首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flavonoids: antioxidants or signalling molecules?   总被引:26,自引:0,他引:26  
Many studies are accumulating that report the neuroprotective, cardioprotective, and chemopreventive actions of dietary flavonoids. While there has been a major focus on the antioxidant properties, there is an emerging view that flavonoids, and their in vivo metabolites, do not act as conventional hydrogen-donating antioxidants but may exert modulatory actions in cells through actions at protein kinase and lipid kinase signalling pathways. Flavonoids, and more recently their metabolites, have been reported to act at phosphoinositide 3-kinase (PI 3-kinase), Akt/protein kinase B (Akt/PKB), tyrosine kinases, protein kinase C (PKC), and mitogen activated protein kinase (MAP kinase) signalling cascades. Inhibitory or stimulatory actions at these pathways are likely to affect cellular function profoundly by altering the phosphorylation state of target molecules and by modulating gene expression. A clear understanding of the mechanisms of action of flavonoids, either as antioxidants or modulators of cell signalling, and the influence of their metabolism on these properties are key to the evaluation of these potent biomolecules as anticancer agents, cardioprotectants, and inhibitors of neurodegeneration  相似文献   

2.
Flavonoids are dietary compounds with potential anti-diabetes activities. Many flavonoids have poor bioavailability and thus low circulating concentrations. Unabsorbed flavonoids are metabolized by the gut microbiota to smaller metabolites, which are more bioavailable than their precursors. The activities of these metabolites may be partly responsible for associations between flavonoids and health. However, these activities remain poorly understood. We investigated bioactivities of flavonoid microbial metabolites [hippuric acid (HA), homovanillic acid (HVA), and 5-phenylvaleric acid (5PVA)] in primary skeletal muscle and β-cells compared to a native flavonoid [(−)-epicatechin, EC]. In muscle, EC was the most potent stimulator of glucose oxidation, while 5PVA and HA simulated glucose metabolism at 25 μM, and all compounds preserved mitochondrial function after insult. However, EC and the metabolites did not uncouple mitochonndrial respiration, with the exception of 5PVA at10 μM. In β-cells, all metabolites more potently enhanced glucose-stimulated insulin secretion (GSIS) compared to EC. Unlike EC, the metabolites appear to enhance GSIS without enhancing β-cell mitochondrial respiration or increasing expression of mitochondrial electron transport chain components, and with varying effects on β-cell insulin content. The present results demonstrate the activities of flavonoid microbial metabolites for preservation of β-cell function and glucose utilization. Additionally, our data suggest that metabolites and native compounds may act by distinct mechanisms, suggesting complementary and synergistic activities in vivo which warrant further investigation. This raises the intriguing prospect that bioavailability of native dietary flavonoids may not be as critical of a limiting factor to bioactivity as previously thought.  相似文献   

3.
Flavonoids are components of fruit and vegetables that may be beneficial in the prevention of disease such as cancer and cardiovascular diseases. Their beneficial effects will be dependent upon their uptake and disposition in tissues and cells. The metabolism and pharmacokinetics of flavonoids has been an area of active research in the last decade. To date, approximately 100 studies have reported the pharmacokinetics of individual flavonoids in healthy volunteers. The data indicate considerable differences among the different types of dietary flavonoids so that the most abundant flavonoids in the diet do not necessarily produce the highest concentration of flavonoids or their metabolites in vivo. Small intestinal absorption ranges from 0 to 60% of the dose and elimination half-lives (T1/2) range from 2 to 28 h. Absorbed flavonoids undergo extensive first-pass Phase II metabolism in the small intestine epithelial cells and in the liver. Metabolites conjugated with methyl, glucuronate and sulfate groups are the predominant forms present in plasma. This review summarizes the key differences in absorption, metabolism and pharmacokinetics between the major flavonoids present in the diet. For each flavonoid, the specific metabolites that have been identified so far in vivo are indicated. These data should be considered in the design and interpretation of studies investigating the mechanisms and potential health effects of flavonoids.  相似文献   

