首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CPT-11 (irinotecan) and mainly its metabolite SN-38 are potent antitumor derivatives of camptothecin. As the active lactone forms of both CPT-11 and SN-38 exist in pH-dependent equilibrium with their respective less potent open-ring hydroxy acid species, the simultaneous monitoring of both forms of both compounds is relevant. CPT-11 and SN-38 derivatives have quite different fluorescence responses. In order to avoid any compromise on the wavelength setting, we developed chromatographic conditions allowing simple automated wavelength setting changes which have been prevented using existing methods involving conventional C18 columns. This was achieved by means of a Symmetry C18 column combined to a gradient elution program using acetonitrile and 75 mM ammonium acetate plus 7.5 mM tetrabutylammonium bromide at pH 6.4. The developed conditions allowed an elution order suitable for a simple automated wavelength change in respect to reliable peak integration. CPT-11 and SN-38 derivatives were detected at λex=362 nm/λem=425 nm and λex=375 nm/λem=560 nm, respectively. The developed method allowed the detection of amounts less than 3 pg of each derivative injected on column. The method was successfully applied to pharmacokinetic and toxicokinetic studies in rat and dog.  相似文献   

2.
CPT-11 {I; 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin} is a new anticancer agent currently under clinical development. A sensitive high-performance liquid chromatographic assay suitable for the simultaneous determination of I and its active metabolite SN-38 (II) in human plasma, and their preliminary clinical pharmacokinetics, are described. Plasma samples were processed using a solid-phase (C18) extraction step allowing mean recoveries of I, II and the internal standard camptothecin (III) of 84, 99 and 72%, respectively. The extracts were chromatographed on a C18 reversed-phase column with a mobile phase composed of acetonitrile, phosphate buffer and heptanesulphonic acid, with fluorescence detection. The calibration graphs were linear over a wide range of concentrations (1 ng/ml–10 μg/ml), and the lower limit of determination was 1 ng/ml for both I and II. The method showed good precision: the within-day relative standard deviation (R.S.D.) (5–1000 ng/ml) was 13.0% (range 4.9–19.4%) for I and 12.8% (6.7–19.1%) for II; the between-day R.S.D. (5–10 000 ng/ml was 7.9% (5.4–17.5%) for I and 9.7% (3.5–15.1%) for II. Using this assay, plasma pharmacokinetics of both I and II were simultaneously determined in three patients receiving 100 mg/m2 I as a 30-min intravenous infusion. The mean peak plasma concentration of I at the end of the intravenous infusion was 2400 ± 285 ng/ml (mean ± standard error of the mean). Plasma decay was triphasic with half-lives α, β and γ of 5.4 ± 1.8 min, 2.5 ± 0.5 h and 20.2 ± 4.6 h, respectively. The volume of distribution at steady state was 105 ± 15 l/m2, and the total body clearance was 12.5 ± 1.9 l/h · m2. The maximum concentrations of the active metabolite II reached 36 ± 11 ng/ml.  相似文献   

3.
A simplified method for the simultaneous determination of irinotecan (CPT-11, I) and its active metabolite (SN-38, II) in human plasma by high-performance liquid chromatography (HPLC) with fluorescence detection has been developed. Following the addition of the internal standard (I.S.) camptothecin, the drugs were extracted from plasma using methanol. The average extraction efficiencies were 87% for I, 90% for II and 90% for the I.S. Chromatography was performed using a TSK gel ODS-80Ts column, monitored at 556 nm (excitation wavelength, 380 nm) and the mobile phase was acetonitrile-50 mM disodium hydrogen phosphate (28:72) containing 5 mM heptanesulphonate (pH 3.0). The linear quantitation ranges for I and II were 30–2000 and 1–30 ng/ml, respectively.  相似文献   

