首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】类囊体是叶绿体光合作用中光反应进行的重要场所。类囊体腔是由类囊体膜包围形成的一个狭小空间。在类囊体腔中存在多种不同的蛋白家族,包括高叶绿素荧光(high chlorophyll fluorescence, HCF)蛋白、亲免蛋白、放氧复合物(oxygen-evolving complex, OEC)蛋白、PsbP类蛋白等,它们对植物的光合作用、核酸代谢以及氧化还原反应等都起着重要作用。【评论】文章分类综述了参与光合作用调控的类囊体腔蛋白在光系统组装、植物生长发育调节和高光逆境响应等生理活动中发挥的重要作用。【展望】文章可为未来研究类囊体腔蛋白的生理功能提供理论参考。  相似文献   

2.
Plant chloroplasts are promising vehicles for recombinant protein production, but the process of protein folding in these organelles is not well understood in comparison with that in prokaryotic systems, such as Escherichia coli . This is particularly true for disulphide bond formation which is crucial for the biological activity of many therapeutic proteins. We have investigated the capacity of tobacco ( Nicotiana tabacum ) chloroplasts to efficiently form disulphide bonds in proteins by expressing in this plant cell organelle a well-known bacterial enzyme, alkaline phosphatase, whose activity and stability strictly depend on the correct formation of two intramolecular disulphide bonds. Plastid transformants have been generated that express either the mature enzyme, localized in the stroma, or the full-length coding region, including its signal peptide. The latter has the potential to direct the recombinant alkaline phosphatase into the lumen of thylakoids, giving access to this even less well-characterized organellar compartment. We show that the chloroplast stroma supports the formation of an active enzyme, unlike a normal bacterial cytosol. Sorting of alkaline phosphatase to the thylakoid lumen occurs in the plastid transformants translating the full-length coding region, and leads to larger amounts and more active enzyme. These results are compared with those obtained in bacteria. The implications of these findings on protein folding properties and competency of chloroplasts for disulphide bond formation are discussed.  相似文献   

3.
4.
Many proteins found in the chloroplast are synthesized in the cytoplasm as precursor molecules containing transit peptides. Proteins targeted to the stroma must pass through the two envelope membranes to reach their destination. Proteins located in the chloroplast lumen also have to be transferred across the thylakoid membrane. That is, lumen proteins must cross three biological membranes in order to reach their final location. Recent evidence shows that the routing of plastocyanin towards the lumen involves two post-translational transport processes mediated by two different regions of the transit peptide and two different processing proteases. It is postulated that the genetic information for the plastocyanin precursor, which already contained a signal peptide, was transferred from the endosymbiont to the nucleus. Then a chloroplast-specific targeting-peptide was added.  相似文献   

5.
叶绿体蛋白质组研究进展   总被引:2,自引:1,他引:2  
亚细胞蛋白质组学是近年来蛋白组学研究中的一个热点。通过细胞器的纯化和亚细胞组分的分离,降低了样品的复杂性,增大了相应蛋白质组分的富集,有利于由此分离获得的蛋白质的序列分析及功能鉴定。叶绿体蛋白质组为植物亚细胞蛋白质组学研究中相对全面的一部分,利用亚细胞分离结合双向电泳技术系统地鉴定叶绿体中蛋白质组分是获取叶绿体蛋白质信息、确定其功能的重要技术手段。本文就近年来植物叶绿体蛋白质组涵盖的叶绿体内、外被膜、叶绿体基质、类囊体膜和类囊体腔蛋白的研究进行综述,以全面认识叶绿体蛋白的组成、特点及其在叶绿体生理生化代谢网络中的作用。  相似文献   

6.
The pea plastocyanin gene in a 3.5 kbp Eco RI fragment of pea nuclear DNA was introduced into tobacco by Agrobacterium-mediated transformation. Regenerated plants contained pea plastocyanin located within the chloroplast thylakoid membrane system. Analysis of seedlings from a self-pollinated transgenic plant containing a single copy of the pea plastocyanin gene indicated that seedlings homozygous for the pea gene contained almost twice as much pea plastocyanin as seedlings hemizygous for the pea gene. Homozygous seedlings contained approximately equal amounts of pea and tobacco plastocyanins. The amount of tobacco plastocyanin in leaves of transgenic plants was unaffected by the expression of the pea plastocyanin gene. The mRNA from the pea gene in tobacco was indistinguishable by northern blotting and S1 nuclease protection from the mRNA found in pea. In both pea and transgenic tobacco, expression of the pea plastocyanin gene was induced by light in leaves but was suppressed in roots. Pea plastocyanin free of contaminating tobacco plastocyanin was purified from transgenic tobacco plants and shown to be indistinguishable from natural pea plastocyanin by N-terminal protein sequencing and 1H NMR spectroscopy.  相似文献   