4.
There is considerable current interest in the neuroprotective effects of flavonoids. This study focuses on the potential for dietary flavonoids, and their known physiologically relevant metabolites, to enter the brain endothelium and cross the blood-brain barrier (BBB) using well-established in vitro models (brain endothelial cell lines and ECV304 monolayers co-cultured with C6 glioma cells). We report that the citrus flavonoids, hesperetin, naringenin and their relevant in vivo metabolites, as well as the dietary anthocyanins and in vivo forms, cyanidin-3-rutinoside and pelargonidin-3-glucoside, are taken up by two brain endothelial cell lines from mouse (b.END5) and rat (RBE4). In both cell types, uptake of hesperetin and naringenin was greatest, increasing significantly with time and as a function of concentration. In support of these observations we report for the first time high apparent permeability (Papp) of the citrus flavonoids, hesperetin and naringenin, across the in vitro BBB model (apical to basolateral) relative to their more polar glucuronidated conjugates, as well as those of epicatechin and its in vivo metabolites, the dietary anthocyanins and to specific phenolic acids derived from colonic biotransformation of flavonoids. The results demonstrate that flavonoids and some metabolites are able to traverse the BBB, and that the potential for permeation is consistent with compound lipophilicity.  相似文献   

5.
Tea, the major source of dietary flavonoids, particularly the epicatechins, signifies the second most frequently consumed beverage worldwide, which varies its status from a simple ancient cultural drink to a nutrient component, endowed possible beneficial neuro-pharmacological actions. Accumulating evidence suggests that oxidative stress, resulting in reactive oxygen species generation, plays a pivotal role in neurodegenerative diseases, supporting the implementation of radical scavengers and metal chelating agents, such as natural tea polyphenols, for therapy. Vast epidemiology data indicate a correlation between occurrence of neurodegenerative disorders, such as Parkinson’s and Alzheimer’s diseases, and green tea consumption. In particular, recent literature strengthens the perception that diverse molecular signaling pathways, participating in the neuroprotective activity of the major green tea polyphenol, (−)-epigallocatechin-3-gallate (EGCG), renders this natural compound as potential agent to reduce the risk of various neurodegenerative diseases. In the current review, we discuss the studies concerning the mechanisms of action implicated in EGCG-induced neuroprotection and discuss the vision to translate these findings into a lifestyle arena.  相似文献   

6.
Absorption and metabolism of flavonoids   总被引:17,自引:0,他引:17  
The benefits of flavonoids as chemopreventive dietary or dietary supplemental agents are still only "potential." Much has been learned about possible mechanisms of action of these agents, but whether they can reach their multiple intended sites of action, particularly in humans, is largely unknown. The biological fate of the flavonoids, including their dietary glycoside forms, is highly complex, dependent on a large number of processes. This review is intended to bring some order into this complex area and deals with the fate of the naturally occurring glycosides, their enzymatic hydrolysis, as well as the resulting aglycones. The impact of membrane transporters as well as metabolic enzymes on the cellular availability of these phytochemicals is examined. A reevaluation of the concept of oral bioavailability applied to the dietary flavonoids is presented.  相似文献   

7.
Flavonoids comprise the most common group of plant polyphenols and provide much of the flavor and color to fruits and vegetables. More than 5,000 different flavonoids have been described. The biological activities of flavonoids cover a very broad spectrum, from anticancer and antibacterial activities to inhibition of bone reabsorption and neuroprotection effect. Although emerging evidence suggests that flavonoids have an important role on brain development, little is known about their mechanisms of action. In the present work, we performed a screening of flavonoid actions by analyzing the effects of these substances (hesperidin and rutin) on neural progenitors and neuronal morphogenesis in vitro. We demonstrated that treatment of neural progenitors with the flavonoid hesperidin enhanced neuronal population as revealed by an 80% increase in the number of β-tubulin III cells. This effect was mainly due to modulation of neuronal progenitor survival. Pools of astrocyte and oligodendrocyte progenitors were not affected by hesperidin whereas rutin had no effect on neuronal population. We also demonstrated that the flavonoid hesperidin modulates neuronal cell death by activating MAPK and PI3K pathways. This opens the possibility of using flavonoids for potential new therapeutic strategies for neurodegenerative diseases.  相似文献   

