首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feschotte C  Swamy L  Wessler SR 《Genetics》2003,163(2):747-758
Stowaway is a superfamily of miniature inverted repeat transposable elements (MITEs) that is widespread and abundant in plant genomes. Like other MITEs, however, its origin and mode of amplification are poorly understood. Several lines of evidence point to plant mariner-like elements (MLEs) as the autonomous partners of the nonautonomous Stowaway MITEs. To better understand this relationship, we have taken advantage of the nearly complete genome sequences of two rice subspecies to generate the first inventory of virtually all MLEs and Stowaway families coexisting in a single plant species. Thirty-four different MLEs were found to group into three major clades and 25 families. More than 22,000 Stowaway MITEs were identified and classified into 36 families. On the basis of detailed sequence comparisons, MLEs were confirmed to be the best candidate autonomous elements for Stowaway MITEs. Surprisingly, however, sequence similarity between MLE and Stowaway families was restricted to the terminal inverted repeats (TIRs) and, in a few cases, to adjacent subterminal sequences. These data suggest a model whereby most of the Stowaway MITEs in rice were cross-mobilized by MLE transposases encoded by distantly related elements.  相似文献   

2.
Tnr1 (235 bp long) is a transposable element in rice. Polymerase chain reactions (PCRs) done with a primer(s) that hybridizes to terminal inverted repeat sequences (TIRs) of Tnr1 detected new Tnr1 members with one or two insertions in rice genomes. Six identified insertion sequences (Tnr4, Tnr5, Tnr11, Tnr12, Tnr13 and RIRE9) did not have extensive homology to known transposable elements, rather they had structural features characteristic of transposable elements. Tnr4 (1767 bp long) had imperfect 64-bp TIRs and appeared to generate duplication of a 9-bp sequence at the target site. However, the TIR sequences were not homologous to those of known transposable elements, indicative that Tnr4 is a new transposable element. Tnr5 (209 bp long) had imperfect 46-bp TIRs and appeared to generate duplication of sequence TTA like that of some elements of the Tourist family. Tnr11 (811 bp long) had 73-bp TIRs with significant homology to those of Tnr1 and Stowaway and appeared to generate duplication of sequence TA, indicative that Tnr11 is a transposable element of the Tnr1/Stowaway family. Tnr12 (2426 bp long) carried perfect 9-bp TIRs, which began with 5'-CACTA- -3' from both ends and appeared to generate duplication of a 3-bp target sequence, indicative that Tnr12 is a transposable element of the En/Spm family. Tnr13 (347 bp long) had 31-bp TIRs and appeared to generate duplication of an 8-bp target sequence. Two sequences, one the transposon-like element Crackle, had partial homology in the Tnr13 ends. All five insertions appear to be defective elements derived from autonomous ones encoding the transposase gene. All had characteristic tandem repeat sequences which may be recognized by transposase. The sixth insertion sequence, named RIRE9 (3852 bp long), which begins with 5'-TG- -3' and ends with 5'- -CA-3', appeared to generate duplication of a 5-bp target sequence. These and other structural features indicate that this insertion is a solo LTR (long terminal repeat) of a retrotransposon. The transposable elements described above could be identified as insertions into Tnr1, which do not deleteriously affect the growth of rice cells.  相似文献   

3.
The genomes of plants, like virtually all other eukaryotic organisms, harbor a diverse array of mobile elements, or transposons. In terms of numbers, the predominant type of transposons in many plants is the miniature inverted-repeat transposable element (MITE). There are three archetypal MITEs, known as Tourist, Stowaway, and Emigrant, each of which can be defined by a specific terminal inverted-repeat (TIR) sequence signature. Although their presence was known for over a decade, only recently have open reading frames (ORFs) been identified that correspond to putative transposases for each of the archetypes. We have identified two Stowaway elements that encode a putative transposase and are similar to members of the previously characterized IS630-Tc1-mariner superfamily. In this report, we provide a high-resolution phylogenetic analysis of the evolutionary relationship between Stowaway, Emigrant, and members of the IS630-Tc1-mariner superfamily. We show that although Emigrant is closely related to the pogo-like family of elements, Stowaway may represent a novel family. Integration of our results with previously published data leads to the conclusion that the three main types of MITEs have different evolutionary histories despite similarity in structure.  相似文献   

