首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of ribosome binding to eucaryotic mRNAs is not well understood, but it requires the participation of eucaryotic initiation factors eIF-4A, eIF-4B, and eIF-4F and the hydrolysis of ATP. Evidence has accumulated in support of a model in which these initiation factors function to unwind the 5'-proximal secondary structure in mRNA to facilitate ribosome binding. To obtain direct evidence for initiation factor-mediated RNA unwinding, we developed a simple assay to determine RNA helicase activity, and we show that eIF-4A or eIF-4F, in combination with eIF-4B, exhibits helicase activity. A striking and unprecedented feature of this activity is that it functions in a bidirectional manner. Thus, unwinding can occur either in the 5'-to-3' or 3'-to-5' direction. Unwinding in the 5'-to-3' direction by eIF-4F (the cap-binding protein complex), in conjunction with eIF-4B, was stimulated by the presence of the RNA 5' cap structure, whereas unwinding in the 3'-to-5' direction was completely cap independent. These results are discussed with respect to cap-dependent versus cap-independent mechanisms of ribosome binding to eucaryotic mRNAs.  相似文献   

2.
Eukaryotic translation initiation factor 4A (elF4A) has been proposed to use the energy of ATP hydrolysis to remove RNA structure in the 5' untranslated region (UTR) of mRNAs, helping the 43S ribosomal complex bind to an mRNA and scan to find the 5'-most AUG initiator codon. We have examined the effect of changing the atomic composition and length of single-stranded oligonucleotides on binding to elF4A and on stimulation of its ATPase activity once bound. Substitution of 2'-OH groups with 2'-H or 2'-OCH3 groups reduces ATPase stimulation at least 100-fold, to background levels, without significantly affecting oligonucleotide affinity. These effects suggest that 2'-OH groups participate in an elF4A conformational change that occurs subsequent to oligonucleotide binding and is required for ATPase stimulation. Replacing nonbridging oxygen atoms in phosphodiester linkages with sulfur atoms to make phosphorothioate linkages has no significant effect on stimulation, while substantially increasing affinity. Extending the length of an RNA oligonucleotide from 4 to approximately 15 nt gradually increases oligonucleotide affinity and ATPase stimulation. Consistent with this observation, the increase in affinity and stimulation provided by phosphorothioate linkages and 2'-OH groups is proportional to the number of these groups present within larger oligonucleotides. Further, changing the position of blocks of phosphorothioate linkages or 2'-OH groups within a larger oligonucleotide does not affect affinity and has only a small effect on stimulation. These observations suggest that numerous interactions between the oligonucleotide and elF4A contribute individually to binding and ATPase stimulation. Nevertheless, significant stimulation is observed with as few as four RNA residues. These properties may allow elF4A to operate within regions of 5' UTRs containing only short stretches of exposed single-stranded RNA. As stimulation increases when longer stretches of single-stranded RNA are available, it is possible that the accessibility of single-stranded RNA in a 5' UTR influences translation efficiency.  相似文献   

3.
The eukaryotic mRNA 3' poly(A) tail and the 5' cap cooperate to synergistically enhance translation. This interaction is mediated, at least in part, by elF4G, which bridges the mRNA termini by simultaneous binding the poly(A)-binding protein (PABP) and the cap-binding protein, elF4E. The poly(A) tail also stimulates translation from the internal ribosome binding sites (IRES) of a number of picornaviruses. elF4G is likely to mediate this translational stimulation through its direct interaction with the IRES. Here, we support this hypothesis by cleaving elF4G to separate the PABP-binding site from the portion that promotes internal initiation. elF4G cleavage abrogates the stimulatory effect of poly(A) tail on translation. In addition, translation in extracts in which elF4G is cleaved is resistant to inhibition by the PABP-binding protein 2 (Paip2). The elF4G cleavage-induced loss of the stimulatory effect of poly(A) on translation was mimicked by the addition of the C-terminal portion of elF4G. Thus, PABP stimulates picornavirus translation through its interaction with elF4G.  相似文献   

