首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glycerol can be oxidized by rat liver microsomes to formaldehyde in a reaction that requires the production of reactive oxygen intermediates. Studies with inhibitors, antibodies, and reconstituted systems with purified cytochrome P4502E1 were carried out to evaluate whether P450 was required for glycerol oxidation. A purified system containing phospholipid, NADPH-cytochrome P450 reductase, P4502E1, and NADPH oxidized glycerol to formaldehyde. Formaldehyde production was dependent on NADPH, reductase, and P450, but not phospholipid. Formaldehyde production was inhibited by substrates and ligands for P4502E1, as well as by anti-pyrazole P4502E1 IgG. The oxidation of glycerol by the reconstituted system was sensitive to catalase, desferrioxamine, and EDTA but not to superoxide dismutase or mannitol, indicating a role for H2O2 plus non-heme iron, but not superoxide or hydroxyl radical in the overall glycerol oxidation pathway. The requirement for reactive oxygen intermediates for glycerol oxidation is in contrast to the oxidation of typical substrates for P450. In microsomes from pyrazole-treated, but not phenobarbital-treated rats, glycerol oxidation was inhibited by anti-pyrazole P450 IgG, anti-hamster ethanol-induced P450 IgG, and monoclonal antibody to ethanol-induced P450, although to a lesser extent than inhibition of dimethylnitrosamine oxidation. Anti-rabbit P4503a IgG did not inhibit glycerol oxidation at concentrations that inhibited oxidation of dimethylnitrosamine. Inhibition of glycerol oxidation by antibodies and by aminotriazole and miconazole was closely associated with inhibition of H2O2 production. These results indicate that P450 is required for glycerol oxidation to formaldehyde; however, glycerol is not a direct substrate for oxidation to formaldehyde by P450 but is a substrate for an oxidant derived from interaction of iron with H2O2 generated by cytochrome P450.  相似文献   

2.
Modeling, mutagenesis, and kinetic studies have demonstrated that the substrate‐binding site of cytochrome P450 is composed of multiple interactive regions that are capable of simultaneously binding two or more xenobiotics. Substrate molecules can interact with each other after docking. Thus, substrates can compete for the activated oxygen–ferrous complex or alter the spatial orientation of other molecules. Cytochrome P450 is a unique enzyme that produces n‐heptane metabolites of different oxidation states. Metabolism of n‐heptane was investigated with rat liver microsomes and a reconstituted rat liver system. Ethanol, n‐propanol, and n‐butanol molecules interacted with the n‐heptane molecule and resulted in cytochrome P450 spectral changes as well as alterations in the n‐heptane metabolic profile. The observed modifications in the biotransformation of n‐heptane indicated that there are three distinct pathways for oxidation of n‐heptane to heptanols, heptanones, and one‐side oxygen‐oriented heptanediones. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:287–294, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20291  相似文献   

3.
Cytochrome P450 (P450) enzymes are some of the most versatile redox proteins known. The basic P450 reactions include C-hydroxylation, heteroatom oxygenation, heteroatom release (dealkylation), and epoxide formation. Mechanistic explanations for these reactions have been advanced. A number of more complex P450 reactions also occur, and these can be understood largely in the context of the basic chemical mechanisms and subsequent rearrangements. The list discussed here updates a 2001 review and includes chlorine oxygenation, aromatic dehalogenation, formation of diindole products, dimer formation via Diels-Alder reactions of products, ring coupling and also ring formation, reductive activation (e.g., aristolochic acid), ring contraction (piperidine nitroxide radical), oxidation of troglitazone, cleavage of amino oxazoles and a 1,2,4-oxadiazole ring, bioactivation of a dihydrobenzoxathiin, and oxidative aryl migration.  相似文献   

4.
Cytochrome P450s promote a variety of rearrangement reactions both as a consequence of the nature of the radical and other intermediates generated during catalysis, and of the neighboring structures in the substrate that can interact either with the initial radical intermediates or with further downstream products of the reactions. This article will review several kinds of previously published cytochrome P450-catalyzed rearrangement reactions, including changes in stereochemistry, radical clock reactions, allylic rearrangements, “NIH” and related shifts, ring contractions and expansions, and cyclizations that result from neighboring group interactions. Although most of these reactions can be carried out by many members of the cytochrome P450 superfamily, some have only been observed with select P450s, including some reactions that are catalyzed by specific endoperoxidases and cytochrome P450s found in plants.  相似文献   

