首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
雷常贵  贾学渊  孙文靖 《遗传》2021,(7):665-679,中插1-中插10
胶质母细胞瘤(glioblastoma,GBM)是最常见的原发性颅内肿瘤,恶性程度极高,患者预后极差.为了识别GBM预后生物标记物,建立预后模型,本研究通过分析癌症基因组图谱计划(The Cancer Genome Atlas,TCGA)数据库中GBM的表达谱数据,筛选出不同生存期GBM患者差异基因.利用GISTIC软...  相似文献   

2.
为探讨自噬相关基因(ARGs)在MM发生发展中的作用机制并建立相关的预后模型。基于MMRF与HADb数据库,通过R语言确定多发性骨髓瘤中自噬相关基因的差异表达,GO和KEGG分析自噬相关基因与多发性骨髓瘤发生发展的关系,使用COX回归算法建立多基因预后模型,Kaplan-Meier方法绘制生存曲线,ROC曲线评价预后模型的可靠性。最终从764例多发性骨髓瘤患者骨髓样本及4例正常骨髓样本中共发现104个基因的表达在多发性骨髓瘤样本中具有显著差异,其中上调基因46个,下调基因58个。GO富集主要集中在巨自噬、自噬调节、细胞对外部刺激的反应等本体学注释。KEGG富集主要集中在自噬、细胞凋亡、NOD样受体信号通路、PI3K-Akt信号通路。单因素COX分析发现33个自噬相关基因与多发性骨髓瘤患者整体生存明显相关。多因素COX回归筛选出13个预后相关自噬相关基因(NKX2-3、NCKAP1、BIRC5、PEX3、HGS、RUBCN、PARP1、ARSA、DNAJB9、HSP90AB1、EEF2、FKBP1B和CD46)建立多发性骨髓瘤自噬相关基因预后模型。Kaplan-Meier生存曲线分析显示...  相似文献   

3.
张钰霄  肖博 《生物技术》2022,(6):772-778
[目的]探究纤维连接蛋白1(Fibronectin 1,FN1)在多形性胶质母细胞瘤(GBM)中的表达情况及对患者预后的影响,为GBM的早期诊断和治疗提供生物标志物。[方法]CCLE数据库分析FN1在不同肿瘤细胞系中的表达;UALCAN和GEPIA2数据库分析FN1在GBM肿瘤组织和正常组织中的表达差异;The Human Protein Atlas数据库分析FN1蛋白在GBM肿瘤组织和正常组织中的表达;GEPIA2数据库分析FN1在肿瘤组织中的异常表达对GBM患者总体生存率和无病生存率的影响;DAVID 6.8在线软件对FN1相关基因进行KEGG通路富集。[结果]在所有类型肿瘤细胞系中,GBM肿瘤细胞系中FN1 mRNA表达水平中排第八;FN1在GBM肿瘤组织中的表达高于正常组织(***P<0.001和*P<0.05),并且FN1高表达后GBM患者的总体生存率和无病生存率均降低(P=0.028和P=0.0056);KEGG分析结果表明与FN1正相关的基因富集通路有57个,癌症通路位于第三位。[结论]FN1在GBM中明显上调,是GBM诊断和预后的有效生物标志物。  相似文献   

4.
本研究旨在确定具有免疫相关基因的可靠预后特征,该特征可以预测预后并对肺腺癌(lung adenocarcinoma, LUAD)患者的个体化管理提供帮助。从癌症基因组图谱(The Cancer Genome Atlas, TCGA)数据库下载LUAD患者的mRNA表达谱和相应的临床数据;使用单因素COX和LASSO模型来构建预后模型;使用基于风险评分的方法开发预后特征;通过Kaplan-Meier分析比较高风险患者和低风险患者之间的总生存期(overall survival, OS), OS的独立预测因子通过单变量和多变量COX分析确定;单样本基因集富集分析(single sample gene set enrichment analysis, ssGSEA)用于评估免疫细胞浸润程度;通过LASSO和COX回归分析构建生存预后特征。根据预后特征,在OS方面将患者显著分层为高风险组和低风险组,与低风险组相比,高风险组的LUAD患者OS显著降低。通过ROC曲线分析证实了预后基因标记的预测能力。多因素COX分析显示,风险评分是OS的独立预测因子。通过免疫分析,发现了肺腺癌转移组与未转移组的不...  相似文献   