8.
Epidemiological studies suggest that the consumption of flavonoid-rich diets decreases the risk of cardiovascular diseases. However, the target sites of flavonoids underlying the protective mechanism in vivo are not known. Quercetin represents antioxidative/anti-inflammatory flavonoids widely distributed in the human diet. In this study, we raised a novel monoclonal antibody 14A2 targeting the quercetin-3-glucuronide (Q3GA), a major antioxidative quercetin metabolite in human plasma, and found that the activated macrophage might be a potential target of dietary flavonoids in the aorta. Immunohistochemical studies with monoclonal antibody 14A2 demonstrated that the positive staining specifically accumulates in human atherosclerotic lesions, but not in the normal aorta, and that the intense staining was primarily associated with the macrophage-derived foam cells. In vitro experiments with murine macrophage cell lines showed that the Q3GA was significantly taken up and deconjugated into the much more active aglycone, a part of which was further converted to the methylated form, in the activated macrophages. In addition, the mRNA expression of the class A scavenger receptor and CD36, which play an important role for the formation of foam cells, was suppressed by the treatment of Q3GA. These results suggest that injured/inflamed arteries with activated macrophages are the potential targets of the metabolites of dietary quercetin. Our data provide a new insight into the bioavailability of dietary flavonoids and the mechanism for the prevention of cardiovascular diseases.  相似文献   

9.
Absorption of ferulic acid from low-alcohol beer   总被引:1,自引:0,他引:1  
Flavonoids and monophenolic compounds have been well-described over recent years for their properties as antioxidants and scavengers of reactive oxygen and nitrogen species. A number of epidemiological studies implicate a role for flavonoids in reducing the risk of coronary heart disease. In particular, the focus has been on flavonol-rich fruit and vegetables and flavonoid-rich beverages, especially tea and red wine. Mechanisms of protection are unclear since the absorption, distribution, metabolism and elimination of dietary phenolics have not yet been extensively investigated. Here we report the bioavailability of ferulic acid, 4-hydroxy-3-methoxy-cinnamic acid, the major hydroxycinnamate in beer. Studies of the pharmacokinetics of urinary excretion of ferulic acid from low alcohol beer consumption in humans have been undertaken. The results show that ferulic acid is absorbed with a peak time for maximal excretion of ca. 8 h and the mean cumulative amount excreted is 5.8±3.2 mg. These findings are consistent with the uptake of ferulic acid from dietary sources, such as tomatoes, and suggest that ferulic acid is more bioavailable than individual dietary flavonoids and phenolics so far studied.  相似文献   

10.
Flavonoids and monophenolic compounds have been well-described over recent years for their properties as antioxidants and scavengers of reactive oxygen and nitrogen species. A number of epidemiological studies implicate a role for flavonoids in reducing the risk of coronary heart disease. In particular, the focus has been on flavonol-rich fruit and vegetables and flavonoid-rich beverages, especially tea and red wine. Mechanisms of protection are unclear since the absorption, distribution, metabolism and elimination of dietary phenolics have not yet been extensively investigated. Here we report the bioavailability of ferulic acid, 4-hydroxy-3-methoxy-cinnamic acid, the major hydroxycinnamate in beer. Studies of the pharmacokinetics of urinary excretion of ferulic acid from low alcohol beer consumption in humans have been undertaken. The results show that ferulic acid is absorbed with a peak time for maximal excretion of ca. 8 h and the mean cumulative amount excreted is 5.8±3.2 mg. These findings are consistent with the uptake of ferulic acid from dietary sources, such as tomatoes, and suggest that ferulic acid is more bioavailable than individual dietary flavonoids and phenolics so far studied.  相似文献   

11.
Flavonoid metabolism: the interaction of metabolites and gut microbiota   总被引:1,自引:0,他引:1  
Abstract

Several dietary flavonoids exhibit anti-oxidative, anti-inflammatory, and anti-osteoporotic activities relevant to prevention of chronic diseases, including lifestyle-related diseases. Dietary flavonoids (glycoside forms) are enzymatically hydrolyzed and absorbed in the intestine, and are conjugated to their glucuronide/sulfate forms by phase II enzymes in epithelial cells and the liver. The intestinal microbiota plays an important role in the metabolism of flavonoids found in foods. Some specific products of bacterial transformation, such as ring-fission products and reduced metabolites, exhibit enhanced properties. Studies on the metabolism of flavonoids by the intestinal microbiota are crucial for understanding the role of these compounds and their impact on our health. This review focused on the metabolic pathways, bioavailability, and physiological role of flavonoids, especially metabolites of quercetin and isoflavone produced by the intestinal microbiota.  相似文献   

12.
The effect of any dietary compound is influenced by the active bioavailable dose rather than the dose ingested. Depending on the individual predisposition, including genetics and medication, a bioavailable dose may cause different magnitudes of effects in different people. Age might affect the predisposition and thus the requirements for nutrients including phytonutrients (e.g. phytochemicals such as flavonoids, phenolic acids and glucosinolates). These are not essential for growth and development but to maintain body functions and health throughout the adult and later phases of life; they are 'lifespan essentials'. Major mechanisms involved in chronic, age-related diseases include the oxidant/antioxidant balance, but the latest research indicates indirect effects of dietary bioactives in vivo and adaptive responses in addition to direct radical scavenging.  相似文献   

