首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two-dimensional 1H-NMR methods have been used to assign side-chain resonances for the tryptophan residues and for several amino acids located in the heme pockets of the carbon monoxide complexes of the major monomeric hemoglobins from Glycera dibranchiata. The NMR spectra reveal a high degree of conservation of the heme pocket structure in the different hemoglobins. However some conformational differences are evident and residues at positions B10 and G8 on the distal side of the heme pocket are not conserved. From the present NMR studies it appears that the monomeric G. dibranchiata hemoglobin examined by X-ray crystallography [Padlan, E. A. & Love, W. (1974) J. Biol. Chem. 249, 4067-4078] corresponds to HbC. Except that the orientation of the heme in solution is the reverse of that reported in the crystal structure, there is a close correspondence between the heme pocket structure in the crystal and in solution. The proximal histidine coordination geometry is almost identical in the CO complexes of the three monomeric hemoglobins studied. Distal residues are strongly implicated in determining the observed kinetic differences in ligand binding reactions. In particular, steric crowding of the ligand binding site in hemoglobin A is probably a major factor in the slower kinetics of this component.  相似文献   

2.
The structure, ligand binding kinetics, and thermodynamics of hemoglobin have been the subject of a great deal of investigation. However, the exact pathway(s) by which cooperative energetics are communicated within the protein remain undefined. The effects of interspecies variations in quaternary and tertiary structure, oxygen affinity, cooperativity, and ligand binding kinetics upon the overall ligand binding process are, therefore, of great importance in understanding and solving these problems. The demonstrated sensitivity of resonance Raman spectroscopy to heme structure and environment make it an ideal probe of ligand binding dynamics. It is possible to examine how specific vibrational modes change with time and correlate this with solution conditions and protein structural and conformational differences. Those modes which exhibit the greatest change with ligand photolysis are also indicative of possible paths of cooperative energy dissipation within the protein. The changes which occur in the vibrational modes of the heme within 10 ns of CO photolysis have been determined for a wide variety of mammalian and reptilian hemoglobins. The modes most affected by this process are, without exception, nu(Fe-His), nu4, and the substituent bending modes, delta(cb - s) and delta(cb - c alpha - c beta). Furthermore, a direct correlation exists between the shift in porphyrin pi electron density upon CO photolysis (as indicated by the transient changes in nu 4) and the Hill coefficient of cooperativity. The implications of those results concerning ligand binding cooperativity in hemoglobins are discussed.  相似文献   

3.
Circular dichroism spectra of three monomeric components of Glycera dibranchiata hemoglobins are reported. Contrary to what is found for most hemoglobins and myoglobins, G. dibranchiata hemoglobins display largely negative dichroic spectra in the Soret region. Independent NMR measurements have shown that the same monomeric hemoglobin components contain the heme moiety predominantly (greater than 85%) oriented in a reversed way with respect to the orientation which occurs in most hemoglobins and myoglobins. On the basis of these independent NMR studies, and also of previous data on other invertebrate hemoproteins, a correlation appears evident between reversed heme orientation in hemoglobins and negative ellipticity in the Soret CD spectrum. This represents a simple tool to evaluate this aspect of heme asymmetric environment.  相似文献   

4.
Park HJ  Yang C  Treff N  Satterlee JD  Kang C 《Proteins》2002,49(1):49-60
Erythrocytes of the marine annelid, Glycera dibranchiata, contain a mixture of monomeric and polymeric hemoglobins. There are three major monomer hemoglobin components, II, III, IV (also called GMH2, 3, and 4), that have been highly purified and well characterized. We have now crystallized GMH3 and GMH4 and determined their structures to 1.4-1.8 A resolution. The structures were determined for these two monomer hemoglobins in the oxidized (Fe3+, ferric, or met-) forms in both the unligated and cyanide-ligated states. This work differs from two published, refined structures of a Glycera dibranchiata monomer hemoglobin, which has a sequence that is substantially different from any bona fide major monomer hemoglobins (GMH2, 3, or 4). The high-resolution crystal structures (presented here) and the previous NMR structure of CO-ligated GMH4, provide a basis for interpreting structure/function details of the monomer hemoglobins. These details include: (1) the strong correlation between temperature factor and NMR dynamics for respective protein forms; (2) the unique nature of the HisE7Leu primary sequence substitutions in GMH3 and GMH4 and their impact on cyanide ion binding kinetics; (3) the LeuB10Phe difference between GMH3 and GMH4 and its impact on ligand binding; and (4) elucidation of changes in the structural details of the distal and proximal heme pockets upon cyanide binding.  相似文献   