5.
刘洁  许凯龙  马立新  王洋 《生物工程学报》2022,38(10):3790-3808
脑胶质瘤(glioma)是中枢神经系统最常见的内在肿瘤,具有发病率高、预后较差等特点。本研究旨在鉴定多形性胶质母细胞瘤(glioblastoma multiforme,GBM)和低级别胶质瘤(lower-grade gliomas, LGG)之间的差异表达基因(differentially expressed genes, DEGs),以探讨不同级别胶质瘤的预后影响因素。从NCBI基因表达综合数据库中收集了胶质瘤的单细胞转录组测序数据,其中包括来自3个数据集的共29 097个细胞样本。对于不同分级的人脑胶质瘤进行分析,经过滤得到21 071个细胞,通过基因本体分析、京都基因与基因组百科全书途径分析,从差异表达基因中筛选出70个基因,我们通过查阅文献,聚焦到delta样典型Notch配体3 (delta like canonical Notch ligand 3,DLL3)这个基因。基于TCGA的基因表达谱交互分析(gene expression profiling interactive analysis, GEPIA)数据库用于探索LGG和GBM中DLL3基因的表达差异,采用基因表达...  相似文献   

6.
目的: 研究mRNA前体切割和多聚腺苷酸化特异性因子6(polyadenylation specific factor 6,CPSF6)对人胶质母细胞瘤(glioblastoma,GBM)细胞系U87和U251的增殖、迁移、侵袭以及ATP水平的影响,进一步探究其相关调控机制。方法: 通过Western blot和免疫组化检测CPSF6在GBM组织中的表达水平,利用在线数据库分析CPSF6在GBM组织和配对的非肿瘤组织中的表达水平,同时分析CPSF6与GBM的组织学级别和患者预后的关系。构建敲低CPSF6的U87和U251稳定表达细胞株,并采用RT-qPCR和Western blot方法分别验证U87和U251细胞中CPSF6的敲低效率;利用CCK8和Transwell实验分别检测CPSF6敲降对细胞增殖、迁移和侵袭能力的影响;ATP实验检测细胞内的ATP水平变化,确定CPSF6在GBM中的致癌作用。通过RNA-seq分析敲低CPSF6后GBM内mRNA 3'UTR变化情况,KEGG富集分析差异靶基因相关的信号通路。在富集出的信号通路指示下,利用透射电镜和Western blot实验进一步验证敲低CPSF6后GBM自噬的发生情况。 结果: CPSF6在GBM组织中呈现出高表达,其表达水平随组织学级别的增加而升高,且与患者不良预后相关。在U87和U251中敲低CPSF6后,细胞的增殖、迁移及侵袭能力均明显降低,细胞内ATP水平下降。对RNA-seq结果分析表明,敲低CPSF6后发生3'UTR缩短事件的基因远多于3'UTR延长事件的基因;KEGG富集到自噬信号通路与肿瘤进展密切相关,透射电镜和Western blot实验验证敲低CPSF6可以促进自噬通路的激活。结论: CPSF6在GBM中高表达,且与GBM的组织学级别和患者不良预后呈正相关,CPSF6可能通过抑制自噬通路的激活来促进U87和U251细胞的增殖、迁移、侵袭以及ATP的生成,进而促进GBM发生、发展。  相似文献   

7.
构建由自噬相关基因组成的预后模型,预测肝细胞癌(HCC)患者的生存预后情况,为其个性化诊疗和临床研究提供依据.利用TCGA数据库中HCC的测序信息与人类自噬数据库联合,筛选差异表达的自噬相关基因,对其进行GO富集与KEGG通路分析;通过单因素与多因素Cox分析筛选与患者生存预后明显相关的风险基因,构建预后风险评分模型;...  相似文献   