5.
Identification of cytochrome P450IA2 as a human autoantigen   总被引:2,自引:0,他引:2  
Autoantibodies occurring in a patient with idiopathic autoimmune type chronic active hepatitis (CAH) were found to react with purified rabbit cytochrome P450IA2 and to a much lesser extent with P450IA1. Both cytochrome P450s are known to be inducible by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the rabbit, and the expression of the microsomal protein recognized by the patient serum was induced in adult rabbit livers after treatment with TCDD. This protein is only weakly detected in liver microsomes from neonatal rabbits exposed to TCDD in utero, which is consistent with the age-dependent induction of P450IA2 by TCDD. The serum specifically reacted with a protein of similar size in microsomes prepared from COS-1 cells transfected with an expression vector containing the full length human P450IA2 cDNA. This reactivity was not detected in the cells transfected with the vector alone, indicating that the antibody recognizes human P450IA2. In addition, the serum extensively inhibited 7-ethoxyresorufin O-deethylation catalyzed by isolated human liver microsomes. This catalytic activity is associated with class IA P450s in other species. A screen of sera from patients with various hepatic and nonhepatic diseases indicates that the autoantibody to P450IA2 occurs rarely in CAH. Cytochrome P450IA2 becomes the third P450 identified as an autoantigen in inflammatory liver diseases.  相似文献   

6.
Cytochrome P450IA1 (purified from hepatic microsomes of beta-naphthoflavone-treated rats) has been covalently modified with the lysine-modifying reagent acetic anhydride. Different levels of lysine residue modification in cytochrome P450IA1 can be achieved by varying the concentration of acetic anhydride. Modification of lysine residues in P450IA1 greatly inhibits the interaction of P450IA1 with NADPH-cytochrome P450 reductase. Modification of 1.0 and 3.3 mol lysine residues per mole P450IA1 resulted in 30 and 95% decreases, respectively, in 7-ethoxycoumarin hydroxylation by a reconstituted P450IA1/reductase complex. However, modification of 3.3 mol lysine residues per mole P450IA1 decreased only cumene hydroperoxide-supported P450-dependent 7-ethoxycoumarin hydroxylation by 30%. Spectral and fluorescence studies showed no indication of global conformational change of P450IA1 even with up to 8.8 mol lysine residues modified per mole P450IA1. These data suggest that at least three lysine residues in P450IA1 may be involved in the interaction with reductase. Identification of lysine residues in P450IA1 possibly involved in this interaction was carried out by [14C]acetic anhydride modification, trypsin digestion, HPLC separation, and amino acid sequencing. The lysine residue candidates identified in this manner were K97, K271, K279, and K407.  相似文献   

7.
Intact cells of the denitrifying fungus Fusarium oxysporum were previously shown to catalyze codenitrification to form a hybrid nitrous oxide (N2O) species from nitrite and other nitrogen compounds such as azide and ammonia. Here we show that cytochrome P450nor can catalyze the codenitrification reaction to form N2O from nitric oxide (NO) but not nitrite, and azide or ammonia. The results show that the direct substrate of the codenitrification by intact cells should not be nitrite but NO, which is formed from nitrite by the reaction of a dissimilatory nitrite reductase.  相似文献   

8.
This mini-review summarizes results of studies on the oxidation of proteins and low-density lipoprotein (LDL) by various mixed-function oxidation (MFO) systems. Oxidation of LDL by the O2/FeCl3/H2O2/ascorbate MFO system is dependent on all four components and is much greater when reactions are carried out in the presence of a physiological bicarbonate/CO2 buffer system as compared to phosphate buffer. However, FeCl3 in this system could be replaced by hemin or the heme-containing protein, hemoglobin, or cytochrome c. Oxidation of LDL by the O2/cytochrome P450 cytochrome c reductase/NADPH/FeCl3 MFO system is only slightly higher (25%) in the bicarbonate/CO2 buffer as compared to phosphate buffer, but is dependent on all components except FeCl3. Omission of FeCl3 led to a 60% loss of activity. These results suggest that peroxymonobicarbonate and/or free radical derivatives of bicarbonate ion and/or CO2 might contribute to LDL oxidation by these MFO systems.  相似文献   