5.
Two-dimensional 1H-NMR methods have been used to assign heme and amino acid proton resonances in both isomeric states of the carbon monoxide complexes of two Glycera dibranchiata monomeric hemoglobins, HbA and HbB. For each hemoglobin, there are small differences in heme pocket structure in the two isomeric forms. The largest structural perturbations associated with heme isomerism involve residues close to pyrrole rings I and II. The positions relative to the heme of phenylalanine CD1 and the proximal histidine ligand are almost unaffected by heme isomerism. These residues probably play a key role in determining the location of the heme within the heme pocket.  相似文献   

6.
Three major monomeric hemoglobins have been isolated from the erythrocytes of Glycera dibranchiata. Their importance to structure-function studies of heme proteins lies in the fact that they have been shown to possess an exceptional amino acid substitution. In these proteins, the E-7 position is occupied by leucine rather than the more common distal histidine. This substitution alters the polarity of the heme ligand binding environment compared to myoglobin. Due to this, the G. dibranchiata monomer hemoglobins are attracting much attention. However, until now no purity criterion has been developed. Here we demonstrate that, for all of the Glycera monomer hemoglobins, multiple line patterns are shown on high-voltage isoelectric focusing (IEF) gels. Most of these lines are shown to be a consequence of heme-related phenomena and can be understood on the basis of changes in oxidation and ligation state of the heme iron. The multiple line pattern does not indicate significant impurities in the monomer hemoglobin preparations. Similar behavior is also demonstrated for horse heart myoglobin. The multiple line patterns on IEF gels disappear when gels of the apoproteins alone are focused. Single bands occur in this case for all of the monomer hemoglobins except component II, which displays two bands, one major and one minor. The minor band is found to be a modified apoprotein form. It is sensitive to apoprotein handling prior to focusing and depends upon whether the IEF gel is prefocused or not. From this analysis, IEF is shown to be a valuable purity criterion, and the purity of our monomer hemoglobin component II preparation is 97% one globin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Using resonance Raman difference spectroscopy, the Raman-active vibrational modes of hemoglobins from adult, neotenic, and larval forms of the salamander, Ambystoma tigrinum have been compared to each other and to human hemoglobin. The local heme environment of the adult and neotenic proteins were identical and differed from that of the larval protein. Differences were observed in modes sensitive to porphyrin pi electron density and axial ligation. Systematic differences were also observed between human and adult salamander hemoglobins particularly in modes sensitive to the heme vinyl environment. The relationship between these environmental differences, oxygen binding affinity, and the effects of allosteric modulators are discussed.  相似文献   

8.
Circular dichroism (CD) and optical rotatory dispersion (ORD) spectra of several liganded derivatives of the monomer and polymer hemoglobin components of the marine annelid, Glycera dibranchiata were measured over the wavelength range 650--195 nm. The differences observed between the monomer and polymer components for the heme dichroic bands in the visible, Soret and ultraviolet wavelength regions seem to result from changes in the heme environment, geometry and coordination state of the central heme iron in these proteins. Within the Soret region, the liganded derivatives of the monomer hemoglobin exhibit predominantly negative circular dichroic bands. The heme band at 260 nm is also absent for the monomer hemoglobin. The ORD and CD spectra in the far-ultraviolet, peptide absorbing region suggest also differences in the alpha-helix content of the monomer and polymer hemoglobins. The values for the single-chain G. dibranchiata hemoglobin are in the expected range (about 70% alpha-helix) as predicted by the X-ray structure of this protein. The lower estimates of the alpha-helix content for the polymer hemoglobin (approx. 50%), may reflect the differences in amino acid composition, primary structure and polypeptide chain foldings. Changes in oxidation state and ligand binding appears to have no pronounced effect on the helicity of either the monomer or polymer hemoglobins. The removal of the heme moiety from the monomer hemoglobin did result in a major decrease in its helix content similar to the loss of heme from myoglobin.  相似文献   

