首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TPX2 is a Ran-regulated spindle assembly factor that is required for kinetochore fiber formation and activation of the mitotic kinase Aurora A. TPX2 is enriched near spindle poles and is required near kinetochores, suggesting that it undergoes dynamic relocalization throughout mitosis. Using photoactivation, we measured the movement of PA-GFP-TPX2 in the mitotic spindle. TPX2 moves poleward in the half-spindle and is static in the interzone and near spindle poles. Poleward transport of TPX2 is sensitive to inhibition of dynein or Eg5 and to suppression of microtubule flux with nocodazole or antibodies to Kif2a. Poleward transport requires the C terminus of TPX2, a domain that interacts with Eg5. Overexpression of TPX2 lacking this domain induced excessive microtubule formation near kinetochores, defects in spindle assembly and blocked mitotic progression. Our data support a model in which poleward transport of TPX2 down-regulates its microtubule nucleating activity near kinetochores and links microtubules generated at kinetochores to dynein for incorporation into the spindle.  相似文献   

2.
During cell division, a bipolar array of microtubules forms the spindle through which the forces required for chromosome segregation are transmitted. Interestingly, the spindle as a whole is stable enough to support these forces even though it is composed of dynamic microtubules, which are constantly undergoing periods of growth and shrinkage. Indeed, the regulation of microtubule dynamics is essential to the integrity and function of the spindle. We show here that a member of an important class of microtubule-depolymerizing kinesins, KLP10A, is required for the proper organization of the acentrosomal meiotic spindle in Drosophila melanogaster oocytes. In the absence of KLP10A, microtubule length is not controlled, resulting in extraordinarily long and disorganized spindles. In addition, the interactions between chromosomes and spindle microtubules are disturbed and can result in the loss of contact. These results indicate that the regulation of microtubule dynamics through KLP10A plays a critical role in restricting the length and maintaining bipolarity of the acentrosomal meiotic spindle and in promoting the contacts that the chromosomes make with microtubules required for meiosis I segregation.  相似文献   

3.
The interaction of kinetochores with dynamic microtubules during mitosis is essential for proper centromere motility, congression to the metaphase plate, and subsequent anaphase chromosome segregation. Budding yeast has been critical in the discovery of proteins necessary for this interaction. However, the molecular mechanism for microtubule-kinetochore interactions remains poorly understood. Using live cell imaging and mutations affecting microtubule binding proteins and kinetochore function, we identify a regulatory mechanism for spindle microtubule dynamics involving Stu2p and the core kinetochore component, Ndc10p. Depleting cells of the microtubule binding protein Stu2p reduces kinetochore microtubule dynamics. Centromeres remain under tension but lack motility. Thus, normal microtubule dynamics are not required to maintain tension at the centromere. Loss of the kinetochore (ndc10-1, ndc10-2, and ctf13-30) does not drastically affect spindle microtubule turnover, indicating that Stu2p, not the kinetochore, is the foremost governor of microtubule dynamics. Disruption of kinetochore function with ndc10-1 does not affect the decrease in microtubule turnover in stu2 mutants, suggesting that the kinetochore is not required for microtubule stabilization. Remarkably, a partial kinetochore defect (ndc10-2) suppresses the decreased spindle microtubule turnover in the absence of Stu2p. These results indicate that Stu2p and Ndc10p differentially function in controlling kinetochore microtubule dynamics necessary for centromere movements.  相似文献   

4.
Molecular motors are required for spindle assembly and maintenance during cell division. How motors move and interact inside spindles is unknown. Using photoactivation and photobleaching, we measure mitotic motor movement inside a dynamic spindle. We find that dynein–dynactin transports the essential motor Eg5 toward the spindle poles in Xenopus laevis egg extract spindles, revealing a direct interplay between two motors of opposite directionality. This transport occurs throughout the spindle except at the very spindle center and at the spindle poles, where Eg5 remains stationary. The variation of Eg5 dynamics with its position in the spindle is indicative of position-dependent functions of this motor protein. Our results suggest that Eg5 drives microtubule flux by antiparallel microtubule sliding in the spindle center, whereas the dynein-dependent concentration of Eg5 outside the spindle center could contribute to parallel microtubule cross-linking. These results emphasize the importance of spatially differentiated functions of motor proteins and contribute to our understanding of spindle organization.  相似文献   