13.
Modification of flavonoid biosynthesis in crop plants   总被引:19,自引:0,他引:19  
Flavonoids comprise the most common group of polyphenolic plant secondary metabolites. In plants, flavonoids play an important role in biological processes. Beside their function as pigments in flowers and fruits, to attract pollinators and seed dispersers, flavonoids are involved in UV-scavenging, fertility and disease resistance. Since they are present in a wide range of fruits and vegetables, flavonoids form an integral part of the human diet. Currently there is broad interest in the effects of dietary polyphenols on human health. In addition to the potent antioxidant activity of many of these compounds in vitro, an inverse correlation between the intake of certain polyphenols and the risk of cardiovascular disease, cancer and other age related diseases has been observed in epidemiological studies. The potential nutritional effects of these molecules make them an attractive target for genetic engineering strategies aimed at producing plants with increased nutritional value. This review describes the current knowledge of the molecular regulation of the flavonoid pathway and the state of the art with respect to metabolic engineering of this pathway in crop plants.  相似文献   

14.
Epidemiological studies have described the beneficial effects of dietary polyphenols (flavonoids) on the reduction of the risk of chronic diseases, including cancer. Moreover, it has been shown that flavonoids, such as quercetin in apples, epigallocatechin-3-gallate in green tea and genistein in soya, induce apoptosis. This programmed cell death plays a critical role in physiological functions, but there is underlying dysregulation of apoptosis in numerous pathological situations such as Parkinson's disease, Alzheimer's disease and cancer. At the molecular level, flavonoids have been reported to modulate a number of key elements in cellular signal transduction pathways linked to the apoptotic process (caspases and bcl-2 genes), but that regulation and induction of apoptosis are unclear. The aim of this review is to provide insights into the molecular basis of the potential chemopreventive activities of representative flavonoids, with emphasis on their ability to control intracellular signaling cascades responsible for regulating apoptosis, a relevant target in cancer-preventive approach.  相似文献   

15.
16.
Flavonoids are naturally occurring polyphenolic compounds that are present in a variety of fruits, vegetables, cereals, tea, and wine, and are the most abundant antioxidants in the human diet. Evidence suggests that these phytochemicals might have an impact on brain pathology and aging; however, neither their mechanisms of action nor their cell targets are completely known. In the mature mammalian brain, astroglia constitute nearly half of the total cells, providing structural, metabolic, and trophic support for neurons. During the past few years, increasing knowledge of these cells has indicated that astrocytes are pivotal characters in neurodegenerative diseases and brain injury. Most of the physiological benefits of flavonoids are generally thought to be due to their antioxidant and free-radical scavenging effects; however, emerging evidence has supported the hypothesis that their mechanism of action might go beyond these properties. In this review, we focus on astrocytes as targets for flavonoids and their implications in brain development, neuroprotection, and glial tumor formation. Finally, we will briefly discuss the emerging view of astrocytes as essential characters in neurodegenerative diseases, and how a better understanding of the action of flavonoids might open new avenues to develop therapeutic approaches to these pathologies.  相似文献   

17.
Flavonoids are a class of plant secondary metabolites and among thousands of flavonoids few are considered as dietary flavonoids. Serum albumin (SA), the most abundant protein in plasma, functions as the most important carrier of vital drugs, including dietary flavonoids. The binding affinity of dietary flavonoids to SA is demonstrated to be governed by structure–affinity relationship (SAR) and its bioavailability. The present review summarizes the interactions of flavonoids categorized as flavanol, flavonol, flavone, isoflavone, flavanones, and anthocyanidins with SAs (bovine serum albumin and human serum albumin) in light of SAR. The key findings are: (1) the position and degree of hydroxylation highly influence the affinity of flavonoids to SAs, (2) glycosylation decreases and substitution of methoxy group increases the affinity of flavonoids for SAs, (3) catechin gallates have higher binding affinity to SAs than catechins and gallocatechins, (4) inorganic metal ions modulate the binding affinity of flavonoids to SAs, and (5) hydrophobic interaction plays a major role in the interactions of all flavonoids with SAs.  相似文献   

