首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV–visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.  相似文献   

2.
Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV–visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.  相似文献   

3.
A new ligand N-salicyloyl-N'-o-hydroxythiobenzhydrazide (H2Sotbh) forms complexes [Mn(HSotbh)2], [Fe(Sotbh-H)(H2O)2], [M(Sotbh)] [M=Co(II), Cu(II) and Zn(II)] and [Ni(Sotbh)(H(2)O)2], which were characterized by various physico-chemical techniques. M?ssbauer spectrum of [Fe(Sotbh-H)(H2O)2] reveals the quantum admixture of 5/2 and 3/2 spin-states. Mn(II), Cu(II) and Ni(II) complexes were observed to inhibit the growth of tumor in vitro, whereas, Fe(III), Co(II), Zn(II) complexes did not. In vivo administration of Mn(II), Cu(II) and Ni(II) resulted in prolongation of survival of tumor bearing mice. Tumor bearing mice administered with Mn(II), Cu(II) and Ni(II) complexes showed reversal of tumor growth associated induction of apoptosis in lymphocytes. The paper discusses the possible mechanisms and therapeutic implication of the H2Sotbh and its metal complexes in tumor regression and tumor growth associated immunosuppression.  相似文献   

4.
Potentiometric, visible, infrared, electron spin, and nuclear magnetic resonance studies of the complexation of N-(2-acetamido)iminodiacetic acid (H2ADA) by Ca(II), Mg(II), Mn(II), Zn(II), Co(II), Ni(II), and Cu(II) are reported. Ca(II) and Mg(II) were found not to form 2:1 ADA2- to M(II) complexes, while Mn(II), Cu(II), Ni(II), Zn(II), and Co(II) did form 2:1 metal chelates at or below physiological pH values. Co(II) and Zn(II), but not Cu(II), were found to induce stepwise deprotonation of the amide groups to form [M(H-1ADA)4-(2)]. Formation (affinity) constants for the various metal complexes are reported, and the probable structures of the various metal chelates in solution are discussed on the basis of various spectral data.  相似文献   

5.
Coordinately unsaturated Cu(II) and Fe(III) complexes of the stoichiometry [Cu(L)Cl] and [Fe(L)Cl2], where L=tridentate anion of 2-hydroxy-1,4-naphthoquinone 1-thiosemicarbazone (2HNQTSC) and its 3-methyl derivative (3M2HNQTSC), were screenedin vitro against P388 lymphocytic leukemia cells. Copper complexes were found to be more effective inhibitors of DNA synthesis than analogous Fe(III) compounds. The inhibitory activities are suggested to be related to Cu(II)–Cu(I) redox couple or nitrogen adduct formation.  相似文献   

6.
Metal ion (Mg(II), Ca(II), Zn(II), Cu(II), Ni(II)) complexes of nystatin and amphotericin B (polyene antibiotics) have been prepared as solids. The stoichiometry of the complexes has been established. IR, ESR investigation indicates the metal-ligating sites in the polyene molecules. The existence of such complexes is discussed in the light of polyene mode- of-action theories.  相似文献   

7.
The electrochemical behaviour in aprotic solvent of the complexes {M[bis-(2-hydroxy-l-naphthylideneimine-3-propyl)amine]}, where M = Mn(II), Co(II), Fe(II), Ni(II) and Cu(II) is reported. The complexes were prepared and characterized by elemental analysis, infrared and visible spectroscopy and magnetic susceptibility measurements. In addition the reactivity towards dioxygen of the Mn(II), Fe(II) and Co(II) derivatives was investigated, mainly by cyclic voltammetry and gas-volumetric uptake measurements. The results indicate that the Co(II) complexes are able to add dioxygen reversibly, while Mn(II) and Fe(II) compounds undergo an irreversible oxygenation process. The pathway of the dioxygenation processes is tentatively interpreted on the basis of the electrochemical responses. The results confirm that the location of the oxidation potential allows one to predict whether a compound is able to react with dioxygen, but it is not sufficient to predict whether the dioxygenation reaction proceeds reversibly.  相似文献   