5.
The formation of a functional bipolar mitotic spindle is essential for genetic integrity. In human cells, the microtubule polymerase XMAP215/ch-Tog ensures spindle bipolarity by counteracting the activity of the microtubule-depolymerizing kinesin XKCM1/MCAK. Their antagonistic effects on microtubule polymerization confer dynamic instability on microtubules assembled in cell-free systems. It is, however, unclear if a similar interplay governs microtubule behavior in mammalian cells in vivo. Using real-time analysis of spindle assembly, we found that ch-Tog is required to produce or maintain long centrosomal microtubules after nuclear-envelope breakdown. In the absence of ch-Tog, microtubule assembly at centrosomes was impaired and microtubules were nondynamic. Interkinetochore distances and the lengths of kinetochore fibers were also reduced in these cells. Codepleting MCAK with ch-Tog improved kinetochore fiber length and interkinetochore separation but, surprisingly, did not rescue centrosomal microtubule assembly and microtubule dynamics. Our data therefore suggest that ch-Tog has at least two distinct roles in spindle formation. First, it protects kinetochore microtubules from depolymerization by MCAK. Second, ch-Tog plays an essential role in centrosomal microtubule assembly, a function independent of MCAK activity. Thus, the notion that the antagonistic activities of MCAK and ch-Tog determine overall microtubule stability is too simplistic to apply to human cells.  相似文献   

6.
The gamma-tubulin ring complex (gammaTuRC) is a large multi-protein complex that is required for microtubule nucleation from the centrosome. Here, we show that the GCP-WD protein (originally named NEDD1) is the orthologue of the Drosophila Dgrip71WD protein, and is a subunit of the human gammaTuRC. GCP-WD has the properties of an attachment factor for the gammaTuRC: depletion or inhibition of GCP-WD results in loss of the gammaTuRC from the centrosome, abolishing centrosomal microtubule nucleation, although the gammaTuRC is intact and able to bind to microtubules. GCP-WD depletion also blocks mitotic chromatin-mediated microtubule nucleation, resulting in failure of spindle assembly. Mitotic phosphorylation of GCP-WD is required for association of gamma-tubulin with the spindle, separately from association with the centrosome. Our results indicate that GCP-WD broadly mediates targeting of the gammaTuRC to sites of microtubule nucleation and to the mitotic spindle, which is essential for spindle formation.  相似文献   

7.
Microtubule dynamics are influenced by interactions of microtubules with cellular factors and by changes in the primary sequence of the tubulin molecule. Mutations of yeast beta-tubulin C354, which is located near the binding site of some antimitotic compounds, reduce microtubule dynamicity greater than 90% in vivo and in vitro. The resulting intrinsically stable microtubules allowed us to determine which, if any, cellular processes are dependent on dynamic microtubules. The average number of cytoplasmic microtubules decreased from 3 in wild-type to 1 in mutant cells. The single microtubule effectively located the bud site before bud emergence. Although spindles were positioned near the bud neck at the onset of anaphase, the mutant cells were deficient in preanaphase spindle alignment along the mother-bud axis. Spindle microtubule dynamics and spindle elongation rates were also severely depressed in the mutants. The pattern and extent of cytoplasmic microtubule dynamics modulation through the cell cycle may reveal the minimum dynamic properties required to support growth. The ability to alter intrinsic microtubule dynamics and determine the in vivo phenotype of cells expressing the mutant tubulin provides a critical advance in assessing the dynamic requirements of an essential gene function.  相似文献   

8.
To assemble mitotic spindles, cells nucleate microtubules from a variety of sources including chromosomes and centrosomes. We know little about how the regulation of microtubule nucleation contributes to spindle bipolarity and spindle size. The Aurora A kinase activator TPX2 is required for microtubule nucleation from chromosomes as well as for spindle bipolarity. We use bacterial artificial chromosome-based recombineering to introduce point mutants that block the interaction between TPX2 and Aurora A into human cells. TPX2 mutants have very short spindles but, surprisingly, are still bipolar and segregate chromosomes. Examination of microtubule nucleation during spindle assembly shows that microtubules fail to nucleate from chromosomes. Thus, chromosome nucleation is not essential for bipolarity during human cell mitosis when centrosomes are present. Rather, chromosome nucleation is involved in spindle pole separation and setting spindle length. A second Aurora A-independent function of TPX2 is required to bipolarize spindles.  相似文献   

9.
Mitotic Aurora-A kinase was found to be required for formation of bipolar spindle, ensuring accurate chromosome segregation in mitosis. Recently, Aurora-A was shown to promote Ran-GTP-induced spindle formation and astral microtubule development. Here, by selective immunodepletion, we showed that Aurora-A was required for centrosome- but not Ran-GTP-induced astral microtubule formation in Xenopus egg extracts. Aurora-A enhanced microtubule polymerization in both centrosome- and Ran-GTP-induced aster assemblies: shortening the timing of aster assembly and increasing the aster size. Indeed, adding of Aurora-A protein alone induced microtubule clustering, which was abrogated by Aurora kinase inhibitory small molecule ZM447439. In addition, we showed that Aurora-A was indispensable for Ran-GTP-induced bipolar spindle formation. Inhibition of Aurora-A activity by adding of kinase inactive dominant mutant led to spindle collapse and formation of monopolar spindle whereas minus-end motor protein dynein/dynactin inhibitor p50/dynamitin rescued the bipolar structure. Lastly, we revealed that Aurora-A was necessary for microtubule poleward flux and this requirement depended on kinase activity. Thus, we showed that Aurora-A promoted microtubule polymerization and maintained microtubule flux in ensuring proper bipolar spindle assembly.  相似文献   