4.
Two simplified kinetic proofreading scanning (KPS) models were proposed to describe the 5' cap and 3' poly(A) tail dependency of eukaryotic translation initiation. In Model I, the initiation factor complex starts scanning and unwinding the secondary structure of the 5' untranslated region (UTR) from the 5' terminus of mRNA. In Model II, the initiation factor complex starts scanning from any binding site in the 5' UTR. In both models, following ATP hydrolysis, the initiation factor complex either dissociates from mRNA or continues to scan and unwind RNA secondary structure in the 5' UTR. This step repeats n times until the AUG codon is reached. These two models show very different cap and/or poly(A) tail dependency of translation initiation. The models predict that both cap and poly(A) tail dependencies of translation, and translatability of mRNAs are coupled with the structure of 5' UTR: the translation of mRNA with structured 5' UTR is strongly cap- and poly(A) tail-dependent; while translation of mRNA with unstructured 5' UTR is less cap- and poly(A) tail-dependent. We use these two models to explain: (1) the cap and poly(A) tail dependence of translation; (2) the effect of exogenous poly(A) on translation; (3) repression of host mRNA and translation of late adenovirus mRNA in the late phase of adenovirus infection; (4) repression of host mRNA and translation of Vaccinia virus mRNA in virus-infected cell; (5) heat shock repression of translation of normal mRNA and stimulation of translation of hsp mRNA; and (6) the synergistic effect of cap and poly(A) tail on stimulating translation. The kinetic proofreading scanning models provide a coherent interpretation of those phenomena.  相似文献   

5.
6.
The translation initiation step in eukaryotes is highly regulated and rate-limiting. During this process, the 40S ribosomal subunit is usually recruited to the 5' terminus of the mRNA. It then migrates towards the initiation codon, where it is joined by the 60S ribosomal subunit to form the 80S initiation complex. Secondary structures in the 5' untranslated region (UTR) can impede binding and movement of the 40S ribosome. The canonical eukaryotic translation initiation factor eIF4A (also known as DDX2), together with its accessory proteins eIF4B and eIF4H, is thought to act as a helicase that unwinds secondary structures in the mRNA 5' UTR. Growing evidence suggests that other helicases are also important for translation initiation and may promote the scanning processivity of the 40S subunit, synergize with eIF4A to 'melt' secondary structures or facilitate translation of a subset of mRNAs.  相似文献   

7.
Cellular eukaryotic mRNAs (except organellar) contain at the 5' terminus the structure m7(5')Gppp(5')N (where N is any nucleotide), termed cap. Cap recognition by eukaryotic initiation factor eIF-4F plays an important role in regulating the overall rate of translation. eIF-4F is believed to mediate the melting of mRNA 5' end secondary structure and facilitate 43S ribosome binding to capped mRNAs. eIF-4E, the cap-binding subunit of eIF-4F, plays an important role in cell growth; its overexpression results in malignant transformation of rodent cells, and its phosphorylation is implicated in signal transduction pathways of mitogens and growth factors. The molecular mechanism by which eIF-4E transforms cells is not known. Here, we report that overexpression of eIF-4E facilitates the translation of mRNAs containing excessive secondary structure in their 5' non-coding region. This effect may represent one mechanism by which eIF-4E regulates cell growth and transforms cells in culture.  相似文献   

8.
During eukaryotic translation initiation, the 43 S ribosomal pre-initiation complex is recruited to the 5'-end of an mRNA through its interaction with the 7-methylguanosine cap, and it subsequently scans along the mRNA to locate the start codon. Both mRNA recruitment and scanning require the removal of secondary structure within the mRNA. Eukaryotic translation initiation factor 4A is an essential component of the translational machinery thought to participate in the clearing of secondary structural elements in the 5'-untranslated regions of mRNAs. eIF4A is part of the 5'-7-methylguanosine cap-binding complex, eIF4F, along with eIF4E, the cap-binding protein, and the scaffolding protein eIF4G. Here, we show that Saccharomyces cerevisiae eIF4F has a strong preference for unwinding an RNA duplex with a single-stranded 5'-overhang versus the same duplex with a 3'-overhang or without an overhang. In contrast, eIF4A on its own has little RNA substrate specificity. Using a series of deletion constructs of eIF4G, we demonstrate that its three previously elucidated RNA binding domains work together to provide eIF4F with its 5'-end specificity, both by promoting unwinding of substrates with 5'-overhangs and inhibiting unwinding of substrates with 3'-overhangs. Our data suggest that the RNA binding domains of eIF4G provide the S. cerevisiae eIF4F complex with a second mechanism, in addition to the eIF4E-cap interaction, for directing the binding of pre-initiation complexes to the 5'-ends of mRNAs and for biasing scanning in the 5' to 3' direction.  相似文献   