4.
Sensitive high-performance liquid chromatographic assays have been develope to determine the levels of the lactone and lactone plus carboxylate (total) forms of the antitumor agent irinotecan (CPT-11) and its active metabolite SN-38, in human plasma. The related compound camptothecin was used as the internal standard. The selective sample pretreatment for the lactone forms involved a single solvent extraction with acetonitrile-n-butyl chloride (1:4,v/v), whereas the sample clean-up for the total forms was a simple protein precipitation with aqueous perchloric acid-methanol (1:1, v/v), which results in the conversion of the carboxylate to the lactone forms. Chromatography was carried out on a Hypersil ODS column, with detection performed fluorimetrically. The methods have been validated, and stability tests under various conditions have been performed. The lower limits of quantitation are 0.5 and 2.0 ng/ml for the lactone and total forms, respectively. The assays have been used in a single pharmacokinetic experiment in a patient to investigate the applicability of the method in vivo.  相似文献   

5.
Irinotecan (CPT-11) is an anticancer agent widely employed in the treatment of colorectal carcinoma. A simple, rapid and sensitive high-performance liquid chromatographic method for the simultaneous determination of CPT-11 and its metabolite SN-38 in plasma, and their preliminary clinical pharmacokinetics are described. Both deproteinisation of plasma specimens (100 μl) and addition of the internal standard, camptothecin (CPT), are achieved by incorporating to samples 100 μl of a solution of CPT (1 μg/ml) in acetonitrile–1 mM orthophosphoric acid (90:10); 200 μl of this acidified acetonitrile solution, drug-free, is also added to accomplish complete deproteinisation: this procedure reduces sample preparation time to a minimum. After deproteinisation, samples are treated with potassium dihydrogenphosphate (0.1 M) and injected into a Nucleosil C18 (5 μm, 250×4.0 mm) column. Mobile phase consists of potassium dihydrogenphosphate (0.1 M)–acetonitrile (67:33), at a flow-rate of 1 ml/min. CPT-11, SN-38 and CPT are detected by fluorescence with excitation wavelength set at 228 nm and emission wavelengths of CPT-11, SN-38 and CPT fixed, respectively, at 450, 543 and 433 nm. The limits of quantitation for CPT-11 and SN-38 are 1.0 and 0.5 ng/ml, respectively. This method shows good precision: the within day relative standard deviation (RSD) for CPT-11 (1–10 000 ng/ml) is 5.17% (range 2.15–8.27%) and for SN-38 (0.5–400 ng/ml) is 4.33% (1.32–7.78%); the between-day RSDs for CPT-11 and SN-38, in the previously described ranges, are 6.82% (5.03–10.8%) and 4.94% (2.09–9.30%), respectively. Using this assay, plasma pharmacokinetics of CPT-11, SN-38 and its glucuronidated form, SN-38G, have been determined in one patient receiving 200 mg/m2 of CPT-11 as a 90 min intravenous infusion. The peak plasma concentration of CPT-11 at the end of the infusion is 3800 ng/ml. Plasma decay is biphasic with a terminal half-life of 11.6 h. The volume of distribution at steady state (Vss) is 203 l/m2, and the total body clearance (Cl) is 14.8 l/h·m2. The maximum concentrations of SN-38 and SN-38G reach 28.9 and 151 ng/ml, respectively.  相似文献   

6.
A simple and sensitive HPLC method was developed to simultaneously determine CPT-11 and its major metabolite SN-38 in culture media and cell lysates. Camptothecin (CPT) was used as internal standard (I.S.). Compounds were eluted with acetonitrile-50 mM disodium hydrogen phosphate buffer containing 10 mM sodium 1-heptane-sulfonate, with the pH adjusted to 3.0 using 85% (w/v) orthophosphoric acid (27/73, v/v) by a Hyperclon ODS (C18) column (200 mm x 4.6 mm i.d.), with detection at excitation and emission wavelengths of 380 and 540 nm, respectively. The average extraction efficiencies were 96.9-108.3% for CPT-11 in culture media and 94.3-107.2% for CPT-11 in cell lysates; and 87.7-106.8% for SN-38 in culture media and 90.1-105.6% for SN-38 in cell lysates. Within- and between-day precision and accuracy varied from 0.1 to 10.3%. The limit of quantitation (precision and accuracy <20%) was 5.0 and 2.0 ng/ml for CPT-11 and 1.0 and 0.5 ng/ml for SN-38 in culture media and cell lysates, respectively. This method was successfully applied to quantitate the cellular accumulation and metabolism of CPT-11 and SN-38 in H4-II-E, a rat hepatoma cell line.  相似文献   