9.
The oxidation of uroporphyrinogen, an intermediate of the heme biosynthetic pathway, by methylcholanthrene-inducible isozymes(s) of cytochrome P-450 has been proposed to play a role in the development of chemically induced uroporphyria. Prior work from this laboratory indicated that although addition of 3,4,3',4'-tetrachlorobiphenyl is required for uroporphyrinogen oxidation by methylcholanthrene-induced chick embryo liver microsomes, this biphenyl is not required for the oxidation catalyzed by hepatic microsomes from methylcholanthrene-induced rodents. Here we investigated whether rodent microsomes catalyze uroporphyrinogen oxidation without addition of 3,4,3',4'-tetrachlorobiphenyl because the chemical used as an inducer remains bound to cytochrome P-450. Hepatic microsomes containing almost no residual inducer were isolated from rats treated with a low dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). These microsomes oxidized uroporphyrinogen at high rates without addition of 3,4,3',4'-tetrachlorobiphenyl. Inducer-free microsomal cytochrome P-450 was also obtained by inducing cytochrome P-450 in rats and mice with isosafrole, which was then removed from the isolated microsomes by butanol treatment. This procedure resulted in microsomes with high activity for uroporphyrinogen oxidation. Furthermore, addition of chlorobiphenyl to these inducer-free microsomes was inhibitory. Hepatic microsomes from isosafrole-induced C57BL/6 and DBA mice, rendered inducer-free by butanol treatment, oxidized uroporphyrinogen at the same rate even though these two strains differ markedly in their susceptibility to chemically induced uroporphyria. We conclude that uroporphyrinogen oxidation is catalyzed by cytochrome P-450 that is free of inducer.  相似文献   

10.
Guengerich FP  Krauser JA  Johnson WW 《Biochemistry》2004,43(33):10775-10788
Several issues regarding the rate-limiting nature of individual reaction steps in catalysis by rabbit liver cytochrome P450 (P450) 1A2 were addressed using anisoles and other substrates. Substrate binding is very fast (k > 10(6) M(-1) s(-1)). Product release is not rate-limiting, as shown by the absence of bursts, placing rate-limiting steps at or before product formation. We had previously shown that the first 1-electron reduction step is fast (k > 700 min(-1)), even in the absence of ligand [Guengerich, F. P., and Johnson, W. W. (1997) Biochemistry 36, 14741-147500]. O(2) binding to ferrous P450 is fast (k >/= 10(6) M(-1) s(-1)). The decay of the P450 Fe(2+)-substrate-O(2) complex was slow in the absence of NADPH-P450 reductase, with a first-order rate constant of 14 min(-1) at 25 degrees C. During the decay, product was formed (from the substrate methacetin) in 61% theoretical yield, although this reaction requires electron transfer among P450 molecules and may not be related to normal turnover. Steady-state spectra suggest that one or more iron-oxygen complexes accumulate, representing entities between the Fe(2+)-O(2) complex and putative FeO(3+) entity. Kinetic isotope effect experiments were done with several substrates, mainly anisoles. Apparent intrinsic deuterium isotope effects as high as 15 were measured. In all cases, the C-H bond-breaking step is at least partially rate-limiting. The isotope effects were not strongly attenuated in noncompetitive or competitive experiments, consistent with relatively rapid P450-substrate exchange, except with the active enzyme Fe-O complex. Kinetic simulations with the available data (i) are consistent with the view that C-H bond breaking is a major rate-limiting step, (ii) demonstrate that increasing the rate of this step will affect k(cat), K(m), and kinetic hydrogen isotope effects but will only increase catalytic efficiency to a certain degree, (iii) indicate that increasing ground-state binding can increase catalytic efficiency but not k(cat), and (iv) suggest that nonproductive binding modes and abortive reduction of O(2) are factors that attenuate catalytic efficiency.  相似文献   