4.
Transposable elements are mobile DNA sequences that integrate into host genomes using diverse mechanisms with varying degrees of target site specificity. While the target site preferences of some engineered transposable elements are well studied, the natural target preferences of most transposable elements are poorly characterized. Using population genomic resequencing data from 166 strains of Drosophila melanogaster, we identified over 8,000 new insertion sites not present in the reference genome sequence that we used to decode the natural target preferences of 22 families of transposable element in this species. We found that terminal inverted repeat transposon and long terminal repeat retrotransposon families present clade-specific target site duplications and target site sequence motifs. Additionally, we found that the sequence motifs at transposable element target sites are always palindromes that extend beyond the target site duplication. Our results demonstrate the utility of population genomics data for high-throughput inference of transposable element targeting preferences in the wild and establish general rules for terminal inverted repeat transposon and long terminal repeat retrotransposon target site selection in eukaryotic genomes.  相似文献   

5.
We have investigated miniature inverted-repeat transposable elements (MITEs) of the Stowaway family and corresponding Mariner-like master elements that could potentially facilitate their mobilization in the genome of the garden pea (Pisum sativum L.). The population of pea Stowaway MITEs consists of 103-104 copies dispersed in the genome. Judging from a sequence analysis of 17 isolated Stowaway elements and their flanking genomic regions, the elements are relatively uniform in size and sequence and occur in the vicinity of genes as well as within repetitive sequences. Insertional polymorphism of several elements was detected among various Pisum accessions, suggesting they were still transpositionally active during diversification of these taxa. The identification of several Mariner-like elements (MLEs) harboring intact open reading frames, capable of encoding a transposase, further supports a recent mobilization of the Stowaway elements. Using transposase-coding sequences as a hybridization probe, we estimated that there are about 50 MLE sequences in the pea genome. Among the 5 elements sequenced, 3 distinct subfamilies showing mutual similarities within their transposase-coding regions, but otherwise diverged in sequence, were distinguished and designated as Psmar-1 to Psmar-3. The terminal inverted repeats (TIRs) of these MLE subfamilies differed in their homology to the TIRs of Stowaway MITEs. The homlogy ranged from 9 bp in Psmar-3 to 30 bp in Psmar-1, which corresponds to the complete Stowaway TIR sequence. Based on this feature, the Psmar-1 elements are believed to be the most likely candidates for the master elements of the Stowaway MITEs in pea.  相似文献   

6.
A novel family of miniature inverted repeat transposable elements (MITEs) named Pony was discovered in the yellow fever mosquito, Aedes aegypti. It has all the characteristics of MITEs, including terminal inverted repeats, no coding potential, A+T richness, small size, and the potential to form stable secondary structures. Past mobility of PONY: was indicated by the identification of two Pony insertions which resulted in the duplication of the TA dinucleotide targets. Two highly divergent subfamilies, A and B, were identified in A. aegypti based on sequence comparison and phylogenetic analysis of 38 elements. These subfamilies showed less than 62% sequence similarity. However, within each subfamily, most elements were highly conserved, and multiple subgroups could be identified, indicating recent amplifications from different source genes. Different scenarios are presented to explain the evolutionary history of these subfamilies. Both subfamilies share conserved terminal inverted repeats similar to those of the Tc2 DNA transposons in Caenorhabditis elegans, indicating that Pony may have been borrowing the transposition machinery from a Tc2-like transposon in mosquitoes. In addition to the terminal inverted repeats, full-length and partial subterminal repeats of a sequence motif TTGATTCAWATTCCGRACA represent the majority of the conservation between the two subfamilies, indicating that they may be important structural and/or functional components of the Pony elements. In contrast to known autonomous DNA transposons, both subfamilies of PONY: are highly reiterated in the A. aegypti genome (8,400 and 9, 900 copies, respectively). Together, they constitute approximately 1. 1% of the entire genome. Pony elements were frequently found near other transposable elements or in the noncoding regions of genes. The relative abundance of MITEs varies in eukaryotic genomes, which may have in part contributed to the different organizations of the genomes and reflect different types of interactions between the hosts and these widespread transposable elements.  相似文献   