8.
胶质母细胞瘤(glioblastoma, GBM)是恶性程度最高的颅内恶性肿瘤,目前临床上缺乏有效治疗药物,复发率高且预后差,开发新的抗GBM药物是目前临床上亟待解决的问题。为了筛选与GBM预后密切相关的基因,为寻找新的药物靶点提供线索,采用GEO2R工具从GEO数据库中的269个肿瘤组织和61个正常组织中初步筛选出差异表达基因,然后利用Cluster Profiler数据库进行基因功能富集分析,STRING及Cytoscape进一步筛选出37个差异表达基因,采用GEPIA交互分析对这37个基因在GBM肿瘤组织中的表达进行验证。为了进一步探索这些差异表达基因与患者预后的关系,研究中利用GEPIA工具对TCGA数据库中与患者预后相关的数据进行深入挖掘,最终发现PTTG1、RRM2、E2F7与患者中位生存期呈显著性负相关。研究筛选出的与患者预后密切相关的基因不仅可以为评估患者预后提供参考,同时也为开发新的抗GBM药物提供了潜在的靶点。  相似文献   

9.
[目的]基于单细胞测序筛选胶质母细胞瘤特征基因并构建预后模型。[方法]分析GEO数据库单细胞RNA测序数据集GSE84465,筛选出GBM细胞分化相关的差异基因。下载TCGA数据库GBM的基因表达谱和临床数据,采用Lasso回归、Cox回归分析筛选出特征基因构建预后模型,根据独立预后因素构建列线图,GSE83300作为外部验证集。基于风险评分中位数将患者分组,比较两组生存差异。[结果]通过scRNA-seq得到492个分化差异基因,经过回归分析得到基于6个基因(PLAUR、RARRES2、G0S2、MDK、SERPINE2、CD81)的预后模型。其1、3、5年ROC曲线下面积均大于0.7;KM分析显示高低风险组预后存在差异(P<0.001),GSE83300验证结果与TCGA一致。多因素Cox回归分析表明年龄和风险评分可以作为独立影响因素(P<0.01);C-Index(0.679)、校准图显示列线图预测模型有良好的拟合度。GSEA分析示高低风险组差异基因集参与细胞因子受体相互作用、抗原处理与提呈等通路。[结论]由PLAUR、RARRES2、G0S2、MDK、SERPINE...  相似文献   

10.
目的:应用生物信息学技术筛选影响胶质母细胞瘤(GBM)化疗敏感性的相关基因。方法:对2批胶质瘤患者BIOSTAR基因芯片进行分析。通过随访完善临床资料,筛选芯片中胶质母细胞瘤患者生存期长、短两组间的差异基因,明确差异基因参与的功能和通路,并构建与烷化剂相关基因的信号传导网络,结合芯片数据、患者预后和信号传导网络,筛选GBM化疗敏感性的相关基因。结果:两组芯片中间差异基因有503条。2批芯片的差异基因主要参与62项基因功能,主要参与31条信号传导通路。通过对差异基因功能、通路,烷化剂信号转导网络的分析,得到影响胶质母细胞瘤化疗敏感性的核心的差异基因IFNGR2、IL8、ITGA5、TNFRSF1B。结论:通过严谨的实验设计和科学的统计学判别,结合患者完整的生存资料,本研究成功地应用生物信息学技术对基因芯片的大量数据进行挖掘和分析,并筛选出了可能影响GBM患者预后和化疗药物敏感性的基因,为进一步功能实验和患者个体化治疗奠定了基础。  相似文献   

11.
Lipid metabolism reprogramming plays important role in cell growth, proliferation, angiogenesis and invasion in cancers. However, the diverse lipid metabolism programmes and prognostic value during glioma progression remain unclear. Here, the lipid metabolism‐related genes were profiled using RNA sequencing data from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) database. Gene ontology (GO) and gene set enrichment analysis (GSEA) found that glioblastoma (GBM) mainly exhibited enrichment of glycosphingolipid metabolic progress, whereas lower grade gliomas (LGGs) showed enrichment of phosphatidylinositol metabolic progress. According to the differential genes of lipid metabolism between LGG and GBM, we developed a nine‐gene set using Cox proportional hazards model with elastic net penalty, and the CGGA cohort was used for validation data set. Survival analysis revealed that the obtained gene set could differentiate the outcome of low‐ and high‐risk patients in both cohorts. Meanwhile, multivariate Cox regression analysis indicated that this signature was a significantly independent prognostic factor in diffuse gliomas. Gene ontology and GSEA showed that high‐risk cases were associated with phenotypes of cell division and immune response. Collectively, our findings provided a new sight on lipid metabolism in diffuse gliomas.  相似文献   