9.
Extracts from poliovirus-infected HeLa cells were used to study ribosome binding of native and denatured reovirus mRNAs and translation of capped mRNAs with different degrees of secondary structure. Here, we demonstrate that ribosomes in extracts from poliovirus-infected cells could form initiation complexes with denatured reovirus mRNA, in contrast to their inability to bind native reovirus mRNA. Furthermore, the capped alfalfa mosaic virus 4 RNA, which is most probably devoid of stable secondary structure at its 5' end, could be translated at much higher efficiency than could other capped mRNAs in extracts from poliovirus-infected cells.  相似文献   

10.
Most eukaryotic mRNAs require the cap-binding complex elF4F for efficient initiation of translation, which occurs as a result of ribosomal scanning from the capped 5' end of the mRNA to the initiation codon. A few cellular and viral mRNAs are translated by a cap and end-independent mechanism known as internal ribosomal entry. The internal ribosome entry site (IRES) of classical swine fever virus (CSFV) is approximately 330 nt long, highly structured, and mediates internal initiation of translation with no requirement for elF4F by recruiting a ribosomal 43S preinitiation complex directly to the initiation codon. The key interaction in this process is the direct binding of ribosomal 40S subunits to the IRES to form a stable binary complex in which the initiation codon is positioned precisely in the ribosomal P site. Here, we report the results of analyses done using enzymatic footprinting and mutagenesis of the IRES to identify structural components in it responsible for precise binding of the ribosome. Residues flanking the initiation codon and extending from nt 363-391, a distance equivalent to the length of the 40S subunit mRNA-binding cleft, were strongly protected from RNase cleavage, as were nucleotides in the adjacent pseudoknot and in the more distal subdomain IIId1. Ribosomal binding and IRES-mediated initiation were abrogated by disruption of helix 1b of the pseudoknot and very severely reduced by mutation of the protected residues in IIId1 and by disruption of domain IIIa. These observations are consistent with a model for IRES function in which binding of the region flanking the initiation codon to the decoding region of the ribosome is determined by multiple additional interactions between the 40S subunit and the IRES.  相似文献   

11.
The 3' noncoding region element (AUUUA)n specifically targets many short-lived mRNAs for degradation. Although the mechanism by which this sequence functions is not yet understood, a potential link between facilitated mRNA turnover and translation has been implied by the stabilization of cellular mRNAs in the presence of protein synthesis inhibitors. We therefore directly investigated the role of translation on mRNA stability. We demonstrate that mRNAs which are poorly translated through the introduction of stable secondary structure in the 5' noncoding region are not efficiently targeted for selective destabilization by the (AUUUA)n element. These results suggest that AUUUA-mediated degradation involves either a 5'-->3' exonuclease or is coupled to ongoing translation of the mRNA. To distinguish between these two possibilities, we inserted the poliovirus internal ribosome entry site, which promotes internal ribosome initiation, downstream of the 5' secondary structure. Translation directed by internal ribosome binding was found to fully restore targeted destabilization of AUUUA-containing mRNAs despite the presence of 5' secondary structure. This study therefore demonstrates that selective degradation mediated by the (AUUUA)n element is coupled to ribosome binding or ongoing translation of the mRNA and does not involve 5'-to-3' exonuclease activity.  相似文献   

12.
13.
L-Myc protein synthesis is initiated by internal ribosome entry   总被引:4,自引:1,他引:3  
An internal ribosome entry segment (IRES) has been identified in the 5' untranslated region (5' UTR) of two members of the myc family of proto-oncogenes, c-myc and N-myc. Hence, the synthesis of c-Myc and N-Myc polypeptides can involve the alternative mechanism of internal initiation. Here, we show that the 5' UTR of L-myc, another myc family member, also contains an IRES. Previous studies have shown that the translation of mRNAs containing the c-myc and N-myc IRESs can involve both cap-dependent initiation and internal initiation. In contrast, the data presented here suggest that internal initiation can account for all of the translation initiation that occurs on an mRNA with the L-myc IRES in its 5' UTR. Like many other cellular IRESs, the L-myc IRES appears to be modular in nature and the entire 5' UTR is required for maximum IRES efficiency. The ribosome entry window within the L-myc IRES is located some distance upstream of the initiation codon, and thus, this IRES uses a "land and scan" mechanism to initiate translation. Finally, we have derived a secondary structural model for the IRES. The model confirms that the L-myc IRES is highly structured and predicts that a pseudoknot may form near the 5' end of the mRNA.  相似文献   