7.
Yu Z  Wright SI  Bureau TE 《Genetics》2000,156(4):2019-2031
While genome-wide surveys of abundance and diversity of mobile elements have been conducted for some class I transposable element families, little is known about the nature of class II transposable elements on this scale. In this report, we present the results from analysis of the sequence and structural diversity of Mutator-like elements (MULEs) in the genome of Arabidopsis thaliana (Columbia). Sequence similarity searches and subsequent characterization suggest that MULEs exhibit extreme structure, sequence, and size heterogeneity. Multiple alignments at the nucleotide and amino acid levels reveal conserved, potentially transposition-related sequence motifs. While many MULEs share common structural features to Mu elements in maize, some groups lack characteristic long terminal inverted repeats. High sequence similarity and phylogenetic analyses based on nucleotide sequence alignments indicate that many of these elements with diverse structural features may remain transpositionally competent and that multiple MULE lineages may have been evolving independently over long time scales. Finally, there is evidence that MULEs are capable of the acquisition of host DNA segments, which may have implications for adaptive evolution, both at the element and host levels.  相似文献   

8.
The mode of transposition of miniature inverted-repeat transposable elements (MITEs) is unknown, but it has been suggested that they are duplicated rather than excised at transposition. However, the present investigation demonstrates that a particular family of MITEs, Stowaway:, is excised. Mapped onto a gene tree based on partial sequences of disrupted meiotic cDNA1 (DMC1) from 30 species of the Triticeae grasses, it is evident that at least two excisions have occurred, leaving short footprints. These footprints may subsequently be reduced in length or deleted. Excision of Stowaway: elements lends strong support to the suggestion that MITEs are DNA transposons and should be classified as class II elements. The evolution of Stowaway: elements can also be traced by scrutiny of the gene tree. It appears that base substitutions are as frequent in the conserved terminal inverted repeats (TIRs) as in the core of the element. Neither substitutions nor deletions lead to compensatory changes; hence, the highly stable secondary structure of the elements may gradually be reduced.  相似文献   

9.
The complete nucleotide sequence of insertion element IS492, which causes reversible inactivation of extracellular polysaccharide production in the marine bacterium Pseudomonas atlantica, is presented. Insertion of IS492 results in the EPS- phenotype, and excision results in restoration of EPS+. DNA sequencing of the site of insertion in the eps locus showed that insertion of IS492 generates a 5-base-pair repeat and that its excision is precise. IS492 is 1,202 nucleotides in length and contains one large open reading frame encoding a protein of 318 amino acids, a candidate for transposition function. No similarity between IS492 and other transposable elements has been found. Unlike the situation with other insertion sequences, no direct or inverted repeats exist at the termini of IS492.  相似文献   

10.
The wx-B2 mutation results from a 128-bp transposable element-like insertion in exon 11 of the maize Waxy gene. Surprisingly, 11 maize genes and one barley gene in the GenBank and EMBL data bases were found to contain similar elements in flanking or intron sequences. Members of this previously undescribed family of elements, designated Tourist, are short (133 bp on average), have conserved terminal inverted repeats, are flanked by a 3-bp direct repeat, and display target site specificity. Based on estimates of repetitiveness of three Tourist elements in maize genomic DNA, the copy number of the Tourist element family may exceed that of all previously reported eukaryotic inverted repeat elements. Taken together, our data suggest that Tourist may be the maize equivalent of the human Alu family of elements with respect to copy number, genomic dispersion, and the high frequency of association with genes.  相似文献   