8.
Twenty new bioactive complexes of Mn(III), Fe(III), Ni(II), Cu(II) and Zn(II) have been prepared containing Schiff bases of N,N-diethylaminodithio- carbamate as ligands. These complexes have been characterized by elemental analyses, IR and UV-Vis spectroscopy as well as by magnetic susceptibility measurements. The spectra of the complexes suggest that the ligands are coordinated to the metal ions via the sulfur atoms of the dithiocarbamato group.  相似文献   

9.
Reaction of the potent hydroxamate-based histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), with hydrated metal salts of Fe(III), Cu(II), Ni(II) and Zn(II) yielded a tris-hydroxamato complex in the case of Fe(III) and bis-hydroxamato complexes in the case of Cu(II), Ni(II) and Zn(II) both in the solid state and in solution. Reaction of the secondary hydroxamic acid, N-Me-SAHA, also yielded a tris-hydroxamato complex in the case of Fe(III) and bis-hydroxamato complexes in the case of Cu(II), Ni(II) and Zn(II) in solution. These metal complexes have the hydroxamato moiety coordinated in an O,O’-bidentate fashion. Stability constants of the metal complexes formed with SAHA and N-Me-SAHA in a DMSO/H2O 70/30%(v/v) mixture are described. A novel crystal structure of SAHA together with a novel synthesis for N-Me-SAHA are also reported.  相似文献   

10.
The synthesis of a new tetrapyridyl ligand, bis[di-1,1-(2-pyridyl)ethyl]amine (BDPEA), is described. Complexation of this ligand with manganese(II), iron(III) or copper(II) chlorides afforded mononuclear complexes: Mn(BDPEA)Cl2 (1) [Fe (BDPEA)Cl2]Cl (2) and [Cu(BDPEA)Cl]Cl (3). In all cases, BDPEA is coordinated to the metal center by three pyridine nitrogen atoms and the secondary amine. The geometrical environments around the metals in Mn(BDPEA)Cl2 and [Fe(BDPEA)Cl2]Cl are best described as distorted octahedrals and in [Cu (BDPEA)Cl]Cl as a slightly distorted square pyramid. The DNA cleavage activities of manganese(II), iron (III) or copper(II) complexes of both BDPEA and another tetrapyridyl ligand, bis[di(2-pyridyl) methyl]amine (BDPMA), in the presence of an oxidant (H2O2) or a reducing agent (ascorbate) with air, are reported. The iron(III) complexes exhibited significantly enhanced efficiencies, compared to copper(II) complexes. [Fe(BDPEA)Cl2]Cl is found to be the most active DNA cleaver, in agreement with a better stability of BDPEA in oxidizing conditions.  相似文献   

11.
Complexes of the type [M(bssdh)]Cl and [M(dspdh)]Cl, where M = Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); Hbssdh = benzil salicylaldehyde succinic acid dihydrazone, Hdspdh = diacetyl salicylaldehyde phthalic acid dihydrazone have been synthesized and characterized with the help of elemental analyses, electrical conductance, magnetic susceptibility measurements, electronic, ESR and IR spectra and X-ray diffraction studies. Magnetic moment values and electronic spectral transitions indicate a spin free octahedral structure for Co(II), Ni(II) and Cu(II) complexes. IR spectral studies suggest that both the ligands behave as monobasic hexadentate ligands coordinating through three > C = O, two > C = N- and a phenolate group to the metal. ESR spectra of Cu(II) complexes are axial type and suggest d(x(2)-y(2)) as the ground state. X-ray powder diffraction parameters for [Co(bssdh)]Cl and [Co(dspdh)]Cl complexes correspond to an orthorhombic crystal lattice. The ligands as well as their metal complexes show a significant antifungal and antibacterial activity against various fungi and bacteria. The metal complexes are more active than the parent ligands.  相似文献   

