteins to the AFM tip was verified by recording characteristic force curves of protein stretching between the AFM tips used on the cell surface and a silicon surface modified with amino reactive bifunctional crosslinkers. This method will be a useful addition to bionanotechnological research for the application of AFM.  相似文献   

5.
In fungi, cell wall plays an important role in growth and development. Major macromolecular constituents of the aspergilli cell wall are glucan, chitin, and protein. We examined the chemical composition and structure of the Aspergillus nidulans hyphal wall surface by an atomic force microscope (AFM). To determine the composition of the cell wall surface, the adhesion forces of commercially available β-glucan, chitin, and various proteins were compared to those of corresponding fractions prepared from the hyphal wall. In both setups, the adhesion forces of β-glucan, chitin, and protein were 25–50, 1000–3000, and 125–300 nN, respectively. Adhesion force analysis demonstrated that the cell surface of the apical tip region might contain primarily chitin and β-glucan and relatively a little protein. This analysis also showed the chemical composition of the hyphal surface of the mid-region would be different from that of the apical region. Morphological images obtained by the tapping mode of AFM revealed that the hyphal tip surface has moderate roughness.  相似文献   

6.
The unbinding force of Zif268-DNA complex has been studied by atomic force microscopy (AFM). DNA and Zif268 were covalently immobilized on the surfaces of an AFM tip and glass substrate, respectively. Confocal microscopy was used to confirm the successful immobilization of DNA. Because of the complexity of the protein-DNA interaction, parallel experiments were designed to discriminate specific interactions. For such experiments, a typical unbinding force of a single Zif268-DNA complex (approx 550 pN at 40 nN/s force loading rate) was evaluated.  相似文献   

7.
Biopolymers produced extracellularly by Pseudomonas putida KT2442 were examined via atomic force microscopy (AFM) and single molecule force spectroscopy. Surface biopolymers were probed in solutions with added salt concentrations ranging from that of pure water to 1 M KCl. By studying the physicochemical properties of the polymers over this range of salt concentrations, we observed a transition in the steric and electrostatic properties and in the conformation of the biopolymers that were each directly related to bioadhesion. In low salt solutions, the electrophoretic mobility of the bacterium was negative, and large theoretical energy barriers to adhesion were predicted from soft-particle DLVO theory calculations. The brush layer in low salt solution was extended due to electrostatic repulsion, and therefore, steric repulsion was also high (polymers extended 440 nm from surface in pure water). The extended polymer brush layer was "soft", characterized by the slope of the compliance region of the AFM approach curves (-0.014 nN/nm). These properties resulted in low adhesion between biopolymers and the silicon nitride AFM tip. As the salt concentration increased to > or =0.01 M, a transition was observed toward a more rigid and compressed polymer brush layer, and the adhesion forces increased. In 1 M KCl, the polymer brush extended 120 nm from the surface and the rigidity of the outer cell surface was greater (slope of the compliance region = -0.114 nN/nm). A compressed and more rigid polymer layer, as well as a less negative electrophoretic mobility for the bacterium, resulted in higher adhesion forces between the biopolymers and the AFM tip. Scaling theories for polyelectrolyte brushes were also used to explain the behavior of the biopolymer brush layer as a function of salt concentration.  相似文献   

8.
Specific molecular recognition events, detected by atomic force microscopy (AFM), so far lack the detailed topographical information that is usually observed in AFM. We have modified our AFM such that, in combination with a recently developed method to measure antibody-antigen recognition on the single molecular level (Hinterdorfer, P., W. Baumgartner, H. J. Gruber, K. Schilcher, and H. Schindler, Proc. Natl. Acad. Sci. USA 93:3477-3481 (1996)), it allows imaging of a submonolayer of intercellular adhesion molecule-1 (ICAM-1) in adhesion mode. We demonstrate that for the first time the resolution of the topographical image in adhesion mode is only limited by tip convolution and thus comparable to tapping mode images. This is demonstrated by imaging of individual ICAM-1 antigens in both the tapping mode and the adhesion mode. The contrast in the adhesion image that was measured simultaneously with the topography is caused by recognition between individual antibody-antigen pairs. By comparing the high-resolution height image with the adhesion image, it is possible to show that specific molecular recognition is highly correlated with topography. The stability of the improved microscope enabled imaging with forces as low as 100 pN and ultrafast scan speed of 22 force curves per second. The analysis of force curves showed that reproducible unbinding events on subsequent scan lines could be measured.  相似文献   