7.
The occurrence of chloroplast protrusions (CPs) in leaves of Ranunculus glacialis L. in response to different environmental conditions was assessed. CPs occur highly dynamically. They do not contain thylakoids and their physiological function is still largely unknown. Controlled in situ sampling showed that CP formation follows a pronounced diurnal rhythm. Between 2 and 27 °C the relative proportion of chloroplasts with CPs (rCP) showed a significant positive correlation to leaf temperature (TL; 0.793, P < 0.01), while irradiation intensity had a minor effect on rCP. In situ shading and controlled laboratory experiments confirmed the significant influence of TL. Under moderate irradiation intensity, an increase of TL up to 25 °C significantly promoted CP formation, while a further increase to 37 °C led to a decrease. Furthermore, rCP values were lower in darkness and under high irradiation intensity. Gas treatment at 2000 ppm CO2/2% O2 led to a significant decrease of rCP, suggesting a possible involvement of photorespiration in CP formation. Our findings demonstrate that in R. glacialis, CPs are neither a rare phenomenon nor a result of heat or light stress; on the contrary, they seem to be most abundant under moderate temperature and non‐stress irradiation conditions.  相似文献   

8.
A testable mechanism of CO2 accumulation in photolithotrophs, originally suggested by Pronina & Semenenko, is quantitatively analysed. The mechanism involves (as does the most widely accepted hypothesis) the delivery of HCO3? to the compartment containing Rubisco. It differs in proposing subsequent HCO3? entry (by passive uniport) to the thylakoid lumen, followed by carbonic anhydrase activity in the lumen; uncatalysed conversion of HCO3? to CO2, even at the low pH of the lumen, is at least 300 times too slow to account for the rate of inorganic C acquisition. Carbonic anhydrase converts the HCO3? to CO2 at the lower pH maintained in the illuminated thylakoid lumen by the light-driven H+ pump, generating CO2 at 10 times or more the thylakoid HCO3? concentration. Efflux of this CO2 can suppress Rubisco oxygenase activity and stimulate carboxylase activity in the stroma. This mechanism differs from the widely accepted hypotheses in the required location of carbonic anhydrase, i.e. in the thylakoid lumen rather than the stroma or pyrenoid, and in the need for HCO3? influx to thylakoids. The capacity for anion (assayed as Cl?) entry by passive uniport reported for thylakoid membranes is adequate for the proposed mechanism; if the Cl? channel does not transport HCO3?, HCO3? entry could be by combination of the Cl? channel with a Cl? HCO3? antiporter. This mechanism is particularly appropriate for organisms which lack overt accumulation of total inorganic C in cells, but which nevertheless have the gas exchange characteristics of an organism with a CO2-concentrating mechanism.  相似文献   

9.
Proton motive force (pmf), established across the thylakoid membrane by photosynthetic electron transfer, functions both to drive the synthesis of ATP and initiate processes that down-regulate photosynthesis. At the same time, excessively low lumen pH can lead to the destruction of some lumenal components and sensitization of the photosynthetic apparatus to photoinhibition. Therefore, in order to understand the energy budget of photosynthesis, its regulation and responses to environmental stresses, it is essential to know the magnitude of pmf, its distribution between pH and the electric field () as well as the relationships between these parameters and GATP, and down-regulatory and inhibitory processes. We review past estimates of lumen pH and propose a model that can explain much of the divergent data in the literature. In this model, in intact plants under permissive conditions, photosynthesis is regulated so that lumen pH remains mod erate (between 5.8 and 6.5), where it modulates the activity of the violaxanthin deepoxidase, does not significantly restrict the turnover of the cytochrome b6f complex, and does not destabilize the oxygen evolving complex. Only under stressed conditions, where light input exceeds the capacity of both photosynthesis and down-regulatory processes, does lumen pH decrease below 5, possibly contributing to photoinhibition. A value of n = 4 for the stoichiometry of protons pumped through the ATP synthase per ATP synthesized, and a minor contribution of to pmf, will allow moderate lumen pH to sustain the observed levels of GATP.  相似文献   