7.
A simple, sensitive and reliable method was developed to determine simultaneously the concentrations of thienorphine and its metabolite thienorphine glucuronide conjugate in rat plasma by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The metabolite was identified by MS: thienorphine glucuronide conjugate. Sample preparation involved protein precipitation with methanol. Analytes were separated on Finnigan BetaBasic-18 column (150 mm x 2.1mm i.d., 5 microm) using methanol: water: formic acid (56:44:0.1, v/v/v) as mobile phase at a flow rate of 0.2 ml/min. The method had a linear calibration curve over the concentration range of 0.1-50 ng/ml for thienorphine and 2-1000 ng/ml for thienorphine glucuronide conjugate, respectively. LOQ of thienorphine and thienorphine glucuronide conjugate was 0.1 and 2 ng/ml, respectively. The intra- and inter-batch precisions were less than 12% and their recoveries were greater than 80%. Pharmacokinetic data of thienorphine and its metabolite thienorphine glucuronide conjugate obtained with this method following a single oral dose of 3mg/kg thienorphine to rats were also reported for the first time.  相似文献   

8.
A simple restricted-access media (RAM) HPLC method for simultaneous determination of the lactone and carboxylate forms of 10-hydroxycamptothecin (HCPT) in human serum was established. Using a RAM Hisep analytical column, serum samples were directly injected into the HPLC system. The eluted peaks of two forms of HCPT were monitored with a fluorescence detector. The separation was completed in 17 min. The linear range was 20-1000 ng/ml, intra-day and inter-day variations being less than 5%. The kinetic equation was introduced according to the analytical results. The equation shows that the course of the HCPT lactone form converting to carboxylate form in human serum at 4 degrees C is a first-order kinetic course. The concentration of each form at the moment of sampling was calculated by extrapolation.  相似文献   

9.
A sensitive and stereoselective high-performance liquid chromatographic assay for the quantitative determination of the analgesic tramadol and O-demethyltramadol, an active metabolite, is described in this work. Ketamine was used as internal standard. The assay involved a single tert-butymethylether extraction and liquid chromatography analysis with fluorescence detection. Chromatography was performed at 20 degrees C on a Chiracel OD-R column containing cellulose tris-(3,5-dimethylphenylcarbamate) as stationary phase, preceded by an achiral end-capped C18 column. The mobile phase was a mixture of phosphate buffer (containing sodium perchlorate (0.2 M) and triethylamine (0.09 M) adjusted to pH 6) and acetonitrile (80:20). The method developed was validated. The limit of quantitation of each enantiomer of tramadol and its active metabolite by this method was 0.5 ng/mL; only 0.5 mL of the plasma sample was required for the determination. The calibration curve was linear from 0.5 to 750 ng/mL for tramadol enantiomers, and from 0.5 to 500 ng/mL for O-demethyltramadol enantiomers. Intra and interday precision [coefficient of variation (CV)] did not exceed 10%. Mean recoveries of 95.95 and 97.87% for (+)R,R- and (-)S,S-tramadol and 97.70 and 98.79% for (+)R,R- and (-)S,S-O-demethyltramadol with CVs < 2.15% were obtained. Applicability of the method was demonstrated by a pharmacokinetic study in normal volunteers who received 100 mg of tramadol by the intravenous route.  相似文献   

10.
Gemcitabine (dFdC) is a pyrimidine antimetabolite with broad spectrum activity against tumors. In this paper, a normal-phase high-performance liquid chromatographic method was developed for the determination of the parent drug (dFdC) and its metabolite (dFdU) in human plasma. The described sample preparation procedure for determination of dFdC and dFdU is rapid, sensitive, reproducible and simple. The linear regression equations obtained by least square regression method, were area under the curve=0.0371 concentration (ng ml(-1))+192.53 and 1.05.10(-4) concentration (ng ml(-1))-1.2693 for dFdC and dFdU, respectively. The assay for dFdC and dFdU described in the present report has been applied to plasma samples from a bladder cancer patient.  相似文献   