9.
R Ho  J Y Yuan    Z Shao 《Biophysical journal》1998,75(2):1076-1083
Using a hard sphere model and numerical calculations, the effect of the hydration force between a conical tip and a flat surface in the atomic force microscope (AFM) is examined. The numerical results show that the hydration force remains oscillatory, even down to a tip apex of a single water molecule, but its lateral extent is limited to a size of a few water molecules. In general, the contribution of the hydration force is relatively small, but, given the small imaging force ( approximately 0.1 nN) typically used for biological specimens, a layer of water molecules is likely to remain "bound" to the specimen surface. This water layer, between the tip and specimen, could act as a "lubricant" to reduce lateral force, and thus could be one of the reasons for the remarkably high resolution achieved with contact-mode AFM. To disrupt this layer, and to have a true tip-sample contact, a probe force of several nanonewtons would be required. The numerical results also show that the ultimate apex of the tip will determine the magnitude of the hydration force, but that the averaged hydration pressure is independent of the radius of curvature. This latter conclusion suggests that there should be no penalty for the use of sharper tips if hydration force is the dominant interaction between the tip and the specimen, which might be realizable under certain conditions. Furthermore, the calculated hydration energy near the specimen surface compares well with experimentally determined values with an atomic force microscope, providing further support to the validity of these calculations.  相似文献   

10.
Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.  相似文献   

11.
Interaction forces between protein inclusion bodies and an air bubble have been quantified using an atomic force microscope (AFM). The inclusion bodies were attached to the AFM tip by covalent bonds. Interaction forces measured in various buffer concentrations varied from 9.7 nN to 25.3 nN (+/- 4-11%) depending on pH. Hydrophobic forces provide a stronger contribution to overall interaction force than electrostatic double layer forces. It also appears that the ionic strength affects the interaction force in a complex way that cannot be directly predicted by DLVO theory. The effects of pH are significantly stronger for the inclusion body compared to the air bubble. This study provides fundamental information that will subsequently facilitate the rational design of flotation recovery system for inclusion bodies. It has also demonstrated the potential of AFM to facilitate the design of such processes from a practical viewpoint.  相似文献   

12.
The putative functions and functional efficiencies of periodic nanostructures on the surface of cicada wings have been investigated by atomic force microscopy (AFM) used as a tool for imaging, manipulation, and probing of adhesion. The structures consist of hexagonal close-packed protrusions with a lateral spacing of ∼200 nm and may have multiple functionalities. Not only do the structures confer survival value by virtue of camouflage, but they may also serve as antiwetting and self-cleaning surfaces and thus be resistant to contamination. These effects have been demonstrated by exposure to white light, liquid droplets, and AFM adhesion measurements. The dependence of optical reflectivity and surface adhesion on surface topography has been demonstrated using AFM as a nanomachining tool as well as an imaging and force-sensing probe. The intact arrays display exceptionally low adhesion for particles in the size range 20 nm-40 μm. The particles can be removed from the array by forces in the range 2-20 nN; conversely, forces in the range 25-230 nN are required to remove identical particles from a flat hydrophilic surface (i.e., polished Si). Measurements of contact angles for several liquids and particle adhesion studies show that the wing represents a low-surface-energy membrane with antiwetting properties. The inference is that a combination of chemistry and structure constitutes a natural technology for conferring resistance to contamination.  相似文献   

13.
To date, nanoscale imaging of the morphological changes and adhesion force of CD4+ T cells during in vitro activation remains largely unreported. In this study, we used atomic force microscopy (AFM) to study the morphological changes and specific binding forces in resting and activated human peripheral blood CD4+ T cells. The AFM images revealed that the volume of activated CD4+ T cells increased and the ultrastructure of these cells also became complex. Using a functionalized AFM tip, the strength of the specific binding force of the CD4 antigen-antibody interaction was found to be approximately three times that of the unspecific force. The adhesion forces were not randomly distributed over the surface of a single activated CD4+ T cell, indicated that the CD4 molecules concentrated into nanodomains. The magnitude of the adhesion force of the CD4 antigen-antibody interaction did not change markedly with the activation time. Multiple bonds involved in the CD4 antigen-antibody interaction were measured at different activation times. These results suggest that the adhesion force involved in the CD4 antigen-antibody interaction is highly selective and of high affinity.  相似文献   