11.
In plants, the genome of the host responds to the amplification of transposable elements (TEs) with DNA methylation. However, neither the factors involved in TE methylation nor the dynamics of the host-TE interaction are well resolved. Here, we identify 5,522 long terminal repeat retrotransposons (LTR-RT) in the genome of Oryza sativa ssp. japonica and then assess methylation for individual elements. Our analyses uncover three strong trends: long LTR-RTs are more highly methylated, the insertion times of LTR-RTs are negatively correlated with methylation, and young LTR-RTs tend to be closer to genes than older insertions. Additionally, a phylogenetic examination of the gypsy-like LTR-RT superfamily revealed that methylation is phylogenetically correlated. Given these observations, we present a model suggesting that the phylogenetic correlation among related LTR-RTs is a primary mechanism driving methylation. In this model, bursts of transposition produce new elements with high sequence similarity. The host machinery identifies proliferating elements as well as closely related LTR-RTs through cross-homology. In addition, our data are consistent with previous hypotheses that methylated LTR-RT elements are removed preferentially from regions near genes, explaining some of the observed age distribution.  相似文献   

12.
Abstract While genome sequencing projects have discovered numerous types of transposable elements in diverse eukaryotes, there are many taxa of ecological and evolutionary significance that have received little attention, such as the molluscan class Bivalvia. Examination of a 0.7-MB genomic sequence database from the cupped oyster Crassostrea virginica revealed the presence of a common interspersed element, CvA. CvA possesses subterminal inverted repeats, a tandemly repeated core element, a tetranucleotide microsatellite region, and the ability to form stable secondary structures. Three other less abundant repetitive elements with a similar structure but little sequence similarity were also found in C. virginica. Ana-1, a repetitive element with similar features, was discovered in the blood ark Anadara trapezia by probing a genomic library with a dimeric repeat element contained in intron 2 of a minor globin gene in that species. All of these elements are flanked by the dinucleotide AA, a putative target-site duplication. They exhibit structural similarity to the sea urchin Tsp family and Drosophila SGM insertion sequences; in addition, they possess regions of sequence similarity to satellite DNA from several bivalve species. We suggest that the Crassostrea repetitive elements and Ana-1 are members of a new MITE-like family of nonautonomous transposable elements, named pearl. Pearl is the first putative nonautonomous DNA transposon to be identified in the phylum Mollusca.  相似文献   

13.
A few foldback (FB) transposable elements have, between their long terminal inverted repeats, central loop sequences which have been shown to be different from FB inverted repeat sequences. We have investigated loop sequences from two such FB elements by analyzing their genomic distribution and sequence conservation and, in particular, by determining if they are normally associated with FB elements. One of these FB loop sequences seems to be present in a few conserved copies found adjacent to FB inverted repeat sequences, suggesting that it represents an integral component of some FB elements. The other loop sequence is less well-conserved and not usually associated with FB inverted repeats. This sequence is a member of another family of transposable elements, the HB family, and was found inserted in an FB element only by chance. We compare the complete DNA sequences of two HB elements and examine the ends of four HB elements.  相似文献   

14.
Summary The molecular cloning and nucleotide sequence of elements from potato and pepper that are related to the recently identified Tst1 element are described. Sequence analysis reveals considerable conservation of sequences internal to both the Tst1 element and two of the related elements identified here. In six potato clones analysed, the II by inverted repeat first identified in the Tst1 element is conserved. Several of the elements are flanked by an 8 by direct repeat. DNA fragments which were amplified from several pepper genomes by polymerase chain reaction (PCR) amplification using the inverted repeat as sequence primers also display considerable conservation of sequences internal to the Tst1 element. These data further support the possibility that Tst1 is a non-autonomous transposable element and that Tst1 might be the first example of a transposable element which occurs in several genera of solanaceous plants.  相似文献   