10.
Triton X-100 solubilized thylakoids, isolated from Phaseolus vulgaris chloroplasts, degrade endogenous or exogenously added LHC II. The degradation, as monitored by immunodetection of the remaining LHC II after incubation at 37°C, is activated by Mg++ and inhibited by pCMB, EDTA, PMSF and benzamidine; the activity under high light conditions parallels chlorophyll photooxidation. The thylakoid-bound proteolytic activity is under phytochrome control. Etiolated plants pretreated by a white light pulse, and kept in the dark thereafter, show enhanced proteolytic activity, which follows rhythmical oscillations. On the other hand, chloramphenicol pretreatment of etiolated plants, prior to their transfer to continuous light, reduces the proteolytic activity against LHC II. The results suggest that the degradation involves a serine type protease, which depends on SH group(s), coded by the plastid genome; the protease action on LHC II is regulated by Mg++, phytochrome, the biological clock and chlorophyll accumulation in the thylakoid. The stroma lamellar fraction, separated from French press disrupted chloroplasts, exhibits higher activity towards exogenous LHC II than the grana fraction. The stroma of intact chloroplasts exhibits also high proteolytic activity, which is drastically reduced when the lysis medium is supplemented with cations. This suggests that the protease is bound mainly on stroma lamellae and peripheral granal membranes, its association to the membranes being possibly under cation control.Abbreviations CAP chloramphenicol - CL continuous light - LHC II light harvesting complex of Photosystem II  相似文献   

11.
In vitro assays for the import of proteins by isolated pea thylakoids have been refined and optimised with respect to (a) the method of thylakoid preparation, (b) the concentration of thylakoids in the import assay, and (c) the pH and temperature of the import assay. As a result, the 23 kDa and 16 kDa proteins of the photosynthetic oxygen-evolving complex are imported with efficiencies approaching 100%; import of the third oxygen-evolving complex protein is also observed, albeit with lower efficiencies. We have also demonstrated import of three further thylakoid proteins: plastocyanin, the CFoII subunit of the ATP synthase, and the photosystem I subunit, PSI-N, using this import assay. Import of plastocyanin, PSI-N and the 33 kDa oxygen-evolving complex protein subunit requires the presence of stromal extract whereas the other three proteins are efficiently imported in the absence of added soluble proteins. Import into isolated barley thylakoids was achieved under identical assay conditions, although with somewhat lower efficiency than into pea thylakoids.  相似文献   

12.
The possible activity of phospholipid transfer protein in stroma extracts from spinach leaf has been investigated. Stroma, prepared from purified intact chloroplasts, was dialyzed and passed through various chromatography columns. None of the protein fractions eluted was able to stimulate the transfer of phosphatidylglycerol (PG) or phosphatidylcholine (PC) from liposomes to mitochondria, suggesting the lack of phospholipid transfer protein in the stroma from mature spinach chloroplasts.  相似文献   

13.
经热预处理(湿度为25-45℃,部分实验为20-36℃,时间为5-10min)的菠菜(Spinacia oleracea L.)叶绿体。严重影响其能量转换的各步反应。(1)循环光合磷酸化速率随处理温度而下降。(2)类囊体膜上腺三磷酶失活。(3)光照诱导叶绿体的质子吸收减小;叶绿体的9-氨基吖啶(9-AA)荧光猝灭减弱,但加二环己基磷二亚胺(DC-CD)可以部分恢复9-AA荧光猝死。(4)叶绿体的延迟发光和△A515nm电色效应均出现明显变化。(5)免疫印迹反应结果表明,经45℃预处理叶绿体的膜上腺三磷酶出现解离,其α亚单位的蛋白量明显减少。(6)预处理温度超过33℃,叶绿体光系统Ⅰ介导的氧吸收速率也下降,在反应介质中加芥子碱可以部分恢复其氧吸收能力,就这些结果与膜透性变化、耦联因子复合物解离和自由基积累的关系进行了讨论。  相似文献   

14.
15.
Characterization of energy-transduction on the chloroplast thylakoid membranes from spinach (Spinacia oleracea L.) after thermal pretreatment was investigated. The related reactions of energy-transduction in chloroplasts were seriously affected by thermal pretreatment. The results were obtained as following: (1) The rate of cyclic photophosphorylation declined when the pretreatment temperature increased in the range of 25 to 45 ℃. (2) The thermal pretreatment led to a decrease of the activity of thylakoid membrane-bounded ATPase. (3) Proton uptake of chloroplasts and the fluorescence quenching of 9-aminoacridine (9-AA) in thylakoid membrane decreased after the thermal pretreatment, but addition of dicyclohexylcarbodiimide (DCCD) could partially restore the fluorescence quenching of 9-AA. (4) Both the rates of fast phase in electrochroism absorption change at 515 nm and the millisecond delayed light emission (ms-DLE) of chloroplast showed a progressive decrease upon raising the temperature of pretreatment. (5) Immunbloting analysis showed that the thermal pretreatment caused the changes of protein content and the electrophoresis mobility of thylakoid membrane-bound ATPase and its α-subunit. (6) If the temperature of pretreatment were higher than 33 ℃, oxygen uptake of PSⅠ -mediated in the samples was rapidly inhibited, but addition of sinapine into the reaction medium could partially restore the ability of oxygen uptake in the samples. These results are briefly discussed in relation to the change of permeability of thylakoid membranes, the dissociation of coupling factor complex as well as accumulation of the radicals in the thylakoid membranes after thermal pretreatment.  相似文献   