18.
Catechins are dietary polyphenolic compounds associated with a wide variety of beneficial health effects in vitro, in vivo and clinically. These therapeutic properties have long been attributed to the catechins' antioxidant and free radical scavenging effects. Emerging evidence has shown that catechins and their metabolites have many additional mechanisms of action by affecting numerous sites, potentiating endogenous antioxidants and eliciting dual actions during oxidative stress, ischemia and inflammation. Catechins have proven to modulate apoptosis at various points in the sequence, including altering expression of anti- and proapoptotic genes. Their anti-inflammatory effects are activated through a variety of different mechanisms, including modulation of nitric oxide synthase isoforms. Catechins' actions of attenuating oxidative stress and the inflammatory response may, in part, account for their confirmed neuroprotective capabilities following cerebral ischemia. The versatility of the mechanisms of action of catechins increases their therapeutic potential as interventions for numerous clinical disorders. However, more epidemiological and clinical studies need to be undertaken for their efficacy to be fully elucidated.  相似文献   

19.
Opioids modulate post-ischemic progression in a rat model of stroke   总被引:1,自引:0,他引:1  
Alterations in the opioidergic system have been found in cerebral ischemia. Neuroprotection studies have demonstrated the involvement of the opioidergic system in cerebral ischemia/reperfusion (I/R). However, the neuroprotective mechanisms remain largely unclear. This study was conducted to investigate whether intracerebroventricular administration of opioidergic agonists has a neuroprotective effect against cerebral ischemia in rats and, if this proved to be the case, to determine the potential neuroprotective mechanisms. Using a focal cerebral I/R rat model, we demonstrated that the opioidergic agents, BW373U86 (delta agonist) and Dynorphin A 1-13 (kappa agonist), but not TAPP (mu agonist), attenuated cerebral ischemic injury as manifested in the reduction of cerebral infarction and preservation of neurons. The antagonism assay showed that the neuroprotective effect of Dynorphin A was attenuated by nor-Binaltorphimine (kappa antagonist). Surprisingly, BW373U86-induced neuroprotection was not changed by Naltrindole (delta antagonist). These findings indicate that BW373U86 and Dynorphin A exerted distinct neuroprotection against ischemia via opioid-independent and -dependent mechanisms, respectively. The post-ischemic protection in beneficial treatments was accompanied by alleviations in brain edema, inflammatory cell infiltration, and pro-inflammatory cytokine interleukin 6 (IL-6) expression. In vitro cell study further demonstrated that the opioidergic agonists, delta and kappa, but not mu, attenuated IL-6 production from stimulated glial cells. Our findings indicate that opioidergic agents have a role in post-ischemic progression through both opioid-dependent and -independent mechanisms. In spite of the distinct-involved action mechanism, the potential neuroprotective effect of opioidergic compounds was associated with immune suppression. Taken together, these findings suggest a potential role for opioidergic agents in the therapeutic consideration of neuroinflammatory diseases. However, a better understanding of the mechanisms involved is necessary before this therapeutic potential can be realized.  相似文献   

20.
Healthy dietary intake has been acknowledged for decades as one of the main contributors to health. More recently, the field of nutritional psychiatry has progressed our understanding regarding the importance of nutrition in supporting mental health and cognitive function. Thereby, individual nutrients, including omega-3 fatty acids and polyphenols, have been recognized to be key drivers in this relationship. With the progress in appreciating the influence of dietary fiber on health, increasingly research is focusing on deciphering its role in brain processes. However, while the importance of dietary fiber in gastrointestinal and metabolic health is well established, leading to the development of associated health claims, the evidence is not conclusive enough to support similar claims regarding cognitive function. Albeit the increasing knowledge of the impact of dietary fiber on mental health, only a few human studies have begun to shed light onto the underexplored connection between dietary fiber and cognition. Moreover, the microbiota-gut-brain axis has emerged as a key conduit for the effects of nutrition on the brain, especially fibers, that are acted on by specific bacteria to produce a variety of health-promoting metabolites. These metabolites (including short chain fatty acids) as well as the vagus nerve, the immune system, gut hormones, or the kynurenine pathway have been proposed as underlying mechanisms of the microbiota-brain crosstalk. In this minireview, we summarize the evidence available from human studies on the association between dietary fiber intake and cognitive function. We provide an overview of potential underlying mechanisms and discuss remaining questions that need to be answered in future studies. While this field is moving at a fast pace and holds promise for future important discoveries, especially data from human cohorts are required to further our understanding and drive the development of public health recommendations regarding dietary fiber in brain health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号