12.
Glioblastoma (GBM) is the most lethal cancer in central nervous system. It is urgently needed to look for novel therapeutics for GBM. Oncostatin M receptor (OSMR) is a cytokine receptor gene of IL-6 family and has been reported to be involved in regulating GBM tumorigenesis. However, the role of OSMR regulating the disrupted immune response in GBM need to be further investigated. Three gene expression profiles, Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO) data set (GSE16011), were enrolled in our study and used for OSMR expression and survival analysis. The expression of OSMR was further verified with immunohistochemistry and western blot analysis in glioma tissues. Microenvironment cell populations-counter (MCP-counter) was applied for analyzing the relationship between OSMR expression and nontumor cells. The functions of OSMR in GBM was investigated by Gene Ontology, Gene set enrichment analysis (GSEA), gene set variation analysis and so on. The analysis of cytokine receptor activity-related genes in glioma identifies OSMR as a gene with an independent predictive factor for progressive malignancy in GBM. Furthermore, OSMR expression is a prognostic marker in the response prediction to radiotherapy and chemotherapy. OSMR contributes to the regulation of local immune response and extracellular matrix process in GBM. Our findings define an important role of OSMR in the regulation of local immune response in GBM, which may suggest OSMR as a possible biomarker in developing new therapeutic immune strategies in GBM.  相似文献   

13.
Glioblastoma multiforme (GBM) is a devastating brain tumour without effective treatment. Recent studies have shown that autophagy is a promising therapeutic strategy for GBM. Therefore, it is necessary to identify novel biomarkers associated with autophagy in GBM. In this study, we downloaded autophagy-related genes from Human Autophagy Database (HADb) and Gene Set Enrichment Analysis (GSEA) website. Least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analysis were performed to identify genes for constructing a risk signature. A nomogram was developed by integrating the risk signature with clinicopathological factors. Time-dependent receiver operating characteristic (ROC) curve and calibration plot were used to evaluate the efficiency of the prognostic model. Finally, four autophagy-related genes (DIRAS3, LGALS8, MAPK8 and STAM) were identified and were used for constructing a risk signature, which proved to be an independent risk factor for GBM patients. Furthermore, a nomogram was developed based on the risk signature and clinicopathological factors (IDH1 status, age and history of radiotherapy or chemotherapy). ROC curve and calibration plot suggested the nomogram could accurately predict 1-, 3- and 5-year survival rate of GBM patients. For function analysis, the risk signature was associated with apoptosis, necrosis, immunity, inflammation response and MAPK signalling pathway. In conclusion, the risk signature with 4 autophagy-related genes could serve as an independent prognostic factor for GBM patients. Moreover, we developed a nomogram based on the risk signature and clinical traits which was validated to perform better for predicting 1-, 3- and 5-year survival rate of GBM.  相似文献   

14.
目的:探讨铁死亡相关的长链非编码RNAs(LncRNAs)在甲状腺癌中的预后价值并构建预后风险模型。方法:从癌症基因组图谱(TCGA)数据库下载甲状腺癌的转录本数据和临床数据,铁死亡相关的基因数据集是从铁死亡数据库(http://www.zhounan.org/ferrdb/)下载的259个基因集。得到铁死亡相关LncRNAs,与患者临床信息合并后,通过单因素Cox回归分析和Kaplan-Meier生存分析两种方法得到与甲状腺癌预后相关的铁死亡LncRNAs,通过R的survival包构建COX模型以此来建立最佳预后风险模型并予以验证。结果:获得30个铁死亡相关的LncRNAs,多因素cox分析得到10个与甲状腺癌预后相关的铁死亡LncRNAs,包括AL136366.1、AL162231.2、CRNDE、AC004918.3、LINC02471、AC092279.1、AC046143.1、LINC02454、DOCK9-DT、AC008063.1。Kaplan-Meier生存分析表明高风险组预后较差。单因素和多因素Cox分析表明风险评分可以作为独立预后因子。KEGG通路富集分析发现,差异基因可能与嘧啶代谢、核苷酸切除修复、NOTCH_信号通路等通路有关。结论:通过生物信息学方法筛选出10个与甲状腺癌预后的铁死亡相关LncRNAs,并成功构建预后风险模型。  相似文献   