11.
The interaction of adrenodoxin (Adx) and NADPH cytochrome P450 reductase (CPR) with human microsomal steroidogenic cytochrome P450s was studied. It is found that Adx, mitochondrial electron transfer protein, is able to support reactions catalyzed by human microsomal P450s: full length CYP17, truncated CYP17, and truncated CYP21. CPR, but not Adx, supports activity of truncated CYP19. Truncated and the full length CYP17s show distinct preference for electron donor proteins. Truncated CYP17 has higher activity with Adx compared to CPR. The alteration in preference to electron donor does not change product profile for truncated enzymes. The electrostatic contacts play a major role in the interaction of truncated CYP17 with either CPR or Adx. Similarly electrostatic contacts are predominant in the interaction of full length CYP17 with Adx. We speculate that Adx might serve as an alternative electron donor for CYP17 at the conditions of CPR deficiency in human.  相似文献   

12.
13.
Diethylstilbestrol (DES) or catecholestrogens are metabolized by microsomal enzymes to quinones, DES Q or catecholestrogen quinones, respectively, which have been shown to bind covalently to DNA and to undergo redox cycling. The isoforms of cytochrome P450 catalyzing this oxidation of estrogens to genotoxic intermediates were not known and have been identified in this study by (a) using microsomes of rats treated with various inducers of cytochrome P450; (b) using purified cytochrome P450 isoforms; and (c) examining the peroxide cofactor concentrations necessary for this oxidation by microsomes or pure isoenzymes. The highest rate of oxidation of DES to DES Q was obtained using beta-naphthoflavone-induced microsomes (14.0 nmol DES Q/mg protein/min) or cytochrome P450 IA1 (6.4 pmol DES Q/min/pmol P450). Isosafrole-induced microsomes or cytochrome P450 IA2 oxidized DES to quinone at one-third or one-fifth of that rate, respectively. Low or negligible rates of oxidation were measured when oxidations were catalyzed by microsomal rat liver enzymes induced by phenobarbital, ethanol, or pregnenolone-16 alpha-carbonitrile or by pure cytochromes P450 IIB1, IIB4, IIC3, IIC6, IIE1, IIE2, IIG1, or IIIA6. Cytochrome P450 IA1 also catalyzed the oxidation of 2- or 4-hydroxyestradiol to their corresponding quinones. The beta-naphthoflavone-induced microsomes and cytochrome P450 IA1 had the highest "affinity" for cumene hydroperoxide cofactor (Km = 77 microM). Cofactor concentrations above 250 microM resulted in decreased rates of oxidation. The other cytochrome P450 isoforms required much higher cofactor concentrations and were not inactivated at high cofactor concentrations. The data demonstrate that beta-naphthoflavone-inducible cytochrome P450 IA family enzymes catalyze most efficiently the oxidation of estrogenic hydroquinones to corresponding quinones. This oxidation may represent a detoxification pathway to keep organic hydroperoxides at minimal concentrations. The resulting quinone metabolites may be detoxified by other pathways. However, in cells with decreased detoxifying enzyme activities, quinones metabolites may accumulate and initiate carcinogenesis or cell death by covalent arylation of DNA or proteins.  相似文献   

14.
Two peptide sequences from cytochrome P450 IA2 were synthesized, coupled to ovalbumin and used as antigens to generate anti-peptide monoclonal and polyclonal antibodies. Antisera to both peptides reacted with rat IA2 but not the structurally similar IA1 form as determined by enzyme-linked immunosorbent assay. However, antisera to both peptides detected both rat IA2 and IA1 on immunoblots. In addition immunoblots of human liver microsomes revealed that both antisera recognized human IA2, but not IA1. Monoclonal antibodies generated against one of the peptides recognized rat IA2 and IA1 but did not detect human IA2. These results demonstrate the utility of anti-peptide antisera as a practical approach for the generation of P450 specific antibodies.  相似文献   