11.
A simple, rapid and reliable method was developed for the quantification of oxymatrine (OMT) and its metabolite matrine (MT) in beagle dog plasma using a liquid-liquid extraction procedure followed by liquid chromatography-electrospray ionization mass spectrometric (LC-ESI-MS) analysis. Extend-C18 column (2.1 mm i.d. x 50 mm, 5 microm) with a C18 guard column (2.1 mm i.d. x 12.5 mm) was used as the analytical column. Linear detection responses were obtained for OMT concentration ranging from 5 to 4000 ng/ml and for MT concentration ranging from 5 to 2000 ng/ml. The precision and accuracy data, based on intra- and inter-day variations over 5 days, were lower than 5%. The limit of quantitation for OMT and MT were 2 and 1 ng/ml, respectively, and their recoveries were greater than 90%. Pharmacokinetic data of OMT and its active metabolite MT obtained with this method following a single oral dose of 300 mg OMT capsules to six beagle dogs was also reported for the first time.  相似文献   

12.
13.
An analytical method was developed for the anticancer agent irinotecan (CPT-11) and its main metabolite SN-38 in human whole blood and in red blood cells (RBCs). Sample pretreatment involved deproteinization of whole blood or plasma-diluted RBCs isolated by MESED instruments, with a mixture of aqueous perchloric acid and methanol (1:1, v/v). Separation was carried out using isocratic elution on a Hypersil ODS stationary phase, with detection at excitation and emission wavelengths of 355 and 515 nm, respectively. The lower limit of quantitation (LLQ) in blood was established at 5.00 ng/ml for both compounds, with values for within-run precision (WRP) and between-run precision (BRP) of less than 10%. The method is currently being applied to investigate the blood distribution of CPT-11 and SN-38 in cancer patients.  相似文献   

14.
A high-performance liquid chromatography (HPLC) procedure for the simultaneous determination of quinapril and its active metabolite quinaprilat in human plasma samples is described. A one-step solid-phase extraction (SPE) with C18 cartridges was coupled with a reversed-phase HPLC system. The system requires two mobile phases composed of tetrabutyl ammonium hydrogensulfate (10 mM adjusted to pH 7)-acetonitrile (62:38, v/v) for quinapril, and (25:75, v/v) for quinaprilat elution through a C18 Symmetry column and detection at a wavelength of 215 nm. Calibration curves were linear over the ranges 20 to 1,000 ng/ml for quinaprilat and 10 to 500 for quinapril. The limits of quantification were 20 and 10 ng/ml for quinaprilat and quinapril, respectively. Extraction recoveries were higher than 90% for quinapril and 80% for quinaprilat. This method has been successfully applied to a bioequivalence study of quinapril in healthy subjects.  相似文献   

15.
It has been suggested that GTS-21 can improve the learning deficits and inhibit the neuro-degeneration in patients with Alzheimer's disease. This paper describes a reversed-phase high-performance liquid chromatographic assay with visible detection at 405 nm for determination of GTS-21 and its metabolite, 4-hydroxy-GTS-21 in rat plasma. The method uses solid-phase extraction with a Bond Elut C18 column. A quantitation limit of 1.0 ng/ml was achieved using 0.5 ml of rat plasma. In the validation study, the coefficients of variation and the relative errors of each compound were less than 10%. Also freeze-thaw and storage stability were confirmed. This method has proved to be applicable to the pharmacokinetic study of GTS-21 in rats.  相似文献   

16.
A rapid and simple method was developed for the simultaneous separation and quantification of cloricromene, a coumarine derivative, and its active metabolite, cloricromene acid, in rabbit aqueous humor. The analyses were performed by high-performance liquid chromatography using a C18 reversed-phase column (Hypersil ODS) with UV detection at 318 nm. The mobile phase consisted of acetonitrile-water containing 1% triethylamine pH 3.5, adjusted with orthophosphoric acid. An acetonitrile gradient was necessary to achieve good separation within 13 min. Timolol was found to be a suitable internal standard. The retention times ranged from 5.72 to 11.25 min. A simple pre-treatment with acetonitrile containing 0.6% HCIO4 was used to deproteinize aqueous humor samples. The limit of quantitation ranged between 10 and 20 ng/ml. The recovery was >90%. The relationship between peak areas and concentration was linear over the range between 0.01 and 3.8 microg/ml, with r2 > 0.99. The assay provided good reproducibility and accuracy for both analytes and proved to be suitable for pharmacokinetic studies of cloricromene.  相似文献   