15.
Glioblastoma (GBM) is the most common malignant intracranial tumour with intrinsic infiltrative characteristics, which could lead to most patients eventually relapse. The prognosis of recurrent GBM patients remains unsatisfactory. Cancer cell infiltration and their interaction with the tumour microenvironment (TME) could promote tumour recurrence and treatment resistance. In our study, we aimed to identify potential tumour target correlated with rGBM microenvironment based on the gene expression profiles and clinical information of rGBM patients from The Cancer Genome Atlas (TCGA) database. LRRC15 gene with prognostic value was screened by univariate and multivariate analysis, and the correlation between macrophages and LRRC15 was identified as well. Furthermore, the prognosis correlation and immune characteristics of LRRC15 were validated using the Chinese Glioma Genome Atlas (CGGA) database and our clinical tissues by immunochemistry assay. Additionally, we utilized the transwell assay and carboxy fluorescein succinimidyl ester (CFSE) tracking to further confirm the effects of LRRC15 on attracting microglia/macrophages and tumour cell proliferation in the TME. Gene profiles-based rGBM microenvironment identified that LRRC15 could act in collusion with microglia/macrophages in the rGBM microenvironment to promote the poor prognosis, especially in mesenchymal subtype, indicating the strategies of targeting LRRC15 to improve macrophages-based immunosuppressive effects could be promising for rGBM treatments.  相似文献   

16.
To determine a molecular basis for prognostic differences in glioblastoma multiforme (GBM), we employed a combinatorial network analysis framework to exhaustively search for molecular patterns in protein-protein interaction (PPI) networks. We identified a dysregulated molecular signature distinguishing short-term (survival<225 days) from long-term (survival>635 days) survivors of GBM using whole genome expression data from The Cancer Genome Atlas (TCGA). A 50-gene subnetwork signature achieved 80% prediction accuracy when tested against an independent gene expression dataset. Functional annotations for the subnetwork signature included “protein kinase cascade,” “IκB kinase/NFκB cascade,” and “regulation of programmed cell death” – all of which were not significant in signatures of existing subtypes. Finally, we used label-free proteomics to examine how our subnetwork signature predicted protein level expression differences in an independent GBM cohort of 16 patients. We found that the genes discovered using network biology had a higher probability of dysregulated protein expression than either genes exhibiting individual differential expression or genes derived from known GBM subtypes. In particular, the long-term survivor subtype was characterized by increased protein expression of DNM1 and MAPK1 and decreased expression of HSPA9, PSMD3, and CANX. Overall, we demonstrate that the combinatorial analysis of gene expression data constrained by PPIs outlines an approach for the discovery of robust and translatable molecular signatures in GBM.  相似文献   

17.
Glioblastoma multiforme (GBM) is a highly malignant brain tumor. We explored the prognostic gene signature in 443 GBM samples by systematic bioinformatics analysis, using GSE16011 with microarray expression and corresponding clinical data from Gene Expression Omnibus as the training set. Meanwhile, patients from The Chinese Glioma Genome Atlas database (CGGA) were used as the test set and The Cancer Genome Atlas database (TCGA) as the validation set. Through Cox regression analysis, Kaplan-Meier analysis, t-distributed Stochastic Neighbor Embedding algorithm, clustering, and receiver operating characteristic analysis, a two-gene signature (GRIA2 and RYR3) associated with survival was selected in the GSE16011 dataset. The GRIA2-RYR3 signature divided patients into two risk groups with significantly different survival in the GSE16011 dataset (median: 0.72, 95% confidence interval [CI]: 0.64-0.98, vs median: 0.98, 95% CI: 0.65-1.61 years, logrank test P < .001), the CGGA dataset (median: 0.84, 95% CI: 0.70-1.18, vs median: 1.21, 95% CI: 0.95-2.94 years, logrank test P = .0017), and the TCGA dataset (median: 1.03, 95% CI: 0.86-1.24, vs median: 1.23, 95% CI: 1.04-1.85 years, logrank test P = .0064), validating the predictive value of the signature. And the survival predictive potency of the signature was independent from clinicopathological prognostic features in multivariable Cox analysis. We found that after transfection of U87 cells with small interfering RNA, GRIA2 and RYR3 influenced the biological behaviors of proliferation, migration, and invasion of glioblastoma cells. In conclusion, the two-gene signature was a robust prognostic model to predict GBM survival.  相似文献   