9.
The pH dependence of infrared and NMR spectroscopic parameters for carbon monoxide bound to human, equine, rabbit and Glycera dibranchiata monomer fraction hemoglobins has been examined. In all cases, the vertebrate hemoglobins exhibit CO vibrations and 13CO chemical shifts which are pH dependent, whereas the invertebrate hemoglobin does not. The Glycera dibranchiata monomer fraction exhibits the highest wavenumber CO vibration (1970 cm-1) and the most shielded chemical shift (206.2 ppm). The pH behavior of the vertebrate CO-hemoglobins is that the heme-coordinated carbon monoxide chemical shifts and principal infrared vibrations tend toward the values observed for the G. dibranchiata CO-hemoglobin fraction. These results are interpreted as originating in protonation of the distal histidine (E-7) in the vertebrate hemoglobins. The anomalous values for Glycera dibranchiata are concluded to be due to the absence of a distal histidine (E-7 His----Leu) in the heme pocket and not to gross structural dissimilarities between the proteins of the different species examined. Primary sequence similarity matrices have been constructed to compare the functional classes of amino acids at homologous positions for the CD and E helices and for the primary heme contacts in human, equine, sperm whale myoglobin, and the Glycera dibranchiata monomer hemoglobin to illustrate this point. They reveal a high correspondence for all globins and do not correlate with the spectroscopic parameters of heme-coordinated CO.  相似文献   

10.
The nonsymbiotic tomato hemoglobin SOLly GLB1 (Solanum lycopersicon) is shown to form a homodimer of approximately 36 kDa with a high affinity for oxygen. Furthermore, our combined ultraviolet/visible, resonance Raman, and continuous wave electron paramagnetic resonance (EPR) measurements reveal that a mixture of penta- and hexacoordination of the heme iron is found in the deoxy ferrous form, whereas the ferric form shows predominantly a bis-histidine ligation (F8His-Fe(2+/3+)-E7His). This differs from the known forms of vertebrate hemoglobins and myoglobins. We have successfully applied our recently designed pulsed-EPR strategy to study the low-spin ferric form of tomato hemoglobin. These experiments reveal that, in ferric SOLly GLB1, one of the histidine planes is rotated 20 degrees (+/-10 degrees ) away from a N(heme)-Fe-N(heme) axis. Additionally, the observed g-values indicate a quasicoplanarity of the histidine ligands. From the HYSCORE (hyperfine sublevel correlation) measurements, the hyperfine and nuclear quadrupole couplings of the heme and histidine nitrogens are identified and compared with known EPR/ENDOR data of vertebrate Hbs and cytochromes. Finally, the ligand binding kinetics, which also indicate that the ferrous tomato Hb is only partially hexacoordinated, will be discussed in relation with the heme-pocket structure. The similarities and differences with other known nonsymbiotic plant hemoglobins will be highlighted.  相似文献   

11.
Quaternary-transformation-induced changes at the heme in deoxyhemoglobins   总被引:4,自引:0,他引:4  
Quaternary-structure-induced differences in both the high- and low-frequency regions of the resonance Raman spectrum of the heme have been detected in a variety of hemoglobins. These differences may be the result of (1) changes in the amino acid sequence, induced by genetic and chemical modifications, and (2) alterations in the quaternary structure. For samples in solution in low ionic strength buffers, differences in the 1357-cm-1 line (an electron-density-sensitive vibrational mode) correlate with differences in the 216-cm-1 line (the iron-histidine stretching mode). Thus, changes in the iron-histidine bond and changes in the pi-electron density of the porphyrin depend upon a common heme-globin interaction. The quaternary-structure-induced changes in the vibrational modes associated with the heme demonstrate that there is extensive communication between the heme and the globin and impact on models for the energetics of cooperativity. The local interactions of the iron-histidine mode are energetically small and destabilize the deoxy heme in the T structure with respect to the R structure. Therefore, these interactions must be larger in the ligated protein than in the deoxy protein to obtain a negative free energy of cooperativity. Additionally, our data imply that the deprotonation of the proximal histidine does not play a major role in the energetics of cooperativity. On the other hand, models for cooperativity that require conformational changes in the iron-histidine bond or direct interaction between the porphyrin and the protein are qualitatively consistent with the observed variation of heme electronic structure in concert with protein quaternary structure.  相似文献   