12.
The acid-base and coordination properties towards Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) of four polyamino-phenol macrocycles 15-hydroxy-3,6,9-triazabicyclo[9.3.1]pentadeca-11,13,115-triene L1, 18-hydroxy-3,6,9,12-tetraazabicyclo[12.3.1]octadeca-14,16,118-triene L2, 21-hydroxy-3,6,9,12,15-pentaazabicyclo[15.3.1]enaicosa-17,19,121-triene L3 and 24-hydroxy-3,6,9,12,15,18-hexaazabicyclo[18.3.1]tetraicosa-20,22,124-triene L4 are reported. The protonation and stability constants were determined by means of potentiometric measurements in 0.15 mol dm−3 NMe4Cl aqueous solution at 298.1 K. L1 forms highly unsaturated Co(II), Cu(II), Zn(II) and Cd(II) mononuclear complexes that are prone to give dimeric dinuclear species with [(MH−1L1)2]2+ stoichiometry, in solution. L2 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes that can coordinate external species as OH anion, giving hydroxylated complexes at alkaline pH. L3 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes and Co(II), Ni(II), Cu(II) and Zn(II) dinuclear [M2H−1L3]3+ species. L4 forms stable mono- and dinuclear Co(II), Cu(II), Zn(II) and Cd(II) complexes, but only mononuclear species with Pb(II). The effect of macrocyclic size is considered in the discussion of results.  相似文献   

13.
Stoichiometry, kinetics, and optical properties of rabbit muscle pyruvate kinase activated with Co(II), Ni(II), Mg(II), and Mn(II) were studied. The stoichiometry of metal binding to enzyme was found to be 4 metal ions per tetrameric enzyme for Co(II) and Ni(II) by carrying out circular dichroic titrations. Cu(II) and Fe(II) were inactive. Ca(II) and Zn(II) were not activating, and were inhibitory with respect to all of the active cations. The temperature dependence of the optimal velocity is similar for all activating metals. The pH rate profiles suggest that there are two classes of enzyme activation by metal ions. Mg(II) and Mn(II) are quite similar to each other while Co(II) and Ni(II) are different from them but similar to each other. Absorption, natural, and magnetic CD in the visible region were used to probe the environment of the activating divalent cation in Ni(II)- and Co(II)-activated pyruvate kinase and their complexes with substrates and inhibitors...  相似文献   

14.
Complexes of the type [M(pabh)(H2O)Cl], [M(pcbh)(H2O)Cl] and [M(Hpabh)(H2O)2 (SO4)] where, M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); Hpabh = p-amino acetophenone benzoyl hydrazone and Hpcbh = p-chloro acetophenone benzoyl hydrazone have been synthesized and characterized with the help of elemental analyses, electrical conductance, magnetic susceptibility measurements, electronic, ESR and IR spectra, thermal (TGA & DTA) and X-ray diffraction studies. Co(II), Ni(II) and Cu(II) chloride complexes are square planar, whereas their sulfate complexes have spin-free octahedral geometry. ESR spectra of Cu(II) complexes with Hpabh are axial and suggest d(x(2)-y(2) as the ground state. The ligand is bidentate bonding through > C = N--and deprotonated enolate group in all the chloro complexes, whereas, >C = N and >C = O groups in all the sulfato complexes. Thermal studies (TGA & DTA) on [Cu(Hpabh)(H2O)2(SO4)] indicate a multistep decomposition pattern, which are both exothermic and endothermic in nature. X-ray powder diffraction parameters for [Co(pabh)(H2O)Cl] and [Ni(Hpabh)(H2O)2(SO4)] correspond to tetragonal and orthorhombic crystal lattices, respectively. The ligands as well as their complexes show a significant antifungal and antibacterial activity. The metal complexes are more active than the ligand.  相似文献   

15.
16.
Bi-nuclear complexes of 28- atom membered macrocycles derived from 2,6-diacetyl pyridine and the amines 3,3′-diamino dipropylamine or 3,3′-diamino-N-methyl dipropylamine have been prepared by template synthesis on Ag+ or Pb2+. Template synthesis can also be accomplished, in the case of 3,3′-diamino dipropylamine, but not its N-methyl derivative, on Gp(II) metal ions, with accompanying rearrangement of the macrocycle. All the complexes produced by template synthesis can be transmetallated with the first transition series metal ions M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) to give binuclear and in some cases, mononuclear, derivatives. The binuclear complexes show no evidence of magnetic exchange interaction from magnetic susceptibility measurements in the range 93-300 K. The cyclovoltammetric behaviour of mono- and bi-nuclear Fe(II) complexes is compared.  相似文献   