15.
16.
S A Khan  R P Novick 《Plasmid》1980,4(2):148-154
The erythromycin resistance determinant of Staphylococcus aureus plasmid pI258 resides on a 5.3 kb transposon, Tn551. We have determined DNA sequences surrounding the junctions between the transposon and the flanking DNA in the wild-type plasmid, in an insertion into a second plasmid, and in two transposon-related deletions. The ends of the transposon consist of an inverted repeat of 40 base pairs flanked by a direct repeat of 5, thus placing the transposon in the same class as Tn3, IS2, Tn501, gamma delta, and bacteriophage Mu. Interestingly, we find that the terminal sequences of the 40 base pairs inverted repeat are very similar to the ends of Tn3, a transposon which one would not have expected to show any relation to Tn551. This result suggests common ancestry for Tn3 and Tn551. The inverted repeat sequence of Tn551 also contains (with one additional inserted base) the internal heptanucleotide sequence which has been found to be common to most of the transposable elements that generate 5-base pair direct repeat sequences.  相似文献   

17.
By Northern blot analysis of nitrate reductase-deficient mutants of Nicotiana plumbaginifolia, we identified a mutant (mutant D65), obtained after γ-ray irradiation of protoplasts, which contained an insertion sequence in the nitrate reductase (NR) mRNA. This insertion sequence was localized by polymerase chain reaction (PCR) in the first exon of NR and was also shown to be present in the NR gene. The mutant gene contained a 565 by insertion sequence that exhibits the sequence characteristics of a transposable element, which was thus named dTnp1. The dTnp1 element has 14 by terminal inverted repeats and is flanked by an 8-bp target site duplication generated upon transposition. These inverted repeats have significant sequence homology with those of other transposable elements. Judging by its size and the absence of a long open reading frame, dTnp1 appears to represent a defective, although mobile, transposable element. The octamer motif TTTAGGCC was found several times in direct orientation near the 5′ and 3′ ends of dTnp1 together with a perfect palindrome located after the 5′ inverted repeat. Southern blot analysis using an internal probe of dTnp1 suggested that this element occurs as a single copy in the genome of N. plumbaginifolia. It is also present in N. tabacum, but absent in tomato or petunia. The dTnp1 element is therefore of potential use for gene tagging in Nicotiana species.  相似文献   

18.
19.
C C Chu  A J Clark 《Plasmid》1989,22(3):260-264
The composite transposable element Tn5, which is made up of two inverted IS50 elements surrounding genes encoding drug resistance, generally generates 9-bp duplications at the site of insertion. In our studies of three Tn5 insertion mutants at one location in the Escherichia coli chromosome, we have observed that one contains a duplication of 10 bp, while the other two have the usual 9-bp duplication. Three other insertion elements, IS1, IS4, and IS186, give variable-sized target site sequence duplications. We observed a similarity of amino acid sequence in a small region of the putative transposases among IS4, IS186, and Tn5 suggesting a conservation of function in this group of transposases.  相似文献   

20.
Survey of transposable elements from rice genomic sequences   总被引:27,自引:0,他引:27  
Oryza sativa L. (domesticated rice) is a monocotyledonous plant, and its 430 Mb genome has been targeted for complete sequencing. We performed a high-resolution computer-based survey for transposable elements on 910 Kb of rice genomic DNA sequences. Both class I and II transposable elements were present, contributing 19.9% of the sequences surveyed. Class II elements greatly outnumbered class I elements (166 versus 22), although class I elements made up a greater percentage (12.2% versus 6.6%) of nucleotides surveyed. Several Mutator-like elements (MULEs) were identified, including rice elements that harbor truncated host cellular genes. MITEs (miniature inverted-repeat transposable elements) account for 71.6% of the mined transposable elements and are clearly the predominant type of transposable element in the sequences examined. Moreover, a putative Stowaway transposase has been identified based on shared sequence similarity with the mined MITEs and previously identified plant mariner-like elements (MLEs). Members of a group of novel rice elements resembling the structurally unusual members of the Basho family in Arabidopsis suggest a wide distribution of these transposons among plants. Our survey provides a preview of transposable element diversity and abundance in rice, and allows for comparison with genomes of other plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号