15.
Acetaminophen activation by human liver cytochromes P450IIE1 and P450IA2   总被引:7,自引:0,他引:7  
Acetaminophen (APAP), a widely used over-the-counter analgesic, is known to cause hepatotoxicity when ingested in large quantities in both animals and man, especially when administered after chronic ethanol consumption. Hepatotoxicity stems from APAP activation by microsomal P450 monooxygenases to a reactive metabolite that binds to tissue macromolecules, thereby initiating cellular necrosis. Alcohol consumption also causes the induction of P450IIE1, a liver microsomal enzyme that in reconstitution studies has proven to be an effective catalyst of APAP oxidation. Thus, elevated microsomal P450IIE1 levels could explain not only the known increase in APAP bioactivating activity of liver microsomes after prolonged ethanol ingestion but also the enhanced susceptibility to APAP toxicity. We therefore examined the role of P450IIE1 in human liver microsomal APAP activation. Liver microsomes from seven non-alcoholic subjects were found to convert 1 mM APAP to a reactive intermediate (detected as an APAP-cysteine conjugate by high-pressure liquid chromatography) at a rate of 0.25 +/- 0.1 nmol conjugate formed/min/nmol microsomal P450 (mean +/- SD), whereas at 10 mM, this rate increased to 0.73 +/- 0.2 nmol product/min/nmol P450. In a reconstituted system, purified human liver P450IIE1 catalyzed APAP activation at rates threefold higher than those obtained with microsomes whereas two other human P450s, P450IIC8 and P450IIC9, exhibited negligible APAP-oxidizing activity. Monospecific antibodies (IgG) directed against human P450IIE1 inhibited APAP activation in each of the human samples, with anti-P450IIE1 IgG-mediated inhibition averaging 52% (range = 30-78%) of the rates determined in the presence of control IgG. The ability of anti-P450IIE1 IgG to inhibit only one-half of the total APAP activation by microsomes suggests, however, that other P450 isozymes besides P450IIE1 contribute to bioactivation of this compound in human liver. Of the other purified P450 isozymes examined, a beta-naphthoflavone (BNF)-inducible hamster liver P450 promoted APAP activation at rates even higher than those obtained with human P450IIE1. The extensive APAP-oxidizing capacity of this hamster P450, designated P450IA2 based upon its similarity to rat P450d and rabbit form 4 in terms of NH2-terminal amino acid sequence, spectral characteristics, immunochemical properties, and inducibility by BNF, agrees with previous reports concerning the APAP substrate specificity of the rat and rabbit P450IA2 proteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
A standard calcium phosphate technique was used to obtain transient expression of cDNAs for rat liver cytochrome P450s in COS-1 cells. Cells transfected with a pMT2-based vector expressing P450IA2 cDNA (pMT2-IA2) had high acetanilide-4-hydroxylase activity and very low aryl hydrocarbon hydroxylase (AHH) activity. Cells transfected with a hybrid expression vector, pMT2-IA2/IA1, coding for a P450IA2/IA1 fusion protein (consisting of the amino-terminal region of P450IA2 and the central and carboxy-terminal regions of P450IA1) had high AHH activity. This result and other data indicate that the P450IA2/IA1 fusion protein has the substrate specificity of P450IA1. Extracts of cells transfected with pMT2-IA2 readily converted 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) and related food-derived promutagens into mutagenic forms. Extracts of cells transfected with pMT2-IA2/IA1 showed efficient activation of 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp P-2). To facilitate comparison of activities of P450s synthesized from cDNA expression vectors, the promutagen activation assays were carried out with limiting enzyme and saturating or nearly saturating substrate concentrations. The transient expression system described here uses a standard expression vector and requires only microgram quantities of cell extract protein for activation of food-derived promutagens such as MeIQ and Trp P-2. It will be useful for identifying P450s active in promutagen activation and for analyzing structure-function relationships of different P450 molecules.  相似文献   

17.
The N- and ring-hydroxylation of 2-acetamidofluorene were studied with a reconstituted cytochrome P-450 enzyme from microsomal fractions of liver from both control and 3-methylcholanthrene-pretreated rats. Proteinase treatment and Triton X-100 solubilization were two important steps for partial purification of the cytochrome P-450 fraction. Both cytochrome P-450 and NADPH-cytochrome c reductase fractions were required for optimum N- and ring-hydroxylation activity. Hydroxylation activity was determined by the source of cytochrome P-450 fraction; cytochrome P-450 fraction from pretreated animals was severalfold more active than the fraction from controls. Formation of N-hydroxylated metabolites with reconstituted systems from both control and pretreated animals was greater than that with their respective whole microsomal fractions.  相似文献   