10.
The mitotic spindle contains the machinery responsible for sister chromatid segregation. It is composed of a complex and dynamic array of microtubules, which are nucleated from the spindle poles. Studies of yeast spindle functions by molecular genetic analysis and by in vitro functional analysis have identified proteins that are mitosis-specific and present at very low concentrations in the cell, and have revealed the molecular bases of several processes required for the formation and functioning of the mitotic spindle. Here I review the current knowledge of the processes that are common to most eukaryotes: microtubule nucleation at the spindle poles, bipolar spindle assembly, maintenance of the spindle structure, chromosome attachment to the spindle and chromosome separation on the spindle.  相似文献   

11.
Xklp1 is a chromosome-associated kinesin required for Xenopus early embryonic cell division. Function blocking experiments in Xenopus egg extracts suggested that it is required for spindle assembly. We have reinvestigated Xklp1 function(s) by monitoring spindle assembly and microtubule behavior under a range of Xklp1 concentrations in egg extracts. We found that in the absence of Xklp1, bipolar spindles form with a reduced efficiency and display abnormalities associated with an increased microtubule mass. Likewise, centrosomal asters assembled in Xklp1-depleted extract show an increased microtubule mass. Conversely, addition of recombinant Xklp1 to the extract reduces the microtubule mass associated with spindles and asters. Our data suggest that Xklp1 affects microtubule polymerization during M-phase. We propose that these attributes, combined with Xklp1 plus-end directed motility, contribute to the assembly of a functional bipolar spindle.  相似文献   

12.
BACKGROUND: The regulated assembly of microtubules is essential for bipolar spindle formation. Depending on cell type, microtubules nucleate through two different pathways: centrosome-driven or chromatin-driven. The chromatin-driven pathway dominates in cells lacking centrosomes. RESULTS: Human RHAMM (receptor for hyaluronic-acid-mediated motility) was originally implicated in hyaluronic-acid-induced motility but has since been shown to associate with centrosomes and play a role in astral spindle pole integrity in mitotic systems. We have identified the Xenopus ortholog of human RHAMM as a microtubule-associated protein that plays a role in focusing spindle poles and is essential for efficient microtubule nucleation during spindle assembly without centrosomes. XRHAMM associates both with gamma-TuRC, a complex required for microtubule nucleation and with TPX2, a protein required for microtubule nucleation and spindle pole organization. CONCLUSIONS: XRHAMM facilitates Ran-dependent, chromatin-driven nucleation in a process that may require coordinate activation of TPX2 and gamma-TuRC.  相似文献   

13.
Fertilization and the cytoskeleton in the mouse   总被引:1,自引:0,他引:1  
The behaviour and roles of the microtubule network and the microfilaments following fertilization in the mouse oocyte are described. The microtubule network is organized by multiple microtubule organizing centres (MTOCs) and these play a major role in establishing spindle structure and pronuclear movement following fertilization; in contrast to sea urchin and frog eggs, the sperm centriole plays little part in organization of the post-fertilization spindle. The microfilaments are required for spindle rotation, polar body formation, certain changes in the egg cortex, and also for pronuclear movement. Influences of the chromosomes on microtubule and microfilament organisation are also discussed.  相似文献   

14.
We investigated the mechanism of poleward microtubule flux in the mitotic spindle by generating spindle subassemblies in Xenopus egg extracts in vitro and assaying their ability to flux by photoactivation of fluorescence and low-light multichannel fluorescence video-microscopy. We find that monopolar intermediates of in vitro spindle assembly (half-spindles) exhibit normal poleward flux, as do astral microtubule arrays induced by the addition of dimethyl sulfoxide to egg extracts in the absence of both chromosomes and conventional centrosomes. Immunodepletion of the kinesin-related microtubule motor protein Eg5, a candidate flux motor, suggests that Eg5 is not required for flux. These results suggest that poleward flux is a basic element of microtubule behavior exhibited by even simple self-organized microtubule arrays and presumably underlies the most elementary levels of spindle morphogenesis.  相似文献   