17.
Polyene complexes with Mg(II), Ca(II), Ni(II), Cu(II) and Zn(II) have been prepared and evaluated for biological activity in a flow microcalorimetric study. The bioactivities are all lower per g of complex than is the bioactivity of the patent polyene, nystatin. However extrapolation of the linear bioassay data suggests that because of enhanced solubilities the metal ion complexes may be able to yield higher overall bioactivity than can nystatin alone.  相似文献   

18.
Complexes of Mn(III), Fe(III), Fe(II), Co(III), Ni(II), Cu(II), Zn(II), and Pt(II) with S-methyl-N-(l-isoquinolyl) methylendithiocarbazate (N-N-SH) were isolated and characterized by elemental analysis, conductance measurement, magnetic susceptibilities, and spectroscopic studies. On the basis of these studies, a highly distorted, high-spin, chloro-bridged, polymeric octahedral structure for [Mn(N-N-S)Cl2]; a distorted, low-spin, monomeric octahedral structure for [Fe(N-N-S)2]; a distorted, high-spin, octahedral structure for [Ni(N-N-S)2]; and a square-planar structure for [M(N-N-S)X] (M = Ni, Cu, Pt or Zn and X = Cl- or -OAc) are suggested. With Fe(III), the complex [Fe(N-N-S)2][FeCl4] was isolated while the Co(II) was oxidized to yield the Co(III) ion as [Co(N-N-S)2]2[CoCl4]. All these complexes were screened for their antitumor activity against P 388 lymphocytic leukemia test system in mice. Except for Mn(III), Fe(III), and Co(III) complexes, all were found to possess significant activity; the Cu(II) and Zn(II) complexes showed a T/C% value of 160 and 195, respectively, at their optimum dosages.  相似文献   

19.
Vitamin K3-thiosemicarbazone (C12H11N3NaO4S2 x 5H2O, abbreviated as VT), a new Schiff base derivative, has been synthesized. Its crystal structure, determined by X-ray diffraction, is triclinic, space group P1. We have also prepared five novel complexes of VT with transition metals: [M(VT)(2)2H2O] x nH2O, (n = 1 and 2 for M = Cu(II) and Zn(II), respectively) and [M'(HVT)2Cl2] x mH2O, (m = 4, 5, and 7 for M' = Co(II), Mn(II), and Ni(II), respectively). These compounds were characterized by IR and UV-Vis spectroscopy, molar conductivity, thermal analyses, complexometric titration, and elemental analysis. In all the complexes, the VT ligand coordinates through sulfur and oxygen atoms, and the geometry around metal atom is best described as octahedral. In vitro tests of antibacterial activity showed that VT and its complexes with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) all had strong inhibitory actions against G(+) Staphylococcus aureus, G(+) Hay bacillus, and G(-) Escherichia coli.  相似文献   

20.
Complexes of the type [M(bssdh)]Cl and [M(dspdh)]Cl, where M = Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); Hbssdh = benzil salicylaldehyde succinic acid dihydrazone, Hdspdh = diacetyl salicylaldehyde phthalic acid dihydrazone have been synthesized and characterized with the help of elemental analyses, electrical conductance, magnetic susceptibility measurements, electronic, ESR and IR spectra and X–ray diffraction studies. Magnetic moment values and electronic spectral transitions indicate a spin free octahedral structure for Co(II), Ni(II) and Cu(II) complexes. IR spectral studies suggest that both the ligands behave as monobasic hexadentate ligands coordinating through three > C = O, two > C = N– and a phenolate group to the metal. ESR spectra of Cu(II) complexes are axial type and suggest as the ground state. X–ray powder diffraction parameters for [Co(bssdh)]Cl and [Co(dspdh)]Cl complexes correspond to an orthorhombic crystal lattice. The ligands as well as their metal complexes show a significant antifungal and antibacterial activity against various fungi and bacteria. The metal complexes are more active than the parent ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号