18.
Human cytochrome P450 (P450) 2A6 catalyzes 7-hydroxylation of coumarin, and the reaction rate is enhanced by cytochrome b5 (b5). 7-Alkoxycoumarins were O-dealkylated and also hydroxylated at the 3-position. Binding of coumarin and 7-hydroxycoumarin to ferric and ferrous P450 2A6 are fast reactions (k(on) approximately 10(6) m(-1) s(-1)), and the k(off) rates range from 5.7 to 36 s(-1) (at 23 degrees C). Reduction of ferric P450 2A6 is rapid (7.5 s(-1)) but only in the presence of coumarin. The reaction of the ferrous P450 2A6 substrate complex with O2 is rapid (k > or = 10(6) m(-1) s(-1)), and the putative Fe2+.O2 complex decayed at a rate of approximately 0.3 s(-1) at 23 degrees C. Some 7-hydroxycoumarin was formed during the oxidation of the ferrous enzyme under these conditions, and the yield was enhanced by b5. Kinetic analyses showed that approximately 1/3 of the reduced b5 was rapidly oxidized in the presence of the Fe2+.O2 complex, implying some electron transfer. High intrinsic and competitive and non-competitive intermolecular kinetic deuterium isotope effects (values 6-10) were measured for O-dealkylation of 7-alkoxycoumarins, indicating the effect of C-H bond strength on rates of product formation. These results support a scheme with many rapid reaction steps, including electron transfers, substrate binding and release at multiple stages, and rapid product release even though the substrate is tightly bound in a small active site. The inherent difficulty of chemistry of substrate oxidation and the lack of proclivity toward a linear pathway leading to product formation explain the inefficiency of the enzyme relative to highly efficient bacterial P450s.  相似文献   

19.
The levels of the messenger RNAs for the cytochromes P450IA1 (CYPIA1) and P450IA2 (CYPIA2) were determined in liver cytoplasmic RNA of rats of various ages after maximal induction with either 3-methylcholanthrene or isosafrole and in untreated rats. An increase in the CYPIA1 mRNA levels was observed only after treatment with 3-methylcholanthrene, whereas both 3-methylcholanthrene and isosafrole were able to induce the levels of CYPIA2 mRNA. The study presented here shows that the maximal induction of these 2 mRNAs did not change with age when 3-methylcholanthrene was used as the inducing agent. Isosafrole induction did not yield higher CYPIA1 mRNA levels in young rats but reduced the amount of this mRNA in old animals to levels below the detection limit of our assay. After induction with isosafrole the levels of the CYPIA2 mRNAs in the older age groups were lower than those observed in young rats. It is concluded that with age the responsiveness to cytochrome P450 inducers may change. This change is different for the various cytochrome P450 enzymes and depends on which inducer is used.  相似文献   

20.
Two cDNA clones, 2C19 and 4C1, were isolated from a lung cDNA library of 3-methylcholanthrene (MC)-treated hamster by using rat P-450c cDNA as a probe. The cDNA determined from 2C19 and 4C1 was 2,916 bp long and contained an entire coding region for 524 amino acids with a molecular weight of 59,408. The deduced amino acid sequence showed a 85% identity with that of rat P-450c indicating 2C19 and 4C1 encode the hamster P-450IA1 protein. Another cDNA clone, designated H28, was isolated from a MC-induced hamster liver cDNA library by using the hamster lung 2C19 or 4C1 cDNA clone as a probe. H28 was 1,876 bp long and encoded a polypeptide of 513 amino acids with a molecular weight of 58,079. The N-terminal 20 residues deduced from nucleotide sequence of H28 were identical to those determined by sequence analysis of purified hamster hepatic P-450MCI. The high similarity of the nucleotide and deduced amino acid sequences between H28 and P-450IA2 of other species indicated that H28 encoded a P-450 protein which belongs to the P-450IA2 family. Northern blot analysis revealed that the mRNAs for hamster P-450IA1 and IA2 were about 2.9 and 1.9 kb long, respectively. Hamster P-450IA1 mRNA was induced to the same level in lungs as in livers by MC treatment, whereas hamster P-450IA2 mRNA was induced and expressed only in hamster liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号