15.
Proper spindle orientation is required for asymmetric cell division and the establishment of complex tissue architecture. In the developing epidermis, spindle orientation requires a conserved cortical protein complex of LGN/NuMA/dynein-dynactin. However, how microtubule dynamics are regulated to interact with this machinery and properly position the mitotic spindle is not fully understood. Furthermore, our understanding of the processes that link spindle orientation during asymmetric cell division to cell fate specification in distinct tissue contexts remains incomplete. We report a role for the microtubule catastrophe factor KIF18B in regulating microtubule dynamics to promote spindle orientation in keratinocytes. During mitosis, KIF18B accumulates at the cell cortex, colocalizing with the conserved spindle orientation machinery. In vivo we find that KIF18B is required for oriented cell divisions within the hair placode, the first stage of hair follicle morphogenesis, but is not essential in the interfollicular epidermis. Disrupting spindle orientation in the placode, using mutations in either KIF18B or NuMA, results in aberrant cell fate marker expression of hair follicle progenitor cells. These data functionally link spindle orientation to cell fate decisions during hair follicle morphogenesis. Taken together, our data demonstrate a role for regulated microtubule dynamics in spindle orientation in epidermal cells. This work also highlights the importance of spindle orientation during asymmetric cell division to dictate cell fate specification.  相似文献   

16.
Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.  相似文献   

17.
The spindle is a microtubule-based structure that facilitates chromosome segregation during mitosis and meiosis. Spindle assembly from dynamic microtubule building blocks is a major challenge for the dividing cell and a process that critically requires microtubule motors. In this review we focus on the mechanisms by which microtubule motors shape the spindle. Specifically, we address how motors are thought to move and arrange microtubules to form the characteristic bipolar morphology shared by all eukaryotic spindles as well as motor-dependent mechanisms of microtubule length regulation.  相似文献   

18.
The production of RanGTP around chromosomes is crucial for spindle microtubule assembly in mitosis. Previous work has shown that hepatoma up-regulated protein (HURP) is a Ran target, required for microtubule stabilization and spindle organization. Here we report a detailed analysis of HURP function in Xenopus laevis mitotic egg extracts. HURP depletion severely impairs bipolar spindle assembly around chromosomes: the few spindles that do form show a significant decrease in microtubule density at the spindle midzone. HURP depletion does not interfere with microtubule growth from purified centrosomes, but completely abolishes microtubule assembly induced by chromatin beads or RanGTP. Simultaneous depletion of the microtubule destabilizer MCAK with HURP does not rescue the phenotype, demonstrating that the effect of HURP is not to antagonize the destabilization activity of MCAK. Although the phenotype of HURP depletion closely resembles that reported for TPX2 depletion, we find no evidence that TPX2 and HURP physically interact or that they influence each other in their effects on spindle microtubules. Our data indicate that HURP and TPX2 have nonredundant functions essential for chromatin-induced microtubule assembly.  相似文献   

19.
Proper microtubule organization is essential for cellular processes such as organelle positioning during interphase and spindle formation during mitosis. The fission yeast Schizosaccharomyces pombe presents a good model for understanding microtubule organization. We identify fission yeast ase1p, a member of the conserved ASE1/PRC1/MAP65 family of microtubule bundling proteins, which functions in organizing the spindle midzone during mitosis. Using fluorescence live cell imaging, we show that ase1p localizes to sites of microtubule overlaps associated with microtubule organizing centers at both interphase and mitosis. ase1Delta mutants fail to form overlapping antiparallel microtubule bundles, leading to interphase nuclear positioning defects, and premature mitotic spindle collapse. FRAP analysis revealed that interphase ase1p at overlapping microtubule minus ends is highly dynamic. In contrast, mitotic ase1p at microtubule plus ends at the spindle midzone is more stable. We propose that ase1p functions to organize microtubules into overlapping antiparallel bundles both in interphase and mitosis and that ase1p may be differentially regulated through the cell cycle.  相似文献   

20.
Nonredundant functions of Kinesin-13s during meiotic spindle assembly   总被引:3,自引:0,他引:3  
Spatiotemporal control of microtubule depolymerization during cell division underlies the construction and dynamics of mitotic and meiotic spindles. Owing to their potent ability to disassemble microtubules, Kinesin-13s constitute an important class of microtubule destabilizing factors. Unfertilized Xenopus eggs, similar to other metazoan cells, contain the prototypical Kinesin-13 MCAK as well as a second family member, XKIF2. Here, we compare the roles of MCAK and XKIF2 during spindle assembly in Xenopus extracts. We find that although MCAK and XKIF2 have similar localization and biochemical properties, XKIF2 is not required for spindle assembly and, further, cannot substitute for MCAK. Altering dosage of the two kinesins demonstrates that spindle length is exquisitely sensitive to MCAK concentration but not XKIF2 concentration. Finally, we demonstrate that the rate of poleward microtubule flux in Xenopus-extract spindles is unaffected by XKIF2 depletion and is only modestly sensitive to reduction of MCAK action. We suggest that, in contrast to models proposed for mammalian somatic cell and embryonic Drosophila spindles, Kinesin-13s do not play a central role in poleward flux by depolymerizing minus ends. Rather, MCAK, but not XKIF2, plays a central role in regulating dynamic instability of plus ends and controls spindle length by that mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号