16.
The chloroplast is the site of photosynthesis and many other essential plant metabolic processes, and chloroplast development is an integral part of plant growth and development. Mutants defective in chloroplast development can display various color phenotypes including the intriguing virescence phenotype, which shows yellow/white coloration at the leaf base and greening toward the leaf tip. Through large scale genetic screens, we identified a series of new virescent mutants including virescent3-1 (vir3-1), vir4-1, and vir5-1 in Arabidopsis thaliana. We showed that VIR3 encodes a putative chloroplast metalloprotease by map-based cloning. Through site-directed mutagenesis, we showed that the conserved histidine 235 residue in the zinc binding motif HEAGH of VIR3 is indispensable for VIR3 accumulation in the chloroplast. The chloroplast localization of VIR3 was confirmed by the transient expression of VIR3-GFP in leaf protoplasts. Furthermore, taking advantage of transgenic lines expressing VIR3-FLAG, we demonstrated that VIR3 is an intrinsic thylakoid membrane protein that mainly resides in the stromal lamellae. Moreover, topology analysis using transgenic lines expressing a dual epitope-tagged VIR3 indicated that both the N and C termini of VIR3 are located in the stroma, and the catalytic domain of VIR3 is probably facing the stroma. Blue native gel analysis indicated that VIR3 is likely present as a monomer or part of a small complex in the thylakoid membrane. This work not only implicates VIR3 as a new factor involved in early chloroplast development but also provides more insight into the roles of chloroplast proteases in chloroplast biogenesis.  相似文献   

17.
We report the development of LumenP, a new neural network-based predictor for the identification of proteins targeted to the thylakoid lumen of plant chloroplasts and prediction of their cleavage sites. When used together with the previously developed TargetP predictor, LumenP reaches a significantly better performance than what has been recorded for previous attempts at predicting thylakoid lumen location, mostly due to a lower false positive rate. The combination of TargetP and LumenP predicts around 1.5%-3% of all proteins encoded in the genomes of Arabidopsis thaliana and Oryza sativa to be located in the lumen of the thylakoid.  相似文献   

18.
叶绿体遗传转人是近几年发展起来的新领域。本文主要介绍了叶绿体遗传转化的特点、基本原理和衣藻叶绿体遗传转化的方法与技术;  相似文献   

19.
Tissue-specific effects of low growth temperature on maize chloroplast thylakoid protein accumulation were analysed using immunocytology. Sections of leaves from plants grown at 25 and 14°C were probed with antibodies to specific chloroplast thylakoid proteins from the four major protein multisubunit complexes of the thylakoid membrane followed by fluorescein-conjugated goat anti-rabbit antibodies. At a normal growth temperature of 25°C, the 32 kDa D1 protein of the photosystem II reaction centre and the 33 kDa protein of the extrinsic oxygen-evolving complex of photosystem II are both accumulated to a greater degree in the mesophyll than in the bundle sheath chloroplasts. In contrast, subunit II of photosystem I, cytochrome f and the α- and β-subunits of ATP synthetase are predominant in the bundle sheath thylakoids at 25°C. A striking difference between the 25°C-grown and the 14°C-grown leaf tissue was the presence in the latter of (20–30%) cells whose chloroplasts apparently completely lack several of the thylakoid proteins. In plants grown at 14°C, the accumulation of the 33 kDa protein of the extrinsic oxygen-evolving complex of photosystem II was apparently unchanged, but other thylakoid proteins showed a significant reduction. The uneven distribution of proteins between the bundle sheath and mesophyll chloroplasts observed at 25°C was also maintained at 14°C. Reduction in the fluorescence at 14°C was manifested either as an overall reduction in the diffuse fluorescence across the chloroplast profiles or less frequently as a reduction to small discrete bodies of intense fluorescence. The significance of these results to low-temperature-induced reduction in the photosynthetic productivity of maize is discussed.  相似文献   

20.
Uzunova  A.N.  Popova  L.P. 《Photosynthetica》2000,38(2):243-250
Light and electron microscopy were used to relate histological and ultrastructural differences of barley leaves treated with different concentrations of salicylic acid (SA, 100 µM-1 mM). Light microscopy revealed that the thickness of all leaf tissue components decreased in SA-treated plants. The effect was most pronounced on the width of the adaxial epidermis and on the size of the bulliform cells. The chloroplast ultrastructure was also affected by SA treatment. Swelling of grana thylakoids in various degrees, coagulation of the stroma, and increase in chloroplast volume were observed. 1 mM SA caused a vast destruction of the whole plastid structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号