17.
We established a high-performance liquid chromatography (HPLC) method for the simultaneous determination of the camptothecin (CPT) derivative, irinotecan hydrochloride (CPT-11) and its metabolites, 7-ethyl-10-hydroxycamptothecin (SN-38) and SN-38 glucuronide (SN-38G) in rat plasma with a fully automated on-line solid-phase extraction system, PROSPEKT. Plasma samples were pretreated with 0.146 M H3PO4 to inactivate carboxylesterase and β-glucuronidase in rat plasma, and added with the internal standard solution (0.146 M H3PO4 containing 1 μg/ml CPT) and then analyzed. The method was validated for CPT-11 (5 to 25 000 ng/ml), SN-38 (5 to 2500 ng/ml) and SN-38G (2.5 to 500 ng/ml). This method enabled the determination of many samples within a relatively short time with easy sample preparation. It also had four advantages compared with conventional determination methods, i.e. automation of a complicated sample preparation, time-saving by the simultaneous determination of three compounds, the direct determination of SN-38G, and the small amount of plasma required for the determination.  相似文献   

18.
A novel, highly sensitive method was developed for simultaneous determination of tramadol and its main active metabolite O-demethyltramadol (ODMT) in rat plasma. The method involves a single-step extraction procedure and a specific determination by high-performance liquid chromatography with electrochemical detection, using an ethoxy analogue of tramadol (L-233) as internal standard. The dual-electrode detector was operated in the oxidation-screening mode. Absolute recoveries of tramadol and ODMT were about 80%. Calibration curves were linear over a concentration range of 10–1000 ng/ml for ODMT and 10–10 000 ng/ml for tramadol with intra- and inter-day coefficients of variation not exceeding 10% and 15%, respectively. The limit of quantification for tramadol and ODMT was lower than 15 ng/ml and 10 ng/ml using 100 μl of plasma, respectively. The described method allows an adequate characterization of the plasma vs. time profiles for both compounds.  相似文献   

19.
Two sensitive reversed-phase high-performance liquid chromatographic fluorescence methods, with simple sample handling at the site of the patient, are described for the determination of the lactone and lactone plus carboxylate forms of 9-aminocamptothecin (9AC). For 9AC lactone, the sample preparation was a liquid–liquid extraction with acetonitrile–n-butyl chloride (1:4, v/v), whereas the sample preparation for 9AC total (lactone plus carboxylate) was a simple deproteinization with 5% perchloric acid–methanol (1:1, v/v), which results in the conversion of the carboxylate into the lactone form. The lower limits of quantitation were 50 pg/ml and 100 pg/ml for 9AC lactone and 9AC total, respectively. The within-run precisions at four tested concentrations were ≤6.3% for 9AC lactone and ≤5.3% for 9AC total. The between-run precisions were ≤8.9% and ≤5.6%, respectively. The assays were developed to enable pharmacological analysis of 9AC in a bioavailability and oral phase I study in patients with solid tumors.  相似文献   

20.
A reversed-phase high-performance liquid chromatographic (HPLC) using ultraviolet (UV) absorbance detection method for simultaneous determination of clofibrate (I) and its major metabolite clofibric acid (II) in human plasma has been developed to support a clinical study. I, II and internal standard (I.S., III) are isolated from human plasma by 96-well solid-phase extraction (SPE) C(18)z.ccirf;AR plate and quantified by direct injection of the SPE eluent onto the HPLC with UV detection wavelength at 230 nm. Two chromatographic methods, isocratic and step gradient, have been validated from 1.0 to 100.0 microg/ml and successfully applied to plasma sample analysis for a clinical study. The lower limit of quantitation (LLOQ) is 1.0 microg/ml for both I and II when 500 microl plasma sample is processed. Sample collection and preparation is conducted at 5 degrees C to minimize the hydrolysis of I to II in human plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号