14.
Eukaryotic translation initiation factor-4A (eIF-4A) plays a critical role in binding of eukaryotic mRNAs to ribosomes. It has been biochemically characterized as an RNA-dependent ATPase and RNA helicase and is a prototype for a growing family of putative RNA helicases termed the DEAD box family. It is required for mRNA-ribosome binding both in its free form and as a subunit of the cap binding protein complex, eIF-4F. To gain further understanding into the mechanism of action of eIF-4A in mRNA-ribosome binding, defective eIF-4A mutants were tested for their abilities to function in a dominant negative manner in a rabbit reticulocyte translation system. Several mutants were demonstrated to be potent inhibitors of translation. Addition of mutant eIF-4A to a rabbit reticulocyte translation system strongly inhibited translation of all mRNAs studied including those translated by a cap-independent internal initiation mechanism. Addition of eIF-4A or eIF-4F relieved inhibition of translation, but eIF-4F was six times more effective than eIF-4A, whereas eIF-4B or other translation factors failed to relieve the inhibition. Kinetic experiments demonstrated that mutant eIF-4A is defective in recycling through eIF-4F, thus explaining the dramatic inhibition of translation. Mutant eIF-4A proteins also inhibited eIF-4F-dependent, but not eIF-4A-dependent RNA helicase activity. Taken together these results suggest that eIF-4A functions primarily as a subunit of eIF-4F, and that singular eIF-4A is required to recycle through the complex during translation. Surprisingly, eIF-4F, which binds to the cap structure, appears to be also required for the translation of naturally uncapped mRNAs.  相似文献   

15.
16.
The cap structure and the poly(A) tail synergistically activate mRNA translation in vivo. Recent work using Saccharomyces cerevisiae spheroplasts and a yeast cell-free translation system revealed that the poly(A) tail can function as an independent promotor for ribosome recruitment, to internal initiation sites within an mRNA. This raises the question of how regulatory upstream open reading frames and translational repressor proteins binding to the 5'UTR can function, as well as how regulated polyadenylation can support faithful activation of protein synthesis. We investigated the function of the regulatory upstream open reading frame 4 from the yeast GCN 4 gene and the effect of IRP-1 binding to an iron-responsive element introduced into the 5' UTR of reporter mRNAs. Both manipulations effectively block cap-dependent translation, whereas ribosome recruitment promoted by the poly(A) tail under non-competitive conditions can efficiently bypass both blocks. We show that the synergistic use of both, the cap structure and the poly-A tail enforced by mRNA competition reinstates the full extent of translational control by both types of 5' UTR regulatory elements. With a view towards regulated polyadenylation, we studied the function of poly(A) tails of defined length on the translation of capped mRNAs. We find that poly(A) tail elongation increases translational efficiency, particularly under competitive conditions. Our results integrate recent findings on the function of the poly(A) tail into an understanding of translational control.  相似文献   

17.
BACKGROUND: Translation initiation factor 4A (elF4A) is the prototype of the DEAD-box family of proteins. DEAD-box proteins are involved in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation. Energy from ATP hydrolysis is used to perform RNA unwinding during initiation of mRNA translation. The presence of elF4A is required for the 43S preinitiation complex to bind to and scan the mRNA. RESULTS: We present here the crystal structure of the nucleotide-binding domain of elF4A at 2.0 A and the structures with bound adenosinediphosphate and adenosinetriphosphate at 2.2 A and 2.4 A resolution, respectively. The structure of the apo form of the enzyme has been determined by multiple isomorphous replacement. The ATPase domain contains a central seven-stranded beta sheet flanked by nine alpha helices. Despite low sequence homology to the NTPase domains of RNA and DNA helicases, the three-dimensional fold of elF4A is nearly identical to the DNA helicase PcrA of Bacillus stearothermophilus and to the RNA helicase NS3 of hepatitis C virus. CONCLUSIONS: We have determined the crystal structure of the N-terminal domain of the elF4A from yeast as the first structure of a member of the DEAD-box protein family. The complex of the protein with bound ADP and ATP offers insight into the mechanism of ATP hydrolysis and the transfer of energy to unwind RNA. The identical fold of the ATPase domain of the DNA helicase PcrA of B. stearothermophilus and the RNA helicase of hepatitis C virus suggests a common fold for all ATPase domains of DExx- and DEAD-box proteins.  相似文献   