12.
The effects of changes in the groups attached to the periphery of the porphyrin ring of the heme of various hemoglobin and myoglobins on the environment experienced by the ligand, carbon monoxide, have been studied by observation of the chemical shift of the bound 13CO. The results indicate that the major interaction between bound ligands and substituents around the porphyrin is that transmitted electronically from substituent to ligand. The nature of the protein environment around the ligand and the interaction between the proximal histidine (F8) and the ligand (through the iron atom) impose differences between subunits of hemoglobin and between myoglobins and hemoglobins which are largely, but not entirely, independent of these substituent effects. To assess the influence of protein structure on the chemical shifts of bound ligand, the shifts of 13CO bound to myoglobin and hemoglobins from a wide range of species have also been measured.  相似文献   

13.
A large and phylogenetically diverse group of organisms contain truncated hemoglobins, including the unicellular cyanobacterium Synechocystis (Pesce, A., Couture, M., Dewilde, S., Guertin, M., Yamauchi, K., Ascenzi, P., Moens, L., and Bolognesi, M. (2000) EMBO J. 19, 2424-2434). Synechocystis hemoglobin is also hexacoordinate, with a heme pocket histidine that reversibly coordinates the ligand binding site. Hexacoordinate hemoglobins are ubiquitous in plants and are now being identified in a diverse array of organisms including humans (Arredondo-Peter, R., Hargrove, M. S., Moran, J. F., Sarath, G., and Klucas, R. V. (1998) Plant Physiol. 118, 1121-1125; Trent, J. T., III, Watts, R. A., and Hargrove, M. S. (2001) J. Biol. Chem. 276, 30106-30110). Rate constants for association and dissociation of the hexacoordinating amino acid side chain in Synechocystis hemoglobin have been measured along with bimolecular rate constants for association of oxygen and carbon monoxide following laser flash photolysis. These values were compared with ligand binding initiated by rapid mixing. Site-directed mutagenesis was used to determine the roles of several heme pocket amino acids in facilitating hexacoordination and stabilizing bound oxygen. It is demonstrated that Synechocystis hemoglobin contains a very reactive binding site and that ligand migration through the protein is rapid. Rate constants for hexacoordination by His(46) are also large and facilitated by other heme pocket amino acids including Gln(43).  相似文献   

14.
Hexacoordinate hemoglobins are found in many living organisms ranging from prokaryotes to plants and animals. They are named "hexacoordinate" because of reversible coordination of the heme iron by a histidine side chain located in the heme pocket. This endogenous coordination competes with exogenous ligand binding and causes multiphasic relaxation time courses following rapid mixing or flash photolysis experiments. Previous rapid mixing studies have assumed a steady-state relationship between hexacoordination and exogenous ligand binding that does not correlate with observed time courses for binding. Here, we demonstrate that this assumption is not valid for some hexacoordinate hemoglobins, and that multiphasic time courses are due to an appreciable fraction of pentacoordinate heme resulting from relatively small equilibrium constants for hexacoordination (K(H)). CO binding reactions initiated by rapid mixing are measured for four plant hexacoordinate hemoglobins, human neuroglobin and cytoglobin, and Synechocystis hemoglobin. The plant proteins, while showing a surprising degree of variability, differ from the others in having much lower values of K(H). Neuroglobin and cytoglobin display dramatic biphasic time courses for CO binding that have not been observed using other techniques. Finally, an independent spectroscopic quantification of K(H) is presented that complements rapid mixing for the investigation of hexacoordination. These results demonstrate that hexacoordination could play a much larger role in regulating affinity constants for ligand binding in human neuroglobin and cytoglobin than in the plant hexacoordinate hemoglobins.  相似文献   