14.
Mechanical responses during insertion of a silicon nanoneedle into a living melanocyte were observed by using an atomic force microscope (AFM). In order to study the dependence of the mechanical response on the shape of the nanoneedle, we prepared various shapes of silicon AFM tips by focused-ion beam (FIB) etching. The force curves showed increases up to 0.65-1.9 nN after contact on the cell surface, and then the force dropped corresponding with the penetration of the needle through the cell membrane. The force required for penetration was significantly smaller than that using a normal pyramidal tip. The force curves with a cylindrical tip showed a shorter indenting distance before penetration than that with the cone-shaped tip. It is considered that the information about the geometry of penetrating material leads to the development of more suitable micro- and nano-materials to insert into a living cell for cell surgery.  相似文献   

15.
The adhesive and mechanical properties of a cell-substratum adhesive secreted by live diatom cells were examined in situ using atomic force microscopy. The resulting force curves have a regular saw-tooth pattern, the characteristic fingerprint of modular proteins, and when bridged between tip and surface can repeatedly be stretched and relaxed resulting in precisely overlaying saw-tooth curves (up to approximately 600 successive cycles). The average rupture force of the peaks is 0.794 +/- 0.007 (mean +/- SE) nN at a loading rate of 0.8 microm/s and the average persistence length is 0.026 +/- <0.001 (mean +/- SE) nm (fit using the worm-like chain model). We propose that we are pulling on single adhesive nanofibers, each a cohesive unit composed of a set number of modular proteins aligned in register. Furthermore, we can observe and differentiate when up to three adhesive nanofibers are pulled based upon multimodal distributions of force and persistence length. The high force required for bond rupture, high extensibility (approximately 1.2 microm), and the accurate and rapid refolding upon relaxation, together provide strong and flexible properties ideally suited for the cell-substratum adhesion of this fouling diatom and allow us to understand the mechanism responsible for the strength of adhesion.  相似文献   

16.
The heterogeneity in bacterial surface macromolecules was probed by examining individual macromolecules on the surface of Pseudomonas putida KT2442 via single-molecule force spectroscopy (SMFS). Using an atomic force microscope (AFM), the silicon nitride tip was brought into contact with biopolymer molecules on bacterial cells and these macromolecules were stretched. Force-extension measurements on different bacterial cells showed a range of adhesion affinities and polymer lengths. However, substantial heterogeneity was also observed in the force-extension curves on a single bacterium. A given bacterium has biopolymers that range in size from tens to hundreds of nanometers, with adhesion affinities for the AFM tip from nearly zero to greater than 1 nN. A distribution of polymer sizes was confirmed by size-exclusion chromatography. The freely jointed chain (FJC) model for polymer elasticity was applied to individual force-extension curves in order to estimate the contour lengths and segment lengths of the polymer chains. A range of segment lengths was obtained using the FJC model, from 0.154-0.45 nm in water, 0.154-0.32 nm in 0.01 M KCl, and 0.154-0.65 nm in 0.1 M KCl. The modeling confirms that the heterogeneity in biopolymers is more than a matter of differences in molecular weights, since a range of stiffnesses (segment lengths) was also observed. The effect of salt concentration on biopolymer conformation and adhesion was also explored. While the biopolymers were flexible in all solvents, they were slightly more extended in water than in either of the salt solutions (0.01 and 0.1 M KCl). The adhesion of polysaccharides with the AFM tip was not dependent on salt concentration, because the polymers were not highly charged and heterogeneity overwhelmed any trends that could be observed in adhesion with respect to solution ionic strength. These experiments indicate that heterogeneity in biopolymer properties on an individual bacterium and within a population of bacterial cells may be much greater than previously believed and should be incorporated into models of bacterial adhesion.  相似文献   

17.
Adhesion of bacteria occurs on virtually all natural and synthetic surfaces and is crucial for their survival. Once they are adhering, bacteria start growing and form a biofilm, in which they are protected against environmental attacks. Bacterial adhesion to surfaces is mediated by a combination of different short- and long-range forces. Here we present a new atomic force microscopy (AFM)-based method to derive long-range bacterial adhesion forces from the dependence of bacterial adhesion forces on the loading force, as applied during the use of AFM. The long-range adhesion forces of wild-type Staphylococcus aureus parent strains (0.5 and 0.8 nN) amounted to only one-third of these forces measured for their more deformable isogenic Δpbp4 mutants that were deficient in peptidoglycan cross-linking. The measured long-range Lifshitz-Van der Waals adhesion forces matched those calculated from published Hamaker constants, provided that a 40% ellipsoidal deformation of the bacterial cell wall was assumed for the Δpbp4 mutants. Direct imaging of adhering staphylococci using the AFM peak force-quantitative nanomechanical property mapping imaging mode confirmed a height reduction due to deformation in the Δpbp4 mutants of 100 to 200 nm. Across naturally occurring bacterial strains, long-range forces do not vary to the extent observed here for the Δpbp4 mutants. Importantly, however, extrapolating from the results of this study, it can be concluded that long-range bacterial adhesion forces are determined not only by the composition and structure of the bacterial cell surface but also by a hitherto neglected, small deformation of the bacterial cell wall, facilitating an increase in contact area and, therewith, in adhesion force.  相似文献   