18.
Initiation of translation on poliovirus RNA occurs by internal binding of ribosomes to a region within the 5' untranslated region (UTR) of the mRNA. This region has been previously roughly mapped between nucleotides 140 and 631 of the 5' UTR and termed the ribosome landing pad. To identify cis-acting elements in the 5' UTR of poliovirus type 2 (Lansing strain) RNA that confer cap-independent internal initiation, we determined the in vitro translational efficiencies of a series of deletion and point mutations within the 5' UTR of the mRNA. The results demonstrate that the 3' border of the core poliovirus ribosome landing pad is located between nucleotides 556 and 585, whereas a region extending between nucleotides 585 and 612 confers enhanced translation. We studied two cis-acting elements within this region of the 5' UTR: a pyrimidine stretch which is critical for translation and an AUG (number 7 from the 5' end) that is located approximately 20 nucleotides downstream from the pyrimidine stretch and augments translation. We also show that the stem-loop structure which contains this AUG is not required for translation.  相似文献   

19.
The cap-binding complex elF4F is involved in ribosome recruitment during the initiation phase of translation and is composed of three subunits: elF4E, -4G, and -4A. The m7GpppN cap-binding subunit eIF4E binds the N-terminal region of eIF4G, which in turn contacts eIF4A through its central and C-terminal regions. We have previously shown, through a tethered-function approach in transfected HeLa cells, that the binding of eIF4G to an mRNA is sufficient to drive productive translation (De Gregorio et al., EMBO J, 1999, 18:4865-4874). Here we exploit this approach to assess which of the other subunits of elF4F can exert this function. eIF4AI or mutant forms of eIF4E were fused to the RNA-binding domain of the lambda phage antiterminator protein N to generate the chimeric proteins lambda4A, lambda4E-102 (abolished cap binding), and lambda4E-73-102 (impaired binding to both, the cap and eIF4G). The fusion proteins were directed to a bicistronic reporter mRNA by means of interaction with a specific lambda-N binding site (boxB) in the intercistronic space. We show that lambda4E-102, but neither the double mutant lambda4E-73-102 nor lambda4A, suffices to promote translation of the downstream gene in this assay. Coimmunoprecipitation analyses confirmed that all lambda-fusion proteins are capable of interacting with the appropriate endogenous eIF4F subunits. These results reveal that eIF4E, as well as eIF4G, can drive ribosome recruitment independent of a physical link to the cap structure. In spite of its interaction with endogenous eIF4G, lambda4A does not display this property. eIF4A thus appears to supply an essential auxiliary function to eIF4F that may require its ability to cycle into and out of this complex.  相似文献   

20.
The involvement of mRNA secondary structure in protein synthesis   总被引:15,自引:0,他引:15  
Translation initiation in eukaryotes is a complex process involving many factors. A key step in this process is the binding of mRNA to the 43S preinitiation complex. This is generally the rate-limiting step in translation initiation and consequently a major determinant of mRNA translational efficiency. The primary and secondary structure of the mRNA 5' noncoding region have been implicated in modulating translational efficiency. Translational efficiency was shown to be inversely proportional to the degree of secondary structure at the mRNA 5' noncoding region. Furthermore, it was shown that cap-binding proteins that interact with the 5' cap structure (m7GpppN) of eukaryotic mRNAs are involved in the "unwinding" of the mRNA secondary structure, in an ATP hydrolysis mediated event, to facilitate ribosome binding. Thus, cap-binding proteins can potentially regulate mRNA translation. Here, we discuss the available data supporting the notion that eukaryotic 5' mRNA secondary structure plays an important role in translation initiation and the possible regulation of this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号