15.
Resonance Raman spectroscopy and step-scan Fourier transform infrared (FTIR) spectroscopy have been used to identify the ligation state of ferrous heme iron for the H93G proximal cavity mutant of myoglobin in the absence of exogenous ligand on the proximal side. Preparation of the H93G mutant of myoglobin has been previously reported for a variety of axial ligands to the heme iron (e.g., substituted pyridines and imidazoles) [DePillis, G., Decatur, S. M., Barrick, D., and Boxer, S. G. (1994) J. Am. Chem. Soc. 116, 6981-6982]. The present study examines the ligation states of heme in preparations of the H93G myoglobin with no exogenous ligand. In the deoxy form of H93G, resonance Raman spectroscopic evidence shows water to be the axial (fifth) ligand to the deoxy heme iron. Analysis of the infrared C-O and Raman Fe-C stretching frequencies for the CO adduct indicates that it is six-coordinate with a histidine trans ligand. Following photolysis of CO, a time-dependent change in ligation is evident in both step-scan FTIR and saturation resonance Raman spectra, leading to the conclusion that a conformationally driven ligand switch exists in the H93G protein. In the absence of exogenous nitrogenous ligands, the CO trans effect stabilizes endogenous histidine ligation, while conformational strain favors the dissociation of histidine following photolysis of CO. The replacement of histidine by water in the five-coordinate complex is estimated to occur in < 5 micros. The results demonstrate that the H93G myoglobin cavity mutant has potential utility as a model system for studying the conformational energetics of ligand switching in heme proteins such as those observed in nitrite reductase, guanylyl cyclase, and possibly cytochrome c oxidase.  相似文献   

16.
The hemoglobins of the Sea Lamprey (Petromyzon marinus) exist in an equilibrium between low affinity oligomers, stabilized by proton binding, and higher affinity monomers, stabilized by oxygen binding. Recent crystallographic analysis revealed that dimerization is coupled with key changes at the ligand binding site with the distal histidine sterically restricting ligand binding in the deoxy dimer but with no significant structural rearrangements on the proximal side. These structural insights led to the hypothesis that oxygen affinity of lamprey hemoglobin is distally regulated. Here we present the 2.9-A crystal structure of deoxygenated lamprey hemoglobin in an orthorhombic crystal form along with the structure of these crystals exposed to carbon monoxide. The hexameric assemblage in this crystal form is very similar to those observed in the previous deoxy structure. Whereas the hydrogen bonding network and packing contacts formed in the dimeric interface of lamprey hemoglobin are largely unaffected by ligand binding, the binding of carbon monoxide induces the distal histidine to swing to positions that would preclude the formation of a stabilizing hydrogen bond with the bound ligand. These results suggest a dual role for the distal histidine and strongly support the hypothesis that ligand affinity in lamprey hemoglobin is distally regulated.  相似文献   

17.
The 1H nuclear magnetic resonance spectral characteristics of the cyano-Met form of Chironomus thummi thummi monomeric hemoglobins I, III and IV in 1H2O solvent are reported. A set of four exchangeable hyperfine-shifted resonances is found for each of the two heme-insertion isomers in the hyperfine-shifted region downfield of ten parts per million. An analysis of relaxation, exchange rates and nuclear Overhauser effects leads to assignments for all these resonances to histidine F8 and the side-chains of histidine E7 and arginine FG3. It is evident that in aqueous solution, the side-chain from histidine E7 does not occupy two orientations, as found for the solid state, rather the histidine E7 side-chain adopts a conformation similar to that of sperm whale myoglobin or hemoglobin A, oriented into the heme pocket and in contact with the bound ligand. Evidence is presented to show that the allosteric transition in the Chironomus thummi thummi hemoglobins arises from the "trans effect". An analysis of the exchange with bulk solvent of the assigned histidine E7 labile proton confirms that the group is completely buried within the heme pocket in a manner similar to that found for sperm whale cyano-Met myoglobin, and that the transient exposure to solvent is no more likely than in mammalian myoglobins with the "normal" distal histidine orientation. Finally, a comparison of solvent access to the heme pocket of the three monomeric C. thummi thummi hemoglobins, as measured from proton exchange rates of heme pocket protons, is made and correlated to binding studies with the diffusible small molecules such as O2.  相似文献   