18.
Glioblastoma (GBM) is a malignant intracranial tumour with the highest proportion and lethality. It is characterized by invasiveness and heterogeneity. However, the currently available therapies are not curative. As an essential environmental cue that maintains glioma stem cells, hypoxia is considered the cause of tumour resistance to chemotherapy and radiation. Growing evidence shows that immunotherapy focusing on the tumour microenvironment is an effective treatment for GBM; however, the current clinicopathological features cannot predict the response to immunotherapy and provide accurate guidance for immunotherapy. Based on the ESTIMATE algorithm, GBM cases of The Cancer Genome Atlas (TCGA) data set were classified into high‐ and low‐immune/stromal score groups, and a four‐gene tumour environment‐related model was constructed. This model exhibited good efficiency at forecasting short‐ and long‐term prognosis and could also act as an independent prognostic biomarker. Additionally, this model and four of its genes (CLECL5A, SERPING1, CHI3L1 and C1R) were found to be associated with immune cell infiltration, and further study demonstrated that these four genes might drive the hypoxic phenotype of perinecrotic GBM, which affects hypoxia‐induced glioma stemness. Therefore, these might be important candidates for immunotherapy of GBM and deserve further exploration.  相似文献   

19.

Objectives

To study the expression pattern and prognostic significance of SAMSN1 in glioma.

Methods

Affymetrix and Arrystar gene microarray data in the setting of glioma was analyzed to preliminarily study the expression pattern of SAMSN1 in glioma tissues, and Hieratical clustering of gene microarray data was performed to filter out genes that have prognostic value in malignant glioma. Survival analysis by Kaplan-Meier estimates stratified by SAMSN1 expression was then made based on the data of more than 500 GBM cases provided by The Cancer Genome Atlas (TCGA) project. At last, we detected the expression of SAMSN1 in large numbers of glioma and normal brain tissue samples using Tissue Microarray (TMA). Survival analysis by Kaplan-Meier estimates in each grade of glioma was stratified by SAMSN1 expression. Multivariate survival analysis was made by Cox proportional hazards regression models in corresponding groups of glioma.

Results

With the expression data of SAMSN1 and 68 other genes, high-grade glioma could be classified into two groups with clearly different prognoses. Gene and large sample tissue microarrays showed high expression of SAMSN1 in glioma particularly in GBM. Survival analysis based on the TCGA GBM data matrix and TMA multi-grade glioma dataset found that SAMSN1 expression was closely related to the prognosis of GBM, either PFS or OS (P<0.05). Multivariate survival analysis with Cox proportional hazards regression models confirmed that high expression of SAMSN1 was a strong risk factor for PFS and OS of GBM patients.

Conclusion

SAMSN1 is over-expressed in glioma as compared with that found in normal brains, especially in GBM. High expression of SAMSN1 is a significant risk factor for the progression free and overall survival of GBM.  相似文献   

20.
Background: Glioma is a malignant intracranial tumor and the most fatal cancer. The role of ferroptosis in the clinical progression of gliomas is unclear.Method: Univariate and least absolute shrinkage and selection operator (Lasso) Cox regression methods were used to develop a ferroptosis-related signature (FRSig) using a cohort of glioma patients from the Chinese Glioma Genome Atlas (CGGA), and was validated using an independent cohort of glioma patients from The Cancer Genome Atlas (TCGA). A single-sample gene set enrichment analysis (ssGSEA) was used to calculate levels of the immune infiltration. Multivariate Cox regression was used to determine the independent prognostic role of clinicopathological factors and to establish a nomogram model for clinical application.Results: We analyzed the correlations between the clinicopathological features and ferroptosis-related gene (FRG) expression and established an FRSig to calculate the risk score for individual glioma patients. Patients were stratified into two subgroups with distinct clinical outcomes. Immune cell infiltration in the glioma microenvironment and immune-related indexes were identified that significantly correlated with the FRSig, the tumor mutation burden (TMB), copy number alteration (CNA), and immune checkpoint expression was also significantly positively correlated with the FRSig score. Ultimately, an FRSig-based nomogram model was constructed using the independent prognostic factors age, World Health Organization (WHO) grade, and FRSig score.Conclusion: We established the FRSig to assess the prognosis of glioma patients. The FRSig also represented the glioma microenvironment status. Our FRSig will contribute to improve patient management and individualized therapy by offering a molecular biomarker signature for precise treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号