18.
The roles of lipopolysaccharides (LPS) and extracellular polymers (ECP) on the adhesion of Pseudomonas aeruginosa PAO1 (expresses the A-band and B-band of O antigen) and AK1401 (expresses the A-band but not the B-band) to silicon were investigated with atomic force microscopy (AFM) and related to biopolymer physical properties. Measurement of macroscopic properties showed that strain AK1401 is more negatively charged and slightly more hydrophobic than strain PAO1 is. Microscopic AFM investigations of individual bacteria showed differences in how the biopolymers interacted with silicon. PAO1 showed larger decay lengths in AFM approach cycles, suggesting that the longer polymers on PAO1 caused greater steric repulsion with the AFM tip. For both bacterial strains, the long-range interactions we observed (hundreds of nanometers) were inconsistent with the small sizes of LPS, suggesting that they were also influenced by ECP, especially polysaccharides. The AFM retraction profiles provide information on the adhesion strength of the biopolymers to silicon (Fadh). For AK1401, the adhesion forces were only slightly lower (Fadh = 0.51 nN compared to 0.56 nN for PAO1), but the adhesion events were concentrated over shorter distances. More than 90% of adhesion events for AK1401 were at distances of <600 nm, while >50% of adhesion events for PAO1 were at distances of >600 nm. The sizes of the observed molecules suggest that the adhesion of P. aeruginosa to silicon was controlled by ECP, in addition to LPS. Steric and electrostatic forces each contributed to the interfacial interactions between P. aeruginosa and the silicon surface.  相似文献   

19.
Aureobasidium pullulans is a potentially pathogenic microfungus that produces and secretes the polysaccharide pullulan and other biomacromolecules, depending on the microbe's physiological state. The role of these macromolecules in mediating adhesion and attachment were examined. Interfacial forces and adhesion affinities of A. pullulans were probed for early-exponential phase (EEP) and late-exponential phase (LEP) cells, using atomic force microscopy (AFM). Biochemical assays showed that A. pullulans produces both pullulan and a uronic acid based polymer. The pullulan is not produced until the LEP, and it can be removed by treatment with pullulanase. Both adhesion forces between the microbe and the AFM tip (silicon nitride) and attachment of the cells to quartz sand grains were controlled by the density of the uronic acid polymer. Uronic acid polymers doubled in density between the EEP and the LEP and were unaffected by the enzyme pullulanase. Retention to quartz in a packed column was quantified using the collision efficiency (alpha), the fraction of collisions between the microbes, and the sand grains, that result in attachment. Adhesion forces and retention on glass were well correlated, with these values being higher for EEP cells (F(adh) = 7.65 +/-4.67 nN; alpha = 1.15) than LEP (F(adh) = 2.94 +/- 0.75; alpha = 0.49) and LEP + pullulanase cells (F(adh) = 2.33 +/-2.01 nN; alpha = 0.43). Steric interactions alone do not describe the adhesion behavior of this fungus, but they do provide information regarding the length and density of the macromolecules studied.  相似文献   

20.

Objectives

The adhesion of colloidal probes of stainless steel, glass and cellulose to Pseudomonas fluorescens biofilms was examined using atomic force microscopy (AFM) to allow comparisons between surfaces to which biofilms might adhere.

Results

Biofilm was grown on a stainless steel substrate and covered most of the surface after 96 h. AFM approach and retraction curves were obtained when the biofilm was immersed in a tryptone/soy medium. On approach, all the colloidal probes experienced a long non-contact phase more than 100 nm in length, possibly due to the steric repulsion by extracellular polymers from the biofilm and hydrophobic effects. Retraction data showed that the adhesion varied from position to position on the biofilm. The mean value of adhesion of glass to the biofilm (48 ± 7 nN) was the greatest, followed by stainless steel (30 ± 7 nN) and cellulose (7.8 ± 0.4 nN).

Conclusion

The method allows understanding of adhesion between the three materials and biofilm, and development of a better strategy to remove the biofilm from these surfaces relevant to different industrial applications.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号