18.
BACKGROUND: The hemoglobins of the sea lamprey are unusual in that cooperativity and sensitivity to pH arise from an equilibrium between a high-affinity monomer and a low-affinity oligomer. Although the crystal structure of the monomeric cyanide derivative has previously been determined, the manner by which oligomerization acts to lower the oxygen affinity and confer a strong Bohr effect has, until now, been speculative. RESULTS: We have determined the crystal structure of deoxygenated lamprey hemoglobin V by molecular replacement to 2.7 A resolution, in a crystal form with twelve protomers in the asymmetric unit. The subunits are arranged as six essentially identical dimers, with a novel subunit interface formed by the E helices and the AB corner using the standard hemoglobin helical designations. In addition to nonpolar interactions, the interface includes a striking cluster of four glutamate residues. The proximity of the interface to ligand-binding sites implicates a direct effect on ligand affinity. CONCLUSIONS: Comparison of the deoxy structure with that of the cyanide derivative revealed conformational changes that appear to be linked to the functional behavior. Oligomerization is coupled with a movement of the first half of the E helix by up to 1.0 A towards the heme, resulting in steric interference of ligand binding to the deoxy structure. The Bohr effect seems to result from proton uptake by glutamate residues as they are buried in the interface. Unlike human and mollusc hemoglobins, in which modulation of function is due to primarily proximal effects, regulation of oxygen affinity in lamprey hemoglobin V seems to depend on changes at the distal (ligand-binding) side of the heme group.  相似文献   

19.
Resonance Raman spectroscopy has been employed to detect the iron-proximal histidine stretching mode in deoxyhemoglobins from insect larvae of Chironomus thummi thummi (CTT). With the excitation of 413.1 nm, we observe a sharp and intense line in the 220-224 cm-1 region. The assignment of this line to the Fe-N epsilon (His) stretching mode was made on the basis of a 3-cm-1 shift upon 57Fe/54Fe isotope substitution. The Fe-N epsilon (His) vibration is used to monitor the possible changes in the Fe-N epsilon (His) bond strength (hence bone length) in the deoxy state of the monomeric (CTT I, III, and IV) and dimeric (CTT II) insect hemoglobins. As these hemoglobins differ in O2 affinity, off-rate and on-rate constants, and in the Bohr effect, they are excellent model systems for investigating the mechanism of protein control of the heme reactivity. Some of these hemoglobins (CTT III, IV, and II) are allosteric, exhibiting two interconvertible conformational states with high and low O2 affinity at high and low pH, respectively. The Fe-N epsilon (His) stretching frequency does not correlate with the O2 affinity, the on-rate and the off-rate constants for different hemoglobins, for different conformational states, and for modified hemoglobins with different heme peripheral groups. This vibrational mode is insensitive to deuteration of the heme vinyl groups. It is important to note that the Fe-N epsilon (His) bonds in the high pH (high-affinity) and the low pH (low-affinity) states are identical. This implies that the O2 molecule, prior to binding, "sees" identical binding sites. Thus, the difference in free energy changes upon O2 binding is manifested only in the oxy form.  相似文献   

20.
Summary Hagfish hemoglobin has three main components, one of which is Hb III. It is monomeric and consists of 148 amino acid residues (M = 17 350). Its complete primary structure, previously published, is discussed here. The proximal amino acid (F8) of the heme linkage is histidine as always in the hemoglobins, but the regularly expected distal histidine E7 is substituted by glutamine. This substitution, leading to a new kind of heme linkage, has hitherto only been demonstrated in opossum hemoglobin. It is suggested that E7, Gln, is directed out of the heme pocket, and that the adjacent Ell, Ile, is directed toward the inside of the pocket, giving the distal heme contact instead of histidine.Myxine Hb III has an additional tail of 9 amino acid residues at its N-terminal end, as has the hemoglobin ofLampetra fluviatilis. The genetic codes ofMyxine andLampetra hemoglobins show 117 differences, in spite of many morphological resemblances between hagfish and lamprey. Their primary hemoglobin structures show differences substantial enough to bo compatible with the divergence of the two families some